
Journal of Information Technology Education: Volume 10, 2011
Innovations in Practice

Two-Dimensional Parson’s Puzzles:
The Concept, Tools, and First Observations

Petri Ihantola and Ville Karavirta
Department of Computer Science and Engineering,

Aalto University, Helsinki, Finland

petri.ihantola@aalto.fi; ville.karavirta@aalto.fi

Executive Summary
Parson’s programming puzzles are a family of code construction assignments where lines of code
are given, and the task is to form the solution by sorting and possibly selecting the correct code
lines. We introduce a novel family of Parson’s puzzles where the lines of code need to be sorted
in two dimensions. The vertical dimension is used to order the lines, whereas the horizontal di-
mension is used to change control flow and code blocks based on indentation as in Python. Py-
thon blocks have no explicit begin/end statements or curly braces to mark where the block starts
or stops. Instead, indentation is used to define starts and stops of blocks and functions.

In addition, we introduce tools supporting two-dimensional Parson’s puzzles: (1) MIT licensed
JavaScript widget to embed our puzzles to any HTML, and (2) server to create, share, and solve
puzzles.

We have observed how experienced programmers solve our puzzles. Such users often start by
dragging the method signature to the beginning and continue by defining majority of the control
flow (i.e., loop statements, assignments, conditional statements). Only after these are done, de-
tails, including initialization of variables and handling of corner cases, are dragged to correct po-
sitions in the middle of the previously structured code. This shows that even experts are not able
to solve puzzles linearly, i.e., line by line, starting from the first. Thus, user interfaces (UIs)
should minimize the work needed to insert a line between two adjacent lines of existing code. In
some of the existing Parson’s Puzzle UIs this is not the case.

Another observation we made is that too often users don’t ask or use automated feedback. Why
this happens needs further investigations. Perhaps experienced users are too proud to ask a tool to
help them (especially when being observed), or perhaps users don’t recognize when they are
stuck and should ask for help. Providing constant feedback is one way to tackle this problem.
However, the obvious downside of the constant feedback is that solving an exercise can become
trial-and-error repetition.

Keywords: programming, automated
feedback, Parson’s puzzles, open source,
problem solving strategies

Material published as part of this publication, either on-line or
in print, is copyrighted by the Informing Science Institute.
Permission to make digital or paper copy of part or all of these
works for personal or classroom use is granted without fee
provided that the copies are not made or distributed for profit
or commercial advantage AND that copies 1) bear this notice
in full and 2) give the full citation on the first page. It is per-
missible to abstract these works so long as credit is given. To
copy in all other cases or to republish or to post on a server or
to redistribute to lists requires specific permission and payment
of a fee. Contact Publisher@InformingScience.org to request
redistribution permission.

Introduction
It is commonly agreed that students’
active participation and exercises are
essential for learning programming. The
problem, especially on large courses, is
that teachers rarely have enough time to

Editor: Janice Whatley

mailto:petri.ihantola@aalto.fi
mailto:ville.karavirta@aalto.fi
mailto:Publisher@InformingScience.org

Two-Dimensional Parson’s Puzzles

give the high quality feedback they would like to. This is where automatic assessment can help.
By automating the workload in assessment, the teacher can focus on improving other aspects of
the course (Carter et al., 2003).

Being able to program includes a wide spectrum of skills. For example, ITiCSE 2004 working
group (Lister et al., 2004) stated that being able to read and trace code is a precursor skill to writ-
ing code of a similar complexity. Since then, the BRACElet group has investigated the other in-
termediate levels of building programming knowledge. They have found that the ability to ex-
plain a program in a way that demonstrates the ability of seeing the forest for the trees – relational
answers in the terms of the SOLO taxonomy (Biggs & Collis, 1982) – is one such level (Lister,
Simon, Thompson, Whalley, & Prasad, 2006). Moreover, Lopez, Whalley, Robbins, and Lister
(2008) demonstrated that there is a hierarchy of skills from reading to explaining and from ex-
plaining to writing. A later follow-up study by Lister et al. (2009) made the same conclusions.

Programming related assignments can be designed to measure different skills. For example,
“What is the value of a given variable after the following code is executed?” is a simple tracing
question, whereas “Explain in plain English what the program does.” requires higher skills.
“Write a program that sorts a list” is an example of a code construction assignment.

Parson’s puzzles are simplified code construction assignments where the lines of code are given
in the wrong order and the task is to sort and possibly select the correct lines (Parsons & Haden,
2006). Originally, Parson’s puzzles were developed to provide an engaging learning environment
with immediate feedback. Parson’s puzzles are widely used and there are tools supporting them.

Anecdotally, in the original article these puzzles were called Parson’s puzzles. This is slightly
confusing as the first author is Parsons, not Parson. Since then the name of these puzzles has var-
ied between Parsons’ puzzles, Parson’s puzzles, Parsons puzzles/problems and simply Parsons.
We follow the typing from the title of the original paper.

Automatic assessment of Parson’s puzzles is straightforward as it can be done without executing
the code. In addition to online learning environments, Parson’s puzzles can be used in traditional
paper exams where coding exercises (i.e., programming with a pen and a paper) are often prob-
lematic. Interestingly, in the context of paper exams, points from Parson’s puzzles correlate well
with open ended code writing question (Denny, Luxton-Reilly, & Simon, 2008). Moreover, in the
same study, points from neither of these question types correlated with points from tracing exer-
cises. However, in another setup, Lopez et al. (2008) found Parson’s puzzles to be lower level
than tracing exercises including loop constructs. Lopez et al. speculate this could be due to differ-
ent difficulty levels or complexities of tracing and Parson’s puzzle exercises in their study.

In this paper, we introduce a new family of Parson’s puzzles inspired by the Python programming
language. We also introduce an open source tool to embed such puzzles on web pages. In our
tools we have tried to address some of the reported usability issues of the other systems also sup-
porting Parson’s puzzles. In addition, we provide a website where teachers can browse existing
puzzles, create new puzzles, and create collections with several puzzles for their students. Finally,
we observed experts and report how they solve complex Parson’s puzzles (e.g., insertion sort as a
puzzle). For example, if the exercise is too complex to be solved linearly, experts often create the
control flow first and add initializations of variables after that.

The rest of this paper is organized as follows. In the next section, we introduce different types of
Parson’s puzzles and existing tools supporting them. The third section presents our two-
dimensional variant and the tools we have implemented. In the fourth section, we describe our
observations of experts, related to the problem solving strategies. The next section discusses the
observations, how to design puzzles, and why the current assessment approach of Parson’s prob-
lems is not always sufficient. Finally, we conclude our work.

IIP 120

 Ihantola & Karavirta

Parson’s Puzzles

Different Types of Puzzles
We believe that the position of Parson’s puzzles in the hierarchy of programming related skills
can vary – Parson’s puzzles are neither strictly close to writing nor strictly close to read-
ing/tracing questions. There are many variants of Parson’s puzzles and different variants can
measure and teach different skills. Moreover, as also speculated by Lopez et al. (2008), the com-
plexity of the puzzles may affect the level of skills needed to solve the puzzles. Based on the pre-
vious research, we identified the following possibilities to construct Parson’s puzzles:

• Extra lines (i.e., distractors) can be added to make a puzzle more challenging (Parsons &
Haden, 2006). When distractors are used, there are two approaches to construct an initial
state. First approach is to randomly order all the lines, including distractors. Another ap-
proach is to group the distractors with the correct alternative and always keep them next
to each other in the initial random order. In this approach, distractors can be designed to
separate problems in problem solving and in syntax. According to Denny et al. (2008),
grouping reduces cognitive load not relevant to problem solving or to programming.

• User-created blocks are supported by letting users insert curly braces or indent the code.
This gives a lot more freedom and, if combined with distractors without line grouping,
exercises can get too difficult (Denny et al., 2008).

• Context provides a fixed code around the code to be sorted. It allows larger, and often
more concrete, examples to be shown to students (Garner, 2007).

All these can be combined to create different kinds of assignments. Some can test problem solv-
ing whereas others can be targeted to syntactical problems.

Tools
The original Parson’s problems (Parsons & Haden, 2006) were created using a generic drag-and-
drop exercise framework called Hot Potatoes (see http://hotpot.uvic.ca/). Exercises created with
the tool can be exported to HTML+JavaScript pages. An example of such exercise is presented in
Figure 1. Exercises are solved by dragging lines from right to left. When feedback is requested,
lines in (absolutely) correct positions are highlighted. One problem of this UI is that inserting a
line between two existing lines is cumbersome. Student may need to move all lines after the in-
sertion point to create a free slot where the new line can be inserted.

ViLLE (Rajala, Laakso, Kaila, & Salakoski, 2007) is a Java application/applet originally devel-
oped for program visualization. Recent versions include Parson’s puzzles, which allow context to
be created around the editable code. Such an exercise is illustrated in Figure 2. Distractors are not
supported. The feedback is an error message in case the resulting code does not compile or a
number of points in case it does. In this case, the student can also step through a visualization of
the execution of his/her solution.

CORT (Garner, 2007) has been used with Visual Basic programs so that students move lines from
left to a part-complete solution on the right. Moving the lines is done by selecting a line and
clicking arrow buttons to move it left or right. To get feedback, student can copy the code into
Visual Basic interpreter and execute the code. CORT supports both distractors and context.

 IIP 121

http://hotpot.uvic.ca/

Two-Dimensional Parson’s Puzzles

Figure 1: A Parson's problem in Hot Potatoes.

Figure 2: A code sorting exercise in ViLLE.

Of these tools, Hot Potatoes is freeware, ViLLE is freely available for non-commercial purposes,
and CORT does not seem to be publicly available. The source code is not available for any of
these tools. As we will see in the next section, this presented a big problem for us.

Two-Dimensional Parson’s Puzzles
We introduce a new family of Parson’s puzzles inspired by the Python programming language.
Python uses neither curly braces nor begin/end pairs to group lines. Instead, code blocks are de-
fined by their indentation. Listings 1 and 2 illustrate this. Listing 1 is a program that returns the
largest, non-negative value of a list. Listing 2 is almost the same, but because of the different in-
dentation of the return statement, return is always executed at the end of the first iteration and the
first value of the list is returned.

We propose a two-dimensional variant of Parson’s puzzles where lines of code are not only
sorted but also placed on a two-dimensional surface. The vertical dimension is used for ordering
the code like in traditional Parson’s puzzles. The horizontal dimension is used to define code
blocks based on indentation – just like in Python.

def find_max(L):
 max = 0;
 for item in L:
 if item > max:
 max = item
 return max

def find_max(L):
 max = 0;
 for item in L:
 if item > max:
 max = item
 return max

Listing 1: Python example Listing 2: Another Python example

IIP 122

 Ihantola & Karavirta

Initially, we wanted to extend one of the existing tools to support the proposed variant of puzzles.
However, since the source code for none of them was available, we were unable to do so. Fur-
thermore, we felt the user interfaces of the existing systems were some- what clumsy. The origi-
nal Parsons’ article identified several needs in puzzles built with Hot Potatoes (Parsons & Haden,
2006). For example, the mechanism of drag-and-drop is cumbersome. To insert a new line be-
tween two consecutive lines, the user needs to move all the lines after the insertion position to
create a free slot.

We trusted we could improve the user experience in Parson’s puzzles and had no choice but to
implement yet another tool. The next subsections introduce our tool as well as our online envi-
ronment for creating, sharing, and solving two-dimensional Parson’s puzzles.

Our Parson’s Tool
We designed JSParsons based on student feedback reported in the original Parson’s puzzle article
and our own experience on using Hot Potatoes and ViLLE. Our tool is open source under the
MIT license (available at https://github.com/vkaravir/js-parsons). JSParsons is a JavaScript wid-
get. This allows puzzles to be embedded into any HTML document. The most novel feature of
JSParsons is the support for two-dimensional drag-and-drop of the code lines. To make creating
matching indentations easier, an adjustable grid is used to mark the allowed positions of code
lines.

JSParsons supports two visualization modes. In the basic mode, shown in Figure 3, lines of code
are sorted and indented in one area. Distractors are not supported in this mode. In left to right
mode (Figure 4), distractors are supported and there are two areas for code lines similar to the
original Parson’s puzzles. In this mode, lines need to be dragged to the solution area on the right
and can be inserted between any two lines. A line can be removed from the solution by dragging
it back to the left area.

Figure 3: Example of a two-dimensional Parson's puzzle in basic mode.

Feedback is given to student on request. There are various types of feedback (Figure 3 shows ex-
amples of the two first types):

• Lines in correct/incorrect position are colored green/red.

• Lines in correct position but incorrectly indented are highlighted with a red border on the
left.

• In left to right mode, the background of the solution is colored green/red if the solution
has correct/incorrect number of lines.

 IIP 123

https://github.com/vkaravir/js-parsons

Two-Dimensional Parson’s Puzzles

Figure 4: An exercise in our system with distractors.

Creating new exercises with the widget requires a few lines of JavaScript: specifying the indented
lines of code of the model solutions, distractors, and optional arguments (e.g., visualization
mode). Another option for creating puzzles is to use our online environment and the exercise edi-
tor described next.

Online Environment for Parson’s Puzzles
In addition to the JavaScript tool, we have a website (http://parsonspuzzles.com) where puzzles
can be solved and where teachers can create puzzles online. Main features of this site are:

• Teachers can browse existing puzzles and create collections with several puzzles. Each
collection can be accessed with a unique URL a teacher can pass to his/her students. Fur-
thermore, public collections appear in a list on the main page. This allows students to
solve the puzzles and other teachers to find suitable collections.

• Teachers can create new puzzles by using an online editor (see Figure 5). All puzzles are
licensed under creative commons, which authors need to agree.

Figure 5: Editor for creating two-dimensional Parson's puzzles

IIP 124

http://parsonspuzzles.com/

 Ihantola & Karavirta

Another novel feature is the ability to record how puzzles are solved. We hope this data to be use-
ful in further research into how Parson’s puzzles are solved.

Problem Solving Strategies
The goal of our preliminary analysis described here is to form an hypothesis on how experienced
users solve algorithmic, two-dimensional Parson’s puzzles. This is why we choose to follow qua-
litative research approach in this study. Follow-up quantitative studies are needed to verify if
most experts are actually following the approached we identified. In addition, more research is
needed to understand if experts’ strategies related to Parson’s puzzles differ from what (novice)
students do.

Research Method
To collect data about the problem solving strategies, we created a collection of ten algorithmic
Parson’s puzzles (see the Appendix). The exercises included two simple tasks to introduce the
widget, four exercises on tree traversal algorithms, and three on sorting algorithms.

We observed four senior teachers and teaching assistants solving the problems. All the partici-
pants were familiar with the data structures and algorithms in the questions. Solving the exercises
took them 20–30 minutes. We asked the participants to speak out loud what they were thinking
while solving the puzzles. At the end, we asked their comments. We wanted to keep the atmos-
phere and discussion open so we did not record voice or video. Instead, we were both observing
and taking notes. We were afraid some of our participants would have felt stressed about their
performance if they were recorded. In addition, to improve validity of our results, we discussed
our observations afterwards with the interviewees. Furthermore, the system recorded the solution
sequences, so we could trace them when analyzing the data.

The Strategy
Most of our puzzles were algorithmic. That is, a name of an algorithm was given and the task was
to sort the lines of this algorithm. Many of the algorithmic puzzles were about sorting algorithms.
All the participants followed the following strategy of five steps when they solved sorting algo-
rithms:

1. Find the function signature. This was actually the first step in all sorting exercises.

2. Find two loop statements and add them after the signature.

3. Check that the loops are in correct order, change if needed, and indent the first three lines
correctly.

4. Take the conditional if-statements and the lines where variables are initialized and insert
them to correct positions. This was typically the first time feedback was requested to en-
sure the solution was going to the right direction.

5. Add the remaining lines and check the indentation.

The rest of the puzzles were more trivial. Especially in the Hello World and Swap puzzles the
participants simply took all the lines in correct order. Participants clearly had the full solution in
their minds before they started to construct the solution.

Other Observations
Participants were allowed to ask feedback from the tool while they were solving the puzzles.
Feedback from an unfinished solution might be valuable if they believed that the first few lines of

 IIP 125

Two-Dimensional Parson’s Puzzles

their solution were already correct. Still, participants rarely requested the feedback before they
felt their solution was ready. Clearly, requesting feedback more often would have helped them
solve the puzzles. One of the interview comments we got was that “I would likely use more of
feedback and trial-and-error method to solve the exercises if no one was monitoring and taking
notes.”

Two of the participants commented that because they already knew the algorithms, they learned
Python (which they were not familiar with). However, one of the participants commented, “This
is more difficult than writing code when the expected solution does not match one’s own mental
model of the algorithm” (we had two versions of selection sort: traditional taught on our DSA
course and a more pythonic version of list sorting).

Discussion
In this section, we discuss strategies of experts to solve complex Parson’s puzzles built with our
widget. In addition, we report the problems we faced when creating new puzzles.

Solving Puzzles
According to Lister et al. (2004) and McCracken et al. (2001), many novice programmers have
problems in reading and in writing programs. One explanation is that novice programmers miss
programming schemas or plans (Detienne, 1990; Soloway & Ehrlich 1986). For example, experi-
enced programmers know how to iterate over an array to find the best (e.g., smallest) element.
When reading programs, experts can recognize those patterns immediately. They are also able to
apply and combine them when writing programs.

Muller (2005), among others, has suggested that algorithmic patterns (i.e., plans) should be ex-
plicitly taught to novice programmers. We hope that, with assignments similar to what we have in
the Appendix, Parson’s puzzles can teach these patterns.

The strategy described in the next sub-section can be interpreted as a schema or a template ap-
plied by experts. A loop, an inner loop, and a comparison are often needed for sorting. This is
why users select them first. After these steps, users fill in the rest, which is also when experts
typically start thinking.

Even experts did not solve the problems linearly (i.e., where lines are moved into the correct posi-
tion in their textual order; the 1st line, the 2nd line, etc). We suspect that students would also not
solve the problems linearly. Thus, it is important that a line can be easily added between any two
lines – a feature not supported by Hot Potatoes.

Our expert participants used the feedback of the tool less than we anticipated. However, it is not
clear how much from this behavior was because of us observing. Interestingly, Isohanni & Kno-
belsdorf (2010) found their students were also not using the feedback in their tool. This was espe-
cially true when students were struggling and would have needed the help. The lesson we can
learn from this is that some feedback on syntactic indentation errors could be shown continuously
without the student needing to request it. The continuous feedback is also supported by the find-
ings of Kirschner, Sweller, and Clark (2006) who conclude that novices should be given more
guidance when they do not have sufficient prior knowledge.

One concern raised when interviewing the participants was that while the puzzles would be help-
ful for some students, avoiding trial-and-error and the use of Wikipedia to find the solutions
might be difficult – especially if these are used for grading purposes. This is a common problem
in education nowadays, one where no perfect solution exists. As a solution, we suggest that when
designing the puzzles (especially when they are not algorithmic like ours), the problem should be
something specific enough to not be already available online.

IIP 126

 Ihantola & Karavirta

Designing Puzzles
Ambiguous solutions are perhaps the biggest problem of automatic assessment of complex Par-
son’s puzzles. Ambiguity means that the functionality of two different programs can be the same.
In the QuickSort in Listing 3, for example, lines 5–7 are interchangeable. This is a problem if the
assessment of Parson’s puzzles is based on the correct order of the lines. To avoid this, in JSPar-
sons draggable elements larger than a single program line can be created. In rare cases, this kind
of grouping approach can lead into too large elements trivializing the whole exercise. In addition,
the author of an exercise needs to decide when such elements are needed.
def qsort(L):
 if len(L) <= 1:
 return L
 pivot = L[0]
 less = [x for x in L if x < pivot]
 equal = [x for x in L if x == pivot]
 greater = [x for x in L if x > pivot]
 return qsort(less) + equal + qsort(greater)

Listing 3: QuickSort in Python (quoted from http://www.codecodex.com/wiki/Quick sort)

Another problem we faced, not solvable by the grouping approach, is the logically different solu-
tion strategies related to the use of distractors. These alternative solution strategies can be divided
between the following three categories:

• Distractors can be placed in a position where they never get executed. Multiple distrac-
tors and at least one with a conditional statement similar to the correct one led often to
this problem. In other words, distractors were used to create conditional blocks that are
never executed.

• Distractors may also have no real effect even when they get executed. For example, dis-
tractors modifying variables that are not used after a certain point in the program are
problematic.

• Meaningful but still different solution strategies are also possible. For example, adding
both “return” and “if tree node is None:” as distractors to the example of Figure 3 creates
at least two valid solution strategies demonstrated in Listings 4 and 5.

The first two categories are clearly bad programming and therefore we argue that automatic as-
sessment should mark those as incorrect. However, the challenge is to identify these in order to
give good feedback. Feedback should tell that, although the functionality is correct, there is still
something wrong in the code.

It is not clear how to deal with the last category. One argument against accepting these strategies
is that the model solution was designed to be idiomatic, whereas the alternative is not.

We propose that Parson’s puzzles should be constructed in an environment that tests all the pos-
sible combinations, alerts the author about alternative solutions, and leaves it for the author to
decide which of the solutions should be accepted. Functionally identical variants could be identi-
fied based on unit tests provided by the author.
def traverse_postorder(tree_node):
 if tree_node is None:
 return
 traverse_postorder(tree_node.left)
 traverse_postorder(tree_node.right)
 visit(tree_node)

Listing 4: A correct solutions to the post order traversal

 IIP 127

Two-Dimensional Parson’s Puzzles

def traverse_postorder(tree_node):
 if tree_node is not None:
 traverse_postorder(tree_node.left)
 traverse_postorder(tree_node.right)
 visit(tree_node)

Listing 5: Another correct solutions to the post order traversal

Conclusions and Future Research
In this article, we have:

• Described a new two-dimensional subcategory of Parson’s puzzles.

• Reported our initial observations on how experts solve complex, two-dimensional Par-
son's puzzles. For example, users try to solve exercises without using the feedback that
would help them. In general, this could imply that the authors of automated learning envi-
ronments should design which of the feedback needs to be actively pushed for learners
and which of the feedback should be available only when requested by learners.

• Presented an open source tool for embedding Parson’s puzzles into, for example, learning
environments.

• Introduced an online environment where people can create, share, and solve two- dimen-
sional Parson’s puzzles.

In the future, we will use the interviews of the experts to create more algorithmic Parson’s puz-
zles. We will then use these with students to evaluate the suitability of two-dimensional Parson’s
puzzles in teaching algorithms. We have already implemented a way to record all user actions in
JSParsons and send the logs to a server. Mining this data will hopefully give us a better under-
standing of how exercises are really solved and how the tool may affect learning of programming

Two-dimensional puzzles are more complicated when compared to similar puzzles where only
the order of the lines needs to be solved. How to extend the concept of two-dimensional puzzles
to other programming languages provides interesting usability challenges for future research. In
Java, for example, our two dimensional UI could dynamically modify the code by inserting and
removing curly braces based on the indentation.

References
Biggs, J., & Collis, K. (1982). Evaluating the quality of learning: The SOLO taxonomy (Structure of the

Observed Learning Outcome). Academic Press.

Carter, J., English, J., Ala-Mutka, K., Dick, M., Fone, W., Fuller, U., & Sheard, J. (2003). ITICSE working
group report: How shall we assess this? SIGCSE Bulletin, 35(4), 107-123.

Denny, P., Luxton-Reilly, A., & Simon, B. (2008). Evaluating a new exam question: Parsons problems.
ICER ’08: Proceedings of the Fourth international Workshop on Computing Education Research,
ACM, New York, NY, USA, pp. 113–124.

Détienne, F. (1990). Expert programming knowledge: A schema-based approach. In J.-M. Hoc, T. R. G.
Green, R. Samurcay, & D. J. Gilmore (Eds.), Psychology of programming (pp. 205–222). London:
Academic Press.

Garner, S. (2007). An exploration of how a technology-facilitated part-complete solution method supports
the learning of computer programming. Journal of Issues in Informing Science and Information Tech-
nology, 4, 491–501. Retrieved from
http://proceedings.informingscience.org/InSITE2007/IISITv4p491-501Garn260.pdf

IIP 128

http://proceedings.informingscience.org/InSITE2007/IISITv4p491-501Garn260.pdf

 Ihantola & Karavirta

Isohanni, E. & Knobelsdorf, M. (2010). Behind the curtain: Students’ use of vip after class. ICER ’10: Pro-
ceedings of the Sixth international workshop on Computing education research, ACM, New York,
NY, USA, pp. 87–96.

Kirschner, P. A., Sweller, J., & Clark, R. E. (2006). Why minimal guidance during instruction does not
work: An analysis of the failure of constructivist, discovery, problem-based, experiential, and inquiry-
based teaching. Educational Psychologist, 41(2), 75–86.

Lister, R., Adams, E. S., Fitzgerald, S., Fone, W., Hamer, J., Lindholm, M., . . . Thomas, L. (2004). A
multi- national study of reading and tracing skills in novice programmers. SIGCSE Bulletin, 36(4),
119–150.

Lister, R., Clear, T., Simon, Bouvier, D. J., Carter, P., Eckerdal, A., . . . Thompson, E. (2009). Naturally
occurring data as research instrument: Analyzing examination responses to study the novice program-
mer. SIGCSE Bulletin, 41(4), 156–173.

Lister, R., Simon, B., Thompson, E., Whalley, J. L., & Prasad, C. (2006). Not seeing the forest for the trees:
Novice programmers and the solo taxonomy. SIGCSE Bulletin, 38(3), 118–122.

Lopez, M., Whalley, J., Robbins, P., & Lister, R. (2008). Relationships between reading, tracing and writ-
ing skills in introductory programming. ICER ’08: Proceedings of the Fourth International Workshop
on Computing Education Research, ACM, New York, NY, USA, pp. 101–112.

McCracken, M., Almstrum, V., Diaz, D., Guzdial, M., Hagan, D., Kolikant, Y. B-D., . . . Wilusz, T. (2001).
A multi-national, multi- institutional study of assessment of programming skills of first-year CS stu-
dents. SIGCSE Bulletin, 33(4), 125–180.

Muller, O. (2005). Pattern oriented instruction and the enhancement of analogical reasoning. ICER ’05:
Proceedings of the 2005 International Workshop on Computing Education Research. ACM Press, New
York, NY, USA, pp. 57–67.

Parsons, D., & Haden, P. (2006). Parson’s programming puzzles: A fun and effective learning tool for first
programming courses. ACE ’06: Proceedings of the 8th Australian Conference on Computing Educa-
tion, Australian Computer Society, Inc., Darlinghurst, Australia, pp. 157–163.

Rajala, T., Laakso, M.-J., Kaila, E., & Salakoski, T. (2007). ViLLE — A language-independent program
visualization tool. In R. Lister & Simon (Eds.), Seventh Baltic Sea Conference on Computing Educa-
tion Research (Koli Calling 2007), Vol. 88 of CRPIT, ACS, Koli National Park, Finland, pp. 151–159.

Soloway, E., & Ehrlich, K. (1986). Empirical studies of programming knowledge. In C. Rich & R. C. Wa-
ters (Eds.), Readings in artificial intelligence and software engineering (pp. 507–521). San Francisco,
CA, USA: Morgan Kaufmann Publishers.

 IIP 129

Two-Dimensional Parson’s Puzzles

Appendix
Solutions to puzzles discussed in the section of problem solving strategies are presented here. If
there are multiple lines inside one box, this means that those lines were one draggable element in
the puzzle. Possible distractors are the last lines with #distractor comment string at the end of
the line.

When puzzles were presented, all the lines (including distractors if turned on) were shuffled and
presented in a random order. Distractors were shown like all the other lines, i.e. without any hints
which lines were distractors.

First Exercise
def helloWorld():

 for i in range(5):

 print "Hello"

 print "World"

Swap
temp = a

a = b

b = temp

Binary Tree Levelorder Traversal
def traverse_levelorder(tree_node):

 queue.put(tree_node)

 while not queue.empty():

 T = queue.get()

 if t is not None:

 visit(t)

 queue.put(t.left)

 queue.put(t.right)

queue.put(t) #distractor

Binary Tree Postorder Traversal
def traverse_postorder(tree_node):

 if tree_node is not None:

 traverse_postorder(tree_node.left)

 traverse_postorder(tree_node.right)

 visit(tree_node)

if tree_node is None: #distractor

traverse_postorder(tree_node) #distractor

IIP 130

 Ihantola & Karavirta

Binary Tree Inorder Traversal
def traverse_inorder(tree_node):

 if tree_node is not None:

 traverse_inorder(tree_node.left)

 visit(tree_node)

 traverse_inorder(tree_node.right)

if tree_node is None: #distractor

traverse_inorder(tree_node) #distractor

Binary Tree Preorder Traversal
def traverse_preorder(tree_node):

 if tree_node is not None:

 visit(tree_node)

 traverse_preorder(tree_node.left)

 traverse_preorder(tree_node.right)

if tree_node is None: #distractor

traverse_preorder(tree_node) #distractor

Selection Sort
def selectionSort(a):

 for i in range(0, len(a)):

 min = i

 for j in range(i+1, len(a)):

 if a[j] < a[min]:

 min = j

 temp = a[min]

 a[min] = a[i]

 a[i] = temp

if a[i] < a[j]: #distractor

min = I #distractor

Insertion Sort
def insertionSort(a):

 for i in range(0, len(a)):

 temp = a[i]
j = i

 while j > 0 and a[j-1] > temp:

 a[j] = a[j-1]

 IIP 131

Two-Dimensional Parson’s Puzzles

IIP 132

 j = j-1

 a[j] = temp

temp = a[i]
j = i-1

Selection Sort
def selection_sort(list):

 l = list[:] #create copy of the list
sorted = []

 while len(l):

 lowest = l[0]

 for x in l:

 if x < lowest:

 lowest = x

 sorted.append(lowest)
l.remove(lowest)

 return sorted

while(true): #distractor

Biographies
Petri Ihantola is a researcher, lecturer and PhD student from Aalto
University, Finland. He has also worked as a software engineer based
in Finland, Ireland and Switzerland. His research interests include
software test automation, visualizations and automated feedback in CS
education. In addition, Mr. Ihantola enjoys beautiful code, real ales,
trekking, and dark chocolate.

Ville Karavirta is a researcher and lecturer at Aalto University,
Finland. He received his D.Sc. (Tech) diploma in 2009 from the same
university (known as Helsinki University of Technology at that time).
He is passionate about using visualizations and web and mobile tech-
nologies to improve education, especially to teach programming and
computer science in general. When not working, you can probably find
him eating good food, sleeping, doing sports, or moonlighting as an
entrepreneur.

	Two-Dimensional Parson’s Puzzles: The Concept, Tools, and First Observations
	Petri Ihantola and Ville KaravirtaDepartment of Computer Science and Engineering, Aalto University, Helsinki, Finland
	petri.ihantola@aalto.fi; ville.karavirta@aalto.fi

	Executive Summary
	Introduction
	Parson’s Puzzles
	Different Types of Puzzles
	Tools

	Two-Dimensional Parson’s Puzzles
	Our Parson’s Tool
	Online Environment for Parson’s Puzzles

	Problem Solving Strategies
	Research Method
	The Strategy
	Other Observations

	Discussion
	Solving Puzzles
	Designing Puzzles

	Conclusions and Future Research
	References
	Appendix
	First Exercise
	Swap
	Binary Tree Levelorder Traversal
	Binary Tree Postorder Traversal
	Binary Tree Inorder Traversal
	Binary Tree Preorder Traversal
	Selection Sort
	Insertion Sort
	Selection Sort

	Biographies

