
Journal of Information Technology Education Volume 10, 2011

Students’ Strategies for Exception Handling
Rami Rashkovits and Ilana Lavy

The Max Stern Academic College of Emek Yezreel, Israel

ramir@yvc.ac.il; ilanal@yvc.ac.il

Executive Summary
This study discusses and presents various strategies employed by novice programmers concerning
exception handling. The main contributions of this paper are as follows: we provide an analysis
tool to measure the level of assimilation of exception handling mechanism; we present and ana-
lyse strategies to handle exceptions; we present and analyse solutions provided by novice pro-
grammers; we classify and analyse the participants' reflections concerning their solutions. Mod-
ern programming languages, such as Java, provide the programmer an elaborated object oriented
exception mechanism; enable him to handle exceptions in a more convenient way. The aim of this
study was to discover the strategies novice programmers are using to handle exceptions and
whether they utilise the advantage of the modern exception handling mechanism. For that matter
the participants (college students) had to provide a written solution to a given problem with a spe-
cial focus on exception handling. In addition each of them was interviewed. The analysis of the
solutions provided was carried out according to a set of software quality criteria (clarity, modular-
ity and extensibility) adapted to exception handling characteristics. These criteria were used to
explain the advantages and disadvantages of the solutions from a software engineering perspec-
tive. The solutions provided were also analysed according to a classification of levels of assimila-
tion concerning the structure of exceptions, based on the SOLO taxonomy. The first level of as-
similation refers to solutions in which no exception mechanism was used, and the errors were
handled in the old fashion way (local handling or return of an error code). The fifth and last level
refers to solutions that used adequate hierarchy of exception classes allowing easy extension ac-
cording to future requirements and enabling the handling of multiple exception altogether or han-
dle each separately. In between these levels there are strategies that used exception mechanisms
without the exhausting of its advantages. The results obtained reveal that only few participants (7
out of 56) provided a solution that was classified to one of the two highest assimilation levels,
while many (23 out of 56) did not use exception mechanism at all. The rest of the students (25 out
of 56) used the exception mechanism poorly (i.e., used only Exception class or did not use hierar-
chy of exceptions). The participants had difficulties in utilising the advanced exception handling
mechanisms and in exhibiting a high level of abstraction with regard to the proper design of a
hierarchy of exceptions. The students’ statements collected during the interviews were classified
into the following categories: misconceptions concerning code quality; misconceptions concern-

ing exception handling; difficulties in
understanding the exception handling
mechanism; the perceived importance of
exception handling; and a lack of pro-
gramming experience. During the inter-
views the students provided explana-
tions concerning the reasons they were
not fully utilized the exception mecha-
nism. Among them are: lack of practice,
too few demonstrated examples, focus-
sing merely on providing a working so-

Material published as part of this publication, either on-line or
in print, is copyrighted by the Informing Science Institute.
Permission to make digital or paper copy of part or all of these
works for personal or classroom use is granted without fee
provided that the copies are not made or distributed for profit
or commercial advantage AND that copies 1) bear this notice
in full and 2) give the full citation on the first page. It is per-
missible to abstract these works so long as credit is given. To
copy in all other cases or to republish or to post on a server or
to redistribute to lists requires specific permission and payment
of a fee. Contact HPublisher@InformingScience.orgH to re-
quest redistribution permission.

Editor: Thomas Connolly

mailto:ramir@yvc.ac.il
mailto:ilanal@yvc.ac.il

Students’ Strategies for Exception Handling

lution without considering quality issues. Finally we recommend on some modifications to the
curriculum, among them: to expose the students earlier to the exception mechanism; to throw
built-in Java exception to address validation errors; and to put more attention to quality issues.

Keywords: Exception handling; class hierarchy; source code quality

Introduction
One of the most important constituents of software systems is exception handling, and a substan-
tial amount of research has been performed in order to develop tools and techniques to assist pro-
grammers in incorporating exception handling into their programs (Robillard & Murphy, 1999,
2003).

In this paper, the term “exception” refers to any situation in which some of the rules embedded in
a problem are violated. For instance, trying to withdraw money from an overdrawn account will
result in an exception. The term “exception handling” refers to a certain mechanism that is de-
signed to detect a violation, to notify someone about the violation, and to perform corrective ac-
tions.

In procedural languages such as C, when an exception is detected it is handled locally within the
function. Such treatment may lead to complex code in which a function contains many lines of
code designed to handle all normal and exceptional flows. Moreover, a uniform method for deal-
ing with exceptions is hard to achieve when the exceptional flow is scattered all over the code. In
some cases, the function in which the exception is detected cannot address the problem as it lacks
a broader context. In this case, it is reasonable to delegate the task of handling the exception to
the caller. Upon detecting an exception, the function returns a specific value to its caller, indicat-
ing that a problem has been detected. The caller then uses this value to identify the specific ex-
ception and to react accordingly. Alternatively, if the caller itself lacks the ability to handle the
exception, it can delegate the task of handling the exception up the calling chain. This kind of
treatment can lead to the following problems: the caller code can become far too complex, as
when following each invocation of a called function it must check the results and handle excep-
tions if any are reported, and the values used to identify the exceptions may be arbitrary and mea-
ningless and hence harm the readability of the code.

Object-oriented languages such as Java provide an improved mechanism for handling exceptions.
The function in which the exception is detected can pass information regarding the problem that
has been detected to other parts of the program. The information that is passed on may include all
of the information needed to handle the problem, such as a meaningful name, textual descriptions
and related values. Handling exceptions in the proper way may lead to simpler and more modular
code, which is extremely important for the maintainability of software.

Although this exception-handling mechanism is a significant improvement on the previous meth-
ods, it is still not implemented efficiently by programmers. For instance, programmers throw and
catch generic exceptions, resulting in poor exception handling, leading to a decrease in software
quality and dependability (Cabral & Marques, 2006; Coelho et al., 2008; Garcia, Rubira, Ro-
manovsky & Xu, 2001). Advanced techniques such as “aspect-oriented programming” also exist,
which further reduce the complexity of exception detection and handling and which can cut the
code dedicated to exception detection and handling significantly (Lippert & Lopes, 2000).

Large software systems are usually very complex. In such systems, the code devoted to exception
handling is extensive and complex. In reality, up to two-thirds of a program is dedicated to excep-
tion handling (Garcia et al., 2001). Therefore, using the exception mechanism provided by the
software language may contribute significantly to the modularity, readability and maintainability
of the code (Filho et al., 2006; Filho, Garcia & Rubira, 2007).

184

http://www.citeulike.org/user/toppi/author/Cabral:B
http://www.citeulike.org/user/toppi/author/Marques:P

Rashkovits & Lavy

In the process of training novice programmers to deal with large software systems in their future
vocation, they should be encouraged to acquire proper programming skills including effective
exception handling methods. In the present study, we examined the assimilation of the Java ex-
ception mechanism among third year Management Information Systems (MIS) students after they
had studied and applied this mechanism. We examined the various strategies the students used
when asked to address an exception handling problem. In this paper, we will summarise these
strategies and analyse their attributes, advantages, shortcomings and the underlying motivation
for using them. In addition, in-depth interviews were conducted in order to understand the stu-
dents’ strategies and their trains of thought.

Theoretical Background
In this section, we will present a brief literature review regarding “design by contract” exception
handling, exception handling structures, exception handling mechanisms in Java, the difficulties
involved in applying exception handling in programming and instructional courses in exception
handling. As the analysis of these findings is based on the students’ levels of understanding, we
will present the Structure of the Observed Learning Outcome (SOLO) taxonomy as a theoretical
basis.

Design by Contract
“Design by contract” is an approach to designing computer software (Mitchell & McKim, 2002).
It suggests that software designers should define formal, precise, and verifiable interface specifi-
cations for software components, which extend the ordinary definition of abstract data types with
preconditions, postconditions, and invariants. These specifications are referred to as “contracts”.
A contract involves the software component as a whole at every level of its refinement, including
down to the level of methods.

The main idea of “design by contract” concerns how the components of a software system col-
laborate with each other, on the basis of mutual obligations and benefits. A method’s precondition
is a description of an obligation that the calling method has and a benefit that the called method
receives, as it frees it from having to handle cases outside of the precondition. A method’s post-
condition is an obligation for the called method and a benefit for the calling method, as it guaran-
tees results. A class invariant is a guarantee that a certain property is assumed on all class meth-
ods entry and exit. When a method detects a violation of a precondition, it should handle the ex-
ception.

Exception Handling
Exceptions stem from the system requirements with regard to the problem conditions that the sys-
tem must follow. These requirements include guidelines regarding legal inputs and class invari-
ants. For instance, in a banking system, the rules of the business refer to conditions for cash with-
drawal (e.g., the amounts which can be withdrawn and current balance constraints) (Siedersleben,
2006). In terms of “design by contract”, the class invariants of the account would refer to “invari-
ant: balance ≥ 0”; the precondition of the withdrawal method would be “precondition: balance ≥
withdrawal amount”, and the postcondition would be “postcondition: balance = balance + with-
drawal amount”.

The programmer has to implement both the normal flow of the code (e.g., a successful with-
drawal) and the exceptional flow (e.g., an illegal withdrawal violating the precondition or the in-
variants). The withdrawal method should notify its caller whenever the operation fails.

185

http://en.wikipedia.org/wiki/Computer_software
http://en.wikipedia.org/wiki/Formal_methods
http://en.wikipedia.org/wiki/Component-based_software_engineering#Software_component
http://en.wikipedia.org/wiki/Abstract_data_type
http://en.wikipedia.org/wiki/Precondition
http://en.wikipedia.org/wiki/Postcondition
http://en.wikipedia.org/wiki/Postcondition

Students’ Strategies for Exception Handling

In the scope of this paper, we will present and analyse strategies used by novice programmers
(i.e., college students) to address the design and implementation of exception handling.

Exception Handling Structures
The programmer may use control-flow structures in order to detect exceptions (invariants or pre-
condition violations) and to notify the calling method about them, as detailed herein.

Error codes. The programmer uses certain return values, for instance -1, to notify the caller that
an exception of a specific kind has been detected, as shown in the following example:
void foo() {
 ...
 if (some exception has been detected) {

return -1;
else if (another exception has been detected) {

return -2;

// everything is ok
 // do whatever foo needs to do
 ...
}

The following is an example of the caller’s code:
int code = foo();
if (code == -1) { // exception of type-1 has been detected

// execute corrective actions;
} else if (code == -2) { // exception of type-2 has been detected

// execute corrective actions;
} else // successful
 code = bar();

if (code == -3) { // exception of type-3 has been detected
return -3; // delegate the task of handling this exception upwards

} else if (code == -4) { // exception of type-4 has been detected
// execute corrective actions;

} else // successful
// continue with the normal flow

 code = baz();
 ...

}
}

The normal flow of the code segment given above includes the calls for foo, bar and baz. All of
the other statements in the code segment above are related to exception handling. The caller itself
may not handle some errors and may instead delegate the task of handling them to its caller (see
the line highlighted above), and therefore the caller’s caller code may appear to be complex as
well.

In cases in which the return value of foo has already been dedicated to other purposes, the pro-
grammer will have to use return values that are not returned by foo as normal values or instead
use a global exception flag (or a parameter sent by reference) to indicate an exception.

The caller must check after each call to a method whether an exception has been detected and
reported (as demonstrated in the code segment above) and handle the specific exception indicated
by the called method, if any.

As shown, mixing exception handling with the normal flow results in a complex program. More-
over, this solution is inefficient, as it involves checking for exceptions each time a method is
called. Such a program will be barely understandable and difficult to maintain. Therefore, this
kind of approach is undesirable.

Local exception handling. In order to avoid the complexity shown above, some programmers
prefer to handle exceptions locally (within foo, bar, and baz) without indicating an exception to
the caller. The following is a simple example of local exception handling inside a method:

186

Rashkovits & Lavy

void foo() {
 if (exception has been detected) {

// execute corrective actions;
...

if (another exception has been detected) {
// execute another corrective actions;

// everything is ok

 // do whatever foo needs to do
 ...
}

In this mechanism, the caller calls the foo and cannot tell whether or not it was successful. The
foo itself becomes far too complex and its reactions to exceptions are always in the same context,
i.e., foo cannot be used in other contexts. For instance, if foo is part of a console application, it
might print an exception message to the console. However, using it in a Graphical User Interface
(GUI) application is useless, as no console messages are available. The use of local exception
handling only shifts this complexity to the methods themselves, disabling context-based reactions
to the exceptions that are detected. Similarly to the previous strategy (error codes), this program
is barely understandable and difficult to maintain. Therefore, such an approach is undesirable.

Exception handling mechanisms. Modern programming languages such as Java and C# provide
mechanisms with which to address exception handling. Although exception handling mechanisms
differ from one language to another (Garcia et al., 2001), they all share common attributes. An
exception handling mechanism is used to address both runtime exceptions (emergencies) and us-
er-defined exceptions. The following is a simple example of an exception handling mechanism:
try {

foo();
bar();
baz();

} catch (MyException e1) {
// execute corrective actions;

} catch (AnotherException e2) {
// execute other corrective actions;

}

When an exception occurs inside foo, bar, or baz, they throw a dedicated exception, which can be
caught by their caller. The catch clause can then be used to implement some corrective actions
that are specific to the exception which has been detected. As shown above, the names of the ex-
ceptions are not arbitrary, and the programmer can assign meaningful names to them. Moreover,
when using an exception handling mechanism, the normal flow of the program will not get mixed
up with the exception handling code, and hence this mechanism is more easily understood and
easier to maintain. In the following section, Java’s exception handling mechanism will be elabo-
rated upon and its advantages will be discussed.

Exception Handling with Java's Exceptions-Handling Mechanism
The Java programming language comprises a mechanism with which to handle exceptions. When
an exception occurs during the execution of a method, the programmer can identify the erroneous
situation and raise an appropriate exception. The programmer also has to catch and handle the
exceptions raised whenever it is possible to create a solution to the exception that has been de-
tected (if such a thing is available).

Java’s principles regarding exceptions. Before using an exception, the programmer should im-
port a predefined one or construct a new one. In Java, exceptions are objects whose classes de-
scend from the Throwable class. Throwable serves as a base class for the Exception class. Excep-
tion is used as a base class for serious problems, such as the OutOfMemory exception, which are
not usually recoverable. Exception is used as a base class for logical problems that can often be
handled and resolved. Exceptions are usually thrown by the Java library packages or the Java vir-

187

Students’ Strategies for Exception Handling

tual machine (JVM: the java runtime engine) itself. Exceptions are intended to be extended and
thrown by programmers to represent abnormal conditions in the program that require special han-
dling. Programmers can use predefined exceptions defined in the Java language (e.g., IllegalAr-
gumentException) or define their own exceptions by extending the Java Exception class or one of
its descendants. The Exception class has a message attribute that can be used to describe the ex-
ception in text. It also includes methods that allow an inquiry to be conducted into the exception
(i.e., type, place, cause, stack trace, etc).

User-defined exceptions. When the programmer defines a new type of exception, he or she may
add attributes and methods to indicate the abnormal situation it represents, if this is useful. The
RunTimeException class (derived from Exception) and its subclasses do not need to be checked
(i.e., these exceptions do not need to be explicitly handled). All other exceptions are checked and
need to be explicitly declared and handled in the program. The following is a simple example of
how to define a new user-defined exception:
class MyException extends Exception {
 MyException (String msg) {super(msg);}
}

MyException has inherited all of the characteristics of Exception, including the ability to be
thrown and caught. The constructor enables a textual message to be attached to the exception
which is thrown. The programmer may add supplementary attributes and methods, as in any other
Java class.

Throwing an exception. The programmer can use MyException (as well as any other declared
exception) in any method which he or she implements, if appropriate. In Java, the exception which
is thrown inside a method must be declared in its signature (checked exception). The following is a
simple example of a method throwing an exception:
void foo() throws MyException, OtherException {

...
if (an exception has occured)

throw new MyException("something bad happened ...");

// continue
...

}

When an exception is thrown, the JVM stops the execution of the running method and looks for
the adjacent try-catch clause that catches the exception which has been thrown. If the appropriate
try-catch clause is not found in the running method, JVM uses the program stack in order to find
the caller method and to continue this process until an appropriate handler is found. The program
control is then transferred to the beginning of the appropriate catch handler (similar to the goto
statement).

Catching an exception. When one method calls another one which declares on a potential excep-
tion throw, it must either surround the method call with a try-catch clause or, instead, declare on
the caller’s signature that it may throw the specified exception. The programmer usually handles
exceptions when he or she can do something about it. Otherwise, he or she defers exception han-
dling up to the caller, who also may handle the exception or defer it further.

In order to further increase readability, the programmer can surround several methods by the try-
catch clause block, thus allowing better separation of the normal flow of the code from the code
segments dealing with exception handling.

The following is a simple example of a try-catch clause used in Java:
try {

foo();
bar();
baz();

} catch (MyException my) {

188

Rashkovits & Lavy

// execute corrective actions
} catch (OtherException othre) {

// execute corrective actions
} finally {

// execute some other commands
}

In the code segment given above, foo, bar, and baz are executed in a sequence, unless an excep-
tion is thrown from one of them. For instance, when OtherException is raised, the JVM skips all
further execution commands, and control of the program is then transferred to the beginning of
the appropriate catch handler.

Inside the catch clause, the programmer can execute corrective commands, log the exception,
notify the user and ask for his or her reaction, and so forth. She or he may also re-throw the ex-
ception (or another exception) to be handled elsewhere (by the caller’s caller) or ignore it and do
nothing. The try statement may also include a finally clause which is always executed whether or
not a catch clause is executed. The finally clause is usually used to clean up resources, e.g.,
through file closure.

Hierarchy of exceptions. The programmer may construct a hierarchy of exceptions, in which var-
ious subclasses may inherit an exception. For instance, assume that ExceptionX and ExceptionY
are extending MyException. The advantages of such a hierarchy are revealed when the program-
mer catches these exceptions and handles them. The programmer can catch and handle each ex-
ception separately, as follows:
try {

...
} catch (ExceptionX ex) {

// execute corrective actions related to ExceptionX
} catch (ExceptionY ey) {

// execute corrective actions related to ExceptionY
}

Alternatively, the programmer can handle both exceptions in the same manner, as follows:
try {

...
} catch (MyException e) {

// execute corrective actions related to MyException
}

When ExceptionX or ExceptionY are raised by the methods called inside the try-catch block, the
JVM looks for the appropriate handler. It starts with the first clause and continues until one is
found. As both are inherited from MyException, the JVM will find it to be appropriate and call off
the search. In both cases, control is transferred to the same handler, and hence one reaction is ex-
ecuted for both exceptions.

To summarise, the exception handling mechanism in general uses meaningful names for excep-
tions, separates the normal flow of the program from the exceptional flow and implements the
errors via objects that may carry additional information regarding the context of the exception. In
addition, it allows the programmer to handle exceptions wherever he or she considers it to be ap-
propriate (either close to or far from the exception detection site) and enables the programmer
either to deal with each exception separately or to manage some of them together. For all of these
reasons, the use of this exception handling mechanism results in more easily understandable and
maintainable programs.

Difficulties in Applying Exception Handling
Exception handling is perceived as a rather difficult task by novice programmers (Madden &
Chambers, 2002). Providing a proper exception handling solution for a given task can be a chal-
lenging mission. Identifying, declaring, and handling all of the potential exceptions that a pro-

189

Students’ Strategies for Exception Handling

gram should be able to deal with is time consuming and hence the programmer’s productivity is
impaired. Exception handling may result in either the termination of the program or in a correc-
tive action being performed. In order to correct a problem using the try-catch block, it should be
located inside a loop which will increase the complexity of the code (Cabral & Marques, 2007).
Robillard and Murphy (2000) stated that a lack of knowledge regarding the design and implemen-
tation of exceptions can lead to complex and spaghetti-like exception handling codes. They also
claimed that the global flow of exceptions and the emergence of unanticipated exceptions are the
main causes of difficulties in designing exception structures. In order to assist programmers in de-
signing and implementing exception handling, a visualisation tool has been suggested (Shah,
Görg, & Harrold, 2008).

When a range of exceptions share a common context, a class hierarchy of these exceptions is de-
sirable. In such cases, there are situations in which the same reaction is needed when either one of
the related exceptions occurs, while in other situations, an individualised reaction needs to be ap-
plied. The construction of a proper hierarchy of exceptions necessitates a high level of abstraction
ability which is not possessed by all novice or experienced programmers.

Instructional Courses in Exception Handling
The IS 2010 curriculum guidelines for Undergraduate Degree Programs in Information Systems
(Topi et al., 2010) specify a general course in the development of applications, including topics
such as program design for requirements analysis, programming concepts, and structures, unit
testing and integration. However, the guidelines do not specify that exception handling issues
should be addressed anywhere in the suggested curriculum. As a consequence, each institution
has its own interpretation of the time, place, and learning methods which should be devoted to
exception handling. Informal discussions with several lecturers from several Israeli universities
and colleges reveled that they usually exemplify error-handling on input validation by printing an
error message to the console and terminating the program as soon as an error occurs (local reac-
tion inside a method). By the end of the course (or sometimes in a successive course), the stu-
dents have studied the exception handling mechanism, but the approach of printing and terminat-
ing the program has already been established. Consequently, most of the students do not utilise
exception handling mechanisms if they are not specifically instructed to do so, and use them
poorly when they do. Students find exception handling to be one of the more difficult topics to
learn (Manila, 2006).

Mapping Levels of Understanding – The SOLO Taxonomy
In the research literature, there are several taxonomies by which learning processes and levels of
understanding are classified (Bloom, 1956). Biggs and Collis (1982) developed a system for clas-
sifying the quality of students’ work, known as the SOLO taxonomy. The main advantage of the
SOLO taxonomy, in relation to other educational hierarchies, is its generality: it is not content-
dependent, making it useable across a number of subject areas. The SOLO taxonomy has five
levels of understanding that can be encountered in learners’ responses to academic tasks (Biggs,
1996):

1. Prestructural — the task is not accessed appropriately, and/or the student has not understood
the task;

2. Unistructural — one or several aspects of the task are picked up and used (level of understand-
ing is nominal);

3. Multistructural — several aspects of the task are learned but are treated separately. The student
still lacks the “full picture” (understanding is equivalent to knowing about);

190

http://www.citeulike.org/user/toppi/author/Cabral:B
http://www.citeulike.org/user/toppi/author/Marques:P

Rashkovits & Lavy

4. Relational — the task’s components are integrated into a coherent whole, with each part con-
tributing to the overall meaning (understanding in the form of appreciating relationships);

5. Extended abstract — the integrated whole at the relational level is reconceptualised at a higher
level of abstraction, which enables it to be generalised to a new topic or area. The integrated
whole derived at the previous level is conceptualised at a more abstract level so that it can be used
in different settings (understanding in the form of transferring concepts and involving metacogni-
tion).The SOLO taxonomy has been used fruitfully both to classify students’ work and to identify
approaches used in the area of learning course material in post-secondary school settings. For
these reasons, this research utilised the SOLO taxonomy to assess students’ levels of learning. We
used the SOLO taxonomy due to the objective criteria that it provides for measuring students’
cognitive abilities (Chick, 1998). Students’ knowledge and understanding of class hierarchies and
interface classes was accrued incrementally, in a similar way to the measures in the taxonomy.

The Study
During many years of teaching Java programming, we tackled various solutions and strategies
used by students concerning exception handling. Due to the importance of suitable exception
handling strategies within computer programs, we conducted a study which aimed to examine
students’ strategies and characteristics concerning this issue. We focused on students rather than
industry practitioners in order to explore the impact of the educational process (i.e., the level to
which students assimilate the exception handling mechanism in general) on students’ implemen-
tation of this mechanism before they are influenced by other sources. We were interested in get-
ting insights concerning the various solution strategies used by the study participants when cop-
ing with exceptions. Hence we found the qualitative research methods to be the most appropriate
for the aims of the present study.

Environment and Population
The data were collected during the academic years 2008-2010. The study subjects were third (and
final) year students on a BA degree course in the Management Information Systems Department
in an academic college in Israel. Fifty-six students participated in the research, who had all
graduated from the following programming courses: “Introduction to programming“, “Object ori-
ented programming“, and “Data structures and algorithms“. In all of these courses, the students
were provided with problems which necessitated the implementation of Java’s exception handling
mechanism.

In order to bring the participants to invest their best efforts in providing the solution, we decided
to perform one-on-one interviews. The structure of an interview was as follows. First, the stu-
dents solved the problem they were given. While solving the problem, the student could ask for
clarifications. After solving the problem, the student had to choose from various solutions pre-
sented to him or her, justify his or her choice, and explain the differences between this solution
and the one the student had provided beforehand. Then, the interviewer asked the student ques-
tions concerning various constituent parts of her solution. This method of data collection enabled
the receiving of insightful spectrum of the student perceptions and opinions on error handling.

Fifty-six one-on-one interviews were conducted. All of the interviews were conducted by one of
the researchers. A typical interview lasted for approximately one hour. During the interview, the
students were not allowed to use any supplementary material and had to rely on their previous
knowledge. However, if a participant could not remember the exact syntax of a mechanism, he or
she could use a pseudo code or ask for the interviewer’s assistance.

191

Students’ Strategies for Exception Handling

Research Tools
The problem which was given to the participants and the analytical methods used to analyse the
students’ exception handling strategies are presented in the following section.

The problem
In order to examine the students’ assimilation of the exception handling mechanism in Java, they
were asked to address the following problem. The problem that was presented to the students in-
cluded a description of a large software product which was intended to be distributed to many
customers who were then required to customise the software according to their specific needs.
These settings were meant to motivate the students to provide a comprehensive, clear, modular,
and extensible solution. The problem was as follows:

An industrial machine that performs operational tasks must keep the temperature (t) of its engine
within the range [70-75] and the pressure (p) inside within the range [110-120]. Whenever these
ranges are exceeded, the machine stops and raises the alarm. The human operator can react in any
of the following ways: (1) terminate the current task; (2) open a valve (in order to release pres-
sure) for sec seconds; (3) wait for sec seconds while doing nothing; or (4) run the machine for the
time left to finish the current task. The specific action that takes place when a range violation oc-
curs depends on the specific task being performed and may change accordingly. Corrective action
can comprise a combination of several actions, such as opening the valve for 60 seconds, then
waiting for 30 seconds, and then re-running the machine for the remaining time.

A computerised control has now been developed by the manufacturer for the machine in order to
replace the human operators, and each customer that uses the machine will be able to program it
using the Java programming language. A software package will be supplied to the customers con-
taining the Machine class which represents the industrial machine. A summary of Machine’s me-
thods is presented in Table 1.

Table 1: Application Programming Interface (API) of Machine class

Method Description

Machine() A constructor used to contact the machine equipment

createTask(int sec) Create a new task with a specified operating time

executeTask() Run the machine and continuously monitor temperature and pressure. Return upon task
completion or upon unusual temperature or pressure (in that case, the remaining time > 0).

terminateTask() Terminate the current task by setting the remaining time to zero

openValve(int sec) Open the valve to release pressure for sec seconds

wait(int sec) Wait for sec seconds while doing nothing

isDone() Returns true if time left is zero, false otherwise

The code of all Machine methods is not available; however, the Machine class is accompanied by
the following program with which the customer should encode the operation plan. The following
is a simplified example of an operation plan in which the machine is operated for one minute,
assuming that the operation is valid (i.e., not featuring unusual pressure or temperature):
import Machine;
public class Controller {
 public static void main(String[] args) {
 Machine machine = new Machine(); // contact the machine
 Machine.createTask(60); // initiate a task of 60 seconds
 // execute the task until it is done
 do {

192

Rashkovits & Lavy

machine.executeTask(); // execute the task
 } while (!machine.isDone()); // continue if time left > 0

}
}

The manufacturer of the machine would like to develop an exception handling mechanism to al-
low the customer to handle illegal values of temperature and pressure. You are requested to assist
the manufacturer to construct a mechanism that allows the customer to add their own policies
concerning temperature and pressure violations to the controller outlined above. Although the
code of the Machine class is unavailable, the manufacturer is willing to modify it according to
your recommendations, if you find it to be useful. The manufacturer plans to provide future ver-
sions of the automatic controller with extended functionality, hence the solution should be easy to
maintain, clear, modular, and extensible.

In order to demonstrate your mechanism, you are requested to write two controller programs (rep-
resenting possible customer operation plans) for the following cases, presented in Tables 2 and 3.

Table 2: Customer-1 operation plan

Operation
time

Temperature violations Pressure violations

30 minutes t<70: wait 180 sec, re-execute task

t>75: wait 180 sec, re-execute task

p<100: open valve 90 sec, re-execute task

p>110: terminate task

Table 3: Customer-2 operation plan

Operation
time

Temperature violations Pressure violations

60 minutes t<70: terminate task

t>75: wait 40 sec, re-execute task

p<100: wait 60 sec, re-execute task

p>110: open valve 50 sec, re-execute task

Methods of analysis
For the analysis process, we chose two analytical tools: our interpretation of the SOLO taxonomy
(Biggs, 1996) and a selected subset of source code quality criteria (Boehm, Brown & Lipow.,
1976). The problem stated in the previous subsection has various possible solutions, each with its
own merits and weaknesses. We analysed and classified these solutions and ranked them accord-
ing to the source code quality criteria (Boehm et al., 1976). We used the SOLO taxonomy to eva-
luate the students’ assimilation of the exception handling mechanism in Java that was exhibited in
each solution. The problem was built in such a way that the best solution would demonstrate the
highest level of assimilation of the exception handling mechanism and the worst solution would
demonstrate the lowest level of assimilation.

Table 4 presents the subset of criteria taken from Boehm et al. (1976) regarding source code qual-
ity that was used to evaluate the extent to which each level of assimilation met the specified re-
quirements which appeared in the problem description concerning understandability, modularity,
efficiency, and conciseness. We selected three criteria to address the maintainability requirements
stated in the problem. We have adapted the criteria’s description to the context of exception han-
dling.

193

Students’ Strategies for Exception Handling

Table 4: Evaluation criteria

Criterion Description

Clarity (C) By clarity, we mean that the program contains meaningful names, and does not contain large
number of control paths, making it simple and easy to follow. For instance, for the sake of
fluency, the normal flow of code should be separated from exception handling code.

Modularity (M) By modularity, we mean that the program is comprised of building blocks, each responsible
for a certain function. Each building block is built from smaller building blocks, down to the
basic functions, enabling modifications at the appropriate locations without undesirable side
effects. For instance, minimisation of excessive or redundant code is desirable.

Extensibility (E) By extensibility, we mean that the program can be easily extended to address new require-
ments. For instance, future versions of the software package may include bug fixes and new
functions (e.g. more exceptions can be detected and highlighted), and these versions can be
easily adapted by customers.

Based on the SOLO taxonomy, we defined five categories relating to the level of assimilation in
the design and implantation of an exception handling mechanism in the solution:

1. First level of assimilation - The student handles the exception locally within the method
(where the exception is detected) without the use of an exception handling mechanism or uses
error codes to notify its caller. Although such a solution might work, it is undesirable as it
does not use an exception handling mechanism at all, and it does not address the maintain-
ability requirements of the problem. This category fits into the prestructural level in the
SOLO taxonomy (elaboration in subsections S1 – S6).

2. Second level of assimilation – The student uses the Java exception mechanism in a simplified
manner; namely, the student separates the normal flow of code from the exception handling
mechanism using one exception class (e.g., java.lang.Exception) for all kinds of exceptions.
However, this solution lacks the ability to declare specific exceptions raised in the program.
Although this solution is better than the previous one, as it involves separating the normal
from the exceptional flow, it still does not properly address all of the maintainability require-
ments. This kind of solution makes it hard to track the specific type of the exception when it
is caught. Therefore, it is hard to write a distinct solution to each exception. This category fits
into the unistructural level in the SOLO taxonomy (elaboration in subsection S4);

3. Third level of assimilation – The student defines specific exceptions, referring to the excep-
tions stemming from the problem. These user-defined exceptions directly inherit the Java Ex-
ception class. The hierarchy of exceptions which is provided is simplified, as it does not al-
low multiple exceptions to be handled together, and it forces the programmer to catch and
handle each exception separately or to handle them all together (using one catch block). This
category fits into the multistructural level in the SOLO taxonomy (elaboration in subsection
S3);

4. Fourth level of assimilation - The student constructs an adequate exceptions class hierarchy
which addresses only the requirements of the problem, including more levels of abstraction,
and uses it properly. However, the student does not provide a refined solution addressing fu-
ture extensions of the problem’s requirements. This category fits into the relational-structural
level of the SOLO taxonomy (elaboration in subsection S2);

5. Fifth level of assimilation - The student constructs an adequate hierarchy of exceptions, in-
cluding more levels of abstraction, and uses it properly. The student provides a refined solu-

194

http://en.wikipedia.org/wiki/Maintainability
http://en.wikipedia.org/wiki/Maintainability
http://en.wikipedia.org/wiki/Redundant

Rashkovits & Lavy

tion addressing future extensions of the problem’s requirements, not just stemming directly
from the current requirements. This category fits into the extended-abstract level in the SOLO
taxonomy (elaboration in subsection S1).

Results and Discussion
In this section, we will present the various strategies provided by the study participants, followed
by a discussion based on an examination of these solutions according to the criteria outlined
above and an adequate level of abstraction. It is worth noting that a thread-based solution could
address the problem with some additional benefits. However, as the participants were not familiar
with this option, we will not present it herein.

Strategies
In the following subsections, we will show how the students’ solutions were classified according
to the following categories: refined multi-level hierarchy of exceptions (S1); multi-level hierarchy
of exceptions (S2); single level hierarchy of exceptions (S3); Java exceptions (S4); delegating the
task of exception handling to the caller using error codes (S5); and handling exceptions locally
(S6).

S1: Refined multi-level hierarchy of exceptions
In this solution, the participants defined a three-level hierarchy of exceptions, as shown in Figure
1. This solution defines a proper hierarchy of exceptions according to inheritance guidelines
(Meyer, 1997). The exception MachineOperationException is derived from Java Exception. The
exceptions PressureException and TemperatureException are derived from MachineOperation-
Exception. LowPressure and HighPressure are derived from PressureException. LowTempera-
ture and HighTemperature are derived from TemperatureException.

Figure 1: Refined multi-level class hierarchy of exceptions

From the policies presented in Tables 2 and 3, one can see that customer-1 uses an identical pol-
icy for handling both LowTemperature and HighTemperature, while customer-2 uses different
policies for each. In order to avoid duplicate code in each ‘catch’ clause, it is desirable to create a
base exception (TemperatureException) for the LowTemperature and the HighTemperature ex-
ceptions, enabling both exceptions to be caught together or separately, as desired. As for pressure,
one can see in Tables 2 and 3 that both customers use different exception handling policies for
LowPressure and HighPressure exceptions. Hence, a common base class for these exceptions is
not mandatory, and these exceptions could directly extend MachineOperationException. How-
ever, doing so would hide the fact that both exceptions are related to a common concept of “pres-
sure constraint violation”. Other customers may use an identical reaction policy for both, and so,
similarly to the solution provided for the temperature-related exceptions, a common base class for
LowPressure and HighPressure is provided, PressureException.

195

Students’ Strategies for Exception Handling

In this solution, the executeTask method, which is the manufacturer’s responsibility, should be
used to continuously monitor the pressure and temperature in the machine and to throw concrete
exceptions (the bottom level of the hierarchy) in the case of unusual data. However, its signature
does not have to declare the throwing of all four concrete exceptions. Instead, it can declare the
following:

void executeTask() throws MachineOperationException

This signature declares only one abstract exception instead of four concrete ones, ensuring that
the solution is clear and extensible (i.e., future versions can add other exceptions derived from
MachineOperationException).

The following is an example of a controller code which presents this kind of solution and imple-
ments customer-1’s policies (Table 2), as given by the participants who provided this kind of so-
lution.
public class Controller {

public static void main(String[] args) {
 Machine machine = new Machine(); // contact the machine
 Machine.createTask(108000); // initiate a task of 30 minutes

do{

try {
machine.executeTask(); // execute the task

} catch(TemperatureException e){
 machine.wait(180);
} catch(LowPressure e) {
 machine.openValve(90);
} catch(HighPressure e) {

machine.terminateTask();
}

 } while (!machine.isDone());
}

}

Quality analysis: An analysis of this strategy, based on the evaluation criteria outlined in the ana-
lytical methods section, reveals the following: (C) This solution meets the clarity criterion. It is
simple and easy to follow. Each exception is represented by a unique exception with a meaningful
name; the separation of the discovery of an exception from its handling contributes to the fluency
of the code. (M) Each exception can be caught and handled individually. In addition, the use of
intermediate level exceptions enables several exceptions to be handled at the same time (in one
catch block), avoiding the repetition of code. (E) The Machine class (the manufacturer’s code)
and the Controller class (the customer’s code) are independent components. Each can be modi-
fied separately without undesirable side effects. As long as new versions of the Machine class
provide an interface which is compatible with the previous version, the Controller class will con-
tinue to work properly.

Hierarchy analysis: In this solution, the students constructed an adequate class hierarchy of ex-
ceptions, including the required levels of assimilation, and used it properly. Moreover, they added
the intermediate level of PressureException, despite the fact that the production plans provided to
them (Tables 2 and 3) did not necessitate its definition. This solution may fit into the fifth level of
assimilation in our SOLO-based taxonomy.

Frequency and analysis: Only three of the participants in this study provided this solution. This
might be explained by the fact that in order to provide such a solution, the student has to exhibit a
high level of assimilation of the exception handling mechanism. In addition, to be able to con-
struct an adequate class hierarchy, the student must demonstrate a high level of abstraction. Pre-
vious research has shown that few students are able to do this (Lavy, Rashkovits, & Kouris, 2009;
Or-Bach & Lavy, 2004).

196

Rashkovits & Lavy

S2: Multi-level hierarchy of exceptions
In this solution, the participants defined a class hierarchy of exceptions in which LowTemperature
and HighTemperature are derived from the intermediate-level exception TemperatureException,
as in S1. However, the LowPressure and HighPressure exceptions are derived from MachineOp-
erationException, as shown in Figure 2.

Figure 2: Multi-level class hierarchy of exceptions

The code segment demonstrating the controller in S1 can also be used to demonstrate S2.

Quality analysis: An analysis of this solution based on the evaluation criteria will be similar to
that of S1, except that its modularity decreases. Namely, both “pressure” exceptions which are
related to a common concept of a “pressure constraint violation” do not share a dedicated inter-
mediate-level exception, meaning that customers who wish to react identically to both low and
high pressure would have to catch two different exceptions and handle each one separately, pro-
ducing excessive and redundant code.

Hierarchy analysis: In this solution, the participants constructed an adequate class hierarchy of
exceptions which addresses only the requirements of the problem. However, they did not provide
a refined solution addressing other customers’ policies concerning pressure violations. This solu-
tion may fit into the forth level of assimilation in our SOLO-based taxonomy. Five participants
provided this solution. This might be explained by the fact that students find it difficult to design
mechanisms for intangible policies and are used to solving only the problem in hand.

S3: Single level hierarchy of exceptions
In this solution, the students defined a hierarchy of exceptions, each one representing a specific
exception. Unlike S1, all of the exception classes are derived directly from the Java MachineOp-
erationException class, without an intermediate level of refinement, as shown in Figure 3.

Figure 3: Single-level class hierarchy of exceptions

The following is an example of a code segment presenting this kind of solution and implementing
customer-1’s policy, as provided by the study participants:
public class Controller {

public static void main(String[] args) {

197

Students’ Strategies for Exception Handling

 Machine machine = new Machine(); // contact the machine
 Machine.createTask(108000); // initiate a task of 30 minutes

do{

try {
machine.executeTask(); // execute the task

} catch(LowTemperature e){
 machine.wait(180);
} catch(HighTemperature e){
 machine.wait(180);
} catch(LowPressure e) {
 machine.openValve(90);
} catch(HighPressure e) {
 machine.terminateTask();
}

}
}

The exception handling code for “low-temperature” and “high-temperature” is identical. How-
ever, as no common base class exists to represent temperature exceptions, the code must be du-
plicated.

Quality analysis: An analysis of this strategy according to the evaluation criteria will be similar to
that of S2, except that its modularity is weaker. The lack of intermediate-level exceptions for both
pressure and temperature violations forces the controller to catch and handle each exception sepa-
rately, even in cases where a common reaction would be desirable.

Hierarchy analysis: In this solution, the participants defined specific exceptions by referring to the
exceptions that stemmed from the problem. These user-defined exceptions inherited the Machi-
neOperationException class. The class hierarchy of exceptions which was provided is somewhat
simplified, as it does not allow multiple exceptions to be handled together, and it forces the pro-
grammer to catch and handle each exception separately or to handle them all together by catching
MachineOperationException. Hence, this solution may fit into the third level of assimilation in
our SOLO-based taxonomy.

Frequency and analysis: Ten study participants provided this kind of solution. This might be ex-
plained by the fact that most students care primarily about the correctness of the solution and ne-
glect issues such as modularity.

S4: Java exception
In this strategy, the executeTask method detects exception situations and raises exceptions when
appropriate. However, no special exception class was built for each type of exception. Instead, a
general Java Exception is raised with an appropriate message attached to it, describing the excep-
tion. The signature of the executeTask method is as follows: void executeTask() throws Exception.

The following is an example of a code segment presenting this kind of solution and implementing
customer-1’s policies, as provided by the study participants:
public class Controller {

public static void main(String[] args) {
 Machine machine = new Machine(); // contact the machine
 Machine.createTask(108000); // initiate a task of 30 minutes

 do{

try {
machine.executeTask(); // execute the task

} catch(Exception e) {
 String msg = e.getMessage();
 if (msg.equals("low-temperature")

|| msg.equals("high-temperature")) {
 machine.wait(180);

}
else if (msg.equals("low-pressure")) {

 machine.openValve(90);
 }

else if (msg.equals("high-pressure")) {
 machine.terminateTask();

198

Rashkovits & Lavy

}
}

 } while (!machine.isDone());
 }
}

Quality analysis: An analysis of this solution based on the evaluation criteria reveals the follow-
ing: (C) In this solution, the exception handling code is separated from the normal flow, but it is
far too complex, as the specific type of exception being raised is unknown. All of the exceptions
are caught and handled in the same catch block, and the handler must explore (using many if/else
statements) the accompanying message in order to identify the exception and execute the appro-
priate reaction. As a result, the clarity becomes blurred. Moreover, the executeTask method de-
clares an Exception that is unspecific and is therefore less clear. (M) As the potential reactions to
each exception are coded in the same catch block, the customer may have difficulties in modify-
ing an existing policy according to new rules without harming other reactions. Moreover, if the
customer makes a mistake in parsing (e.g., omitting a space letter), she or he might mishandle
some exceptions. Therefore, this solution is not modular. (E) The Controller class relies on the
actual text of the accompanying message to identify the specific exception. If the Machine class
would change the text in future versions, all the customer’s controllers would need to change ac-
cordingly. As a result, extensibility is damaged.

Hierarchy analysis: In this solution, the students used the Java exception handling mechanism in a
simplified manner. In other words, they separated the normal flow of the code from exception
handling by using the Exception class for all types of exceptions. However, this solution lacks the
ability to declare specific exceptions when referring to the specific violation reported by the
called method. This kind of solution makes it difficult to track the specific exception type when
an exception is caught, since all exceptions are caught as Exception, and one has to parse their
message to identify the type. Such a solution was also found in the work of Cabral and Marques
(2007), and therefore it is difficult to provide a distinct solution for each exception. Hence, this
solution may fit into the second level of assimilation in our SOLO-based taxonomy.

Frequency and analysis: A total of 15 participants provided this kind of solution. This might be
explained by the way in which this exception mechanism has been taught. Namely, when the
throw-catch mechanism was taught, Exception was caught and handled using error-print and pro-
gram termination. This kind of example encourages the use of a single-catch clause that catches
all exceptions, prints the attached message, and exits the program regardless of the exception in
hand. Although later on the students are taught to declare and use user-defined exceptions, they
sometimes adapt this simplified exception handling mechanism.

S5: Error codes
This solution does not use an exception handling mechanism. Instead, it uses arbitrary error codes
which are returned by the executeTask method to notify the caller of the various exceptions. In
this solution, the controller program examines the value returned from the executeTask method in
order to validate its termination. If the return code is equal to a certain predefined exception code,
the controller program applies the appropriate corrective actions. The following is an example of
a code segment which presents this kind of solution and implements customer-1’s policies, as
provided by the study participants:
public class Controller {

public static void main(String[] args) {
 Machine machine = new Machine(); // contact the machine
 Machine.createTask(108000); // initiate a task of 30 minutes

do{

int code = machine.executeTask(); // execute the task
if (code != 0) //an exception occurred
 switch (code) {

199

http://www.citeulike.org/user/toppi/author/Cabral:B
http://www.citeulike.org/user/toppi/author/Marques:P

Students’ Strategies for Exception Handling

 case -1: // low-temperature
case -2: // high-temperature

 machine.wait(180);
 break;
 case -3: // low-pressure

machine.openValve(90);
break;

 case –4: // high pressure
 machine.terminateTask();
 break;
}

}
 } while (!machine.isDone());

}
}

Quality analysis: An analysis of this strategy based on the evaluation criteria reveals the follow-
ing: (C) In this solution, the exception handling code and the normal flow are mixed together.
This solution must examine the exception code returned by the executeTask method. Many re-
dundant if/else statements are executed until the desired reaction is found, and hence this solution
is not clear. (M) The exception handling code segment is located in the same switch block, and
hence modifying one reaction policy may result in software bugs in other reactions. Moreover, if
the customer gets confused (e.g., by considering -1 to represent a high temperature exception in-
stead of a low temperature exception), she or he might mishandle some exceptions. Therefore,
this solution is not modular. (E) The Controller class depends on the actual code returned from
executeTask. If the Machine class changes these error codes in future versions, all of the cus-
tomer’s controllers would need to change accordingly. As a result, its extensibility is damaged.

Hierarchy analysis: The students handled the exceptions in the Controller class by using arbitrary
error codes instead of exceptions. Although such a solution might work, it is undesirable as it in-
corporates the normal flow of the code with the exception handling code, and thus makes the con-
troller program difficult to understand, complex and non-efficient. Such a code is difficult to de-
sign, develop, test and maintain. This solution may fit into the first level of assimilation in our
SOLO-based taxonomy. Therefore, we may say that the students who used this strategy are in the
prestructural level.

Frequency and analysis: Four study participants provided this kind of solution. This might be ex-
plained by the learning order of programming building blocks. Namely, exception mechanisms
constitute an advanced subject which is usually taught at the end of an object-oriented program-
ming course, forcing the students to handle exceptions by using exception codes. Moreover, most
of the examples of code which students are given are related to specific contexts and are not in-
tended for reuse in other contexts. Therefore, students get used to handling exceptions in such a
manner and have difficulties in adapting to exception mechanisms.

S6: Handling exceptions locally
This solution does not use an exception mechanism. Instead, it mixes exception handling code
with the normal flow inside the executeTask method. This executeTask method does not produce
an exception code. Instead, it includes many if/else statements to detect exception situations and
to handle them immediately, without notifying the caller. In this solution, the students left the
simplified Controller code which was presented to them unchanged.

The following is an example of a code segment which presents this kind of solution for the execu-
teTask method, implementing customer-1’s policies, as provided by the study participants:

public class Machine {
 ...

public static void executeTask() {
 ...

if (getTemperature()<70 || getTemperature()>75) {

200

Rashkovits & Lavy

 machine.wait(180);
 }
 else if (getPressure()<100) {
 machine.openValve(90);
 }
 else if (getPressure()>110) {
 machine.terminateTask();
 }

 ...
 }
}

Quality analysis: An analysis of this strategy based on the evaluation criteria reveals the follow-
ing: (C) As in the previous solution, the exception handling code and the normal flow are mixed
together. Therefore, this solution is not clear. (M) The exception handling code segment is lo-
cated in the same block as the normal flow. There is no separation between these functionalities,
and hence modularity is not achieved. Modification to a policy might result in a serious bug in the
operation of the machine. Therefore, this solution is not modular. (E) In this solution, the manu-
facturer must provide a unique Machine class to each customer, and whenever a customer wishes
to modify the machine policy he or she has to alter that class. The manufacturer cannot distribute
a new version of the Machine class unless it adapts each customer’s policies. Therefore it is not
extensible.

Hierarchy analysis: The students handled the exception locally within the executeTask method
without the use of an exception handling mechanism. Similarly to the previous solution (S5), such
a solution might work, but it is undesirable for the same reasons. The only difference between
solutions S5 and S6 is the location of the complex code: while S5 handles exceptions within the
controller program, S6 does it inside executeTask which is part of the Machine class. Therefore,
as with S5, This solution may fit into the first level of assimilation in our SOLO-based taxonomy.
Frequency and analysis: Nineteen students provided this kind of solution. The explanations are
identical to those for S5.

Overview of the Results
A summary of the quality analysis of the six solutions provided is demonstrated in Table 5.

Table 5: Summary of source code quality criteria

Solution/criterion Clarity Modularity Extensibility Level of assimilation
of exception handling

No of
students

S1 9 9 9 Fifth 3

S2 9 9 9 Fourth 5

S3 9 9 9 Third 10

S4 9 - 9 Second 15

S5 - - 9 First 4

S6 - - - First 19

As shown in Table 5, the best solution (S1), which was of the highest quality according to the
source code quality criteria, also demonstrated the highest level of assimilation of the exception
handling mechanism. In the other solutions (S2-S6), there is a gradual decrease in both the source
code quality and the level of assimilation of the exception handling mechanism.

Table 5 depicts the solutions’ distribution among the study participants. The most interesting re-
sult is the low number of students who demonstrated good exception handling solutions (S1, S2).
This is in line with the findings of Madden and Chambers (2002), who claimed that exception
handling is perceived as a difficult task by novice programmers. Although the students were gra-

201

Students’ Strategies for Exception Handling

duates of three programming courses, and hence were familiar with the exception handling me-
chanism, almost half of them chose to ignore it and used old-style exception handling instead (S5,
S6). This may imply that the students had difficulties in assimilating the exception handling me-
chanism. The relatively low number of students who provided S5 (error codes) stems from the
fact that this solution is, in fact, a variation of S6. In both solutions, the programmer uses if/else
structures in order to identify and handle the exceptions.

Students’ Reflections on the Task
After the students had finished the task, we conducted an informal interview with each of the par-
ticipants. We asked them to reflect on the problem solving process and asked questions concern-
ing their exception handling within the solution they had provided. Using analytic induction
(Goetz & LeCompte, 1984) and content analysis (Neuendorf, 2002), reviewing the entire corpus
of data to identify themes and patterns of the focal points of the study, the students’ reflections
were classified into the following categories: misconceptions concerning code quality; miscon-
ceptions concerning exception handling; difficulties in understanding the exception handling me-
chanism; the perceived importance of exception handling; and a lack of programming experience.
In the following section, we will elaborate on the students’ reflections regarding each of these
categories.

Misconceptions concerning code quality
Some of the students’ reflections referred to misconceptions concerning code quality:

Ran: “My solution addresses the problem. Does it matter how I wrote the program?"

Ania: "I wrote the solution to the problem as fast as I could. I was not occupied with future con-
sequences on maintenance and therefore I did not separate the exceptions’ detection from their
handling. I did not think it was important."

When the students were asked why they did not use the Java exception handling mechanism in
their solutions, they answered in a similar way to Ran. During their studies, students often de-
velop a habit of investing minimal effort in every task they are given. As the design and imple-
mentation of an exception handling mechanism was neither immediate nor trivial, they avoid us-
ing it, justifying their behaviour by saying that their solutions met the requirements of the prob-
lem. Ania’s reflection strengthens Ran’s arguments. The students’ tendency to dedicate minimal
time to solving a programming problem derives from their misassumption that this indicates su-
perior programming abilities. The consequences of this misassumption result in them concentrat-
ing solely on the functional requirements and ignoring clarity, modularity, and extensibility,
which are very important to a solution’s quality. This is in line with the findings of Clancy
(2004), who claimed that many students are concerned with minimising typing and see code
modifications and extensions as an academic exercise.

Misconceptions concerning exception handling
Some of the students’ reflections referred to difficulties in understanding the mechanism for
throwing and catching exceptions:

Ruth: "When I detect an exception that might arise in the program, the most proper place to han-
dle it is in the same module where it is detected. I don’t understand why I should separate the
handling from the detection. Maybe this is why I do not use exceptions and why instead I use
conditional structure".

202

Rashkovits & Lavy

Ben: "I know that duplicating code is undesirable, but sometimes I have no choice but to do so.
For instance, when I must print the same exception message in multiple exceptions. I do not think
that using exceptions can assist in avoiding such duplications. Anyway I do not know how."

Ruth and Ben’s reflections describe a common reaction among the students who did not use an
exception handling mechanism in their solutions. This avoidance of using exceptions is a result of
a lack of understanding of what exceptions are and what their advantages are over other tech-
niques. As one student said, "Exceptions are complex, and I can do without them, so why both-
er?"

Difficulties in understanding the exception handling mechanism
Some of the students’ reflections related to their conceptions concerning the exception handling
mechanism:

Josef: "The java.lang.Exception is the easiest to use, as it does not necessitate the definition of
new exception classes. Instead, I use the message attribute attached to the java.lang.Exception to
declare what the problem was. When I catch the exception, I can tell by the message content what
the problem was."

Dalia: "When we learned the exception handling mechanism, the lecturer explained the hierarchy
of the exceptions in Java, and demonstrated how to derive user-defined exceptions from ja-
va.lang.Exception. However, many of the examples presented by the lecturer to demonstrate
throwing and catching exceptions were based on java.lang.Exception. Therefore, this idea was
the first one that came to my mind. Maybe if I thought more about the problem, I would come up
with a better solution."

Yaron: "To me, exceptions are concerned with severe errors such as a lack of memory, problems
with privileges, I/O problems and the like. I do not think that exceptions are the proper way to
handle violations of business rules."

In many cases, even when the students decided to use the exception handling mechanism, they
did not derive exceptions from java.lang.Exception as they should have done. Instead, they used
the java.lang.Exception itself and used the message attribute to differentiate one exception from
another. When they were asked to justify their choice of solution, they answered similarly to Jo-
sef and Dalia. The java.lang.Exception provided them with a basic exception handling mecha-
nism, and they felt that this solution was good enough without extending it. Josef and Dalia’s re-
flections imply a superficial assimilation of the exception handling mechanism. Yaron, on the
other hand, pointed out another aspect. Throwing and catching exceptions is sometimes presented
to the students in the context of a “system” (e.g., I/O exceptions), and hence students may get the
wrong impression that this mechanism is designed purely for infrastructure errors.

The perceived importance of exception handling
Many of the students made statements similar to the following:

Dan: "We studied exception handling late in the course. The lecturer showed us several simple
examples in which exception handling was demonstrated. Then we had to implement these guide-
lines in one or two homework assignments. In the following year, we were not required to define
new exceptions, although we caught and handled Java’s exceptions such as ClassCastException,
so we assumed that we could mange without it."

Yael: "When we first studied input validations, we used conditional statements and when the in-
put was incorrect we printed out an error message and usually terminated the program immedi-
ately. We used this technique for quite a long time until the exception handling mechanism was

203

Students’ Strategies for Exception Handling

presented as a better option. However, I did not understand the advantages of using exceptions,
and I continue to handle errors in the old fashioned way."

Dan raised an important issue concerning the hidden message conveyed to the students by teach-
ing them about the exception handling mechanism at the end of the semester. The time and the
duration of learning about this subject teaches the students faulty concepts regarding its impor-
tance. While learning about this subject, the students are provided with simple examples in which
the exception handling mechanism is demonstrated. Due to the superficiality of the examples, the
advantages of the mechanism (hierarchy) are not obvious. Yael, on the other hand, raised another
issue concerning learning habits. Working for a long period of time and using one way of think-
ing caused the students to become fixated on this way of working and, when presented with a bet-
ter way, they prefer to keep on working in the old way.

Lack of programming experience
Some of the students’ reflections addressed the reasons why they did not implement the exception
handling mechanism in their solutions:

David: "When I see a program that uses exceptions I can see its advantages. However, I did not
use it in my solution as I’m not used to thinking that way yet. I hope in the future that I will gain
more experience and be able to provide better solutions."

Miriam: "I think I understand why exceptions are better then other error-handling techniques.
But I feel that I need more practice to gain confidence implementing it. I perceive exceptions as
an advanced technique which requires a deep understanding which I have not yet gained."

Jacob: "Often, we were told to assume that the input given in the problem is correct, and that
there’s no need to validate it. Therefore, I got used to ignoring exceptions such as invalid values,
and didn’t practice it enough."

David and Miriam justified their choice to avoid using exceptions by their lack of programming
experience. The consequences of teaching exceptions as an isolated issue may be that the students
lack practice and are unable to perceive the broader context. Jacob added another argument that
concerns a learning method in which, in order to allow students to focus on an issue, they are told
to neglect exceptional inputs. As a result, the students may acquire improper programming habits.

Conclusions
In this paper, we have presented and analysed college students’ strategies concerning exception
handling. The results which have been obtained reveal that the majority of students have difficul-
ties in designing and implementing an appropriate exception handling mechanism. Although the
students had been taught and had used exception handling mechanism, they did not properly util-
ise the advanced exception-handling mechanisms offered by modern programming languages.
The students had difficulties in exhibiting high levels of assimilation concerning a proper design
for a hierarchy of exceptions. These results are in line with previous research regarding the ob-
ject-oriented design capabilities of novice programmers (Lavy et al., 2009; Or-Bach & Lavy,
2004; Sim & Wright, 2001).

The design and implementation of exception handling strategies requires previous knowledge of
the inheritance mechanism and polymorphism. Consequently, this cannot be taught at the begin-
ning of a programming course. However, the use of this mechanism via existing Java exceptions
(such as java.util.IllegalArgumentException) does not require a knowledge of these advanced
programming topics, and we believe that it should be taught earlier on in the course, along with
conditional statements. This way, students will be able to develop better programming habits with
regard to exception handling. As soon as an inheritance mechanism is studied, it is desirable to

204

Rashkovits & Lavy

apply it to exceptions in order to enable students to define exceptions of their own when appro-
priate. In addition, we believe that providing students with examples that require the design and
implementation of a multi-level hierarchy of exceptions might help them to develop their abstrac-
tion abilities in general, and to use an exception handling mechanism in particular.

The classification of the solution strategies according to our SOLO-based five levels of assimila-
tion may seem rigid; however it provided a coherent view of the solution spectrum which suits
the common range of solutions requiring various levels of abstraction. Finally, we believe that
further research with a large number of participants should be conducted in order to establish our
results.

References
Biggs, J. B. (1996). Enhancing teaching through constructive alignment. Higher Education, 32(3), 347-364.

Biggs, J. B., & Collis, K. F. (1982). Evaluating the quality of learning: The SOLO taxonomy (Structure of
the Observed Learning Outcome). New York: Academic Press.

Bloom, B. S. (1956). Taxonomy of educational objectives, the classification of educational goals – Hand-
book I: Cognitive domain. New York: McKay.

Boehm, B. W., Brown, J. R., & Lipow, M. (1976). Quantitative evaluation of software quality. Proceedings
of the International Conference on Software Engineering, pages 592-605. IEEE Computer Society
Press, October. Los. Alamitos, CA

Cabral, B., & Marques, P. (2006). Making exception handling work. Proceedings of the 2nd conference on
Hot Topics in System Dependability, 9. Seattle, WA.

Cabral, B., & Marques, P. (2007). Exception handling: A field study in Java and .NET. ECOOP 2007,
LNCS 4609 – Object-Oriented Programming. Springer-Verlag, Berlin Heidenberg.

Chick, H. (1998). Cognition in the formal modes: Research mathematics and the SOLO taxonomy. Mathe-
matics Education Research Journal, 10(2), 4-26.

Clancy, M. (2004). Misconceptions and attitudes that interfere with learning to program. In S. Fincher, &
M. Petre (Eds.), Computer science education research (pp. 85-100). Lisse, the Netherlands: Taylor &
Francis.

Coelho, R., Rashid, A., Garcia, A., Ferrari, F., Cacho, N., Kulesza, U., Staa, A., & Lucena, C. (2008). As-
sessing the impact of aspects on exception flows: An exploratory study. Proceedings of the 22nd Euro-
pean Conference of Object-Oriented Programming (pp. 207-234). Paphos, Cyprus: Springer.

Filho, F. C., Cacho, N., Figueiredo, E., Maranhao, R., Garcia, A., & Rubira, C. M. F. (2006). Exceptions
and aspects: The devil is in the details. Proceedings of the 14th ACM SIGSOFT International Sympo-
sium Foundations of Software Engineering (pp. 152-162). Portland, OR, USA.

Filho, F. C., Garcia, A., & Rubira, C. M. F. (2007). Exception handling as an aspect. Proceedings of the
2nd Workshop Best Practices in Applying Aspect-Oriented Software Development (pp. 1-6). Vancou-
ver, BC, Canada.

Garcia, A. F., Rubira C. M. F., Romanovsky, A., & Xu, J. (2001). A comparative study of exception han-
dling mechanisms for building dependable object-oriented software. The Journal of Systems and Soft-
ware, 59, 197-222.

Goetz, J. P., & LeCompte, M. D. (1984). Ethnography and qualitative design in educational research. New
York: Academic Press.

Lavy, I., Rashkovits, R., & Kouris, R. (2009). Coping with abstraction in object orientation with special
focus on interface class. The Journal of Computer Science Education, 19(3), 155-177.

205

http://www.citeulike.org/user/toppi/author/Cabral:B
http://www.citeulike.org/user/toppi/author/Marques:P
http://www.citeulike.org/user/toppi/author/Cabral:B
http://www.citeulike.org/user/toppi/author/Marques:P

Students’ Strategies for Exception Handling

Lippert, M., & Lopes, C. V. (2000). A study on exception detection and handling using aspect-oriented
programming. Proceedings of the 22nd International Conference on Software Engineering (pp. 418-
427). Limerick, Ireland.

Madden, M., & Chambers, D. (2002). Evaluation of student attitudes to learning the Java language. Pro-
ceedings of the Inaugural Conference on the Principles and Practice of Programming (pp. 125-130).
Dublin, Ireland.

Manila, L. (2006). Progress reports and novices’ understanding of program code. Proceedings of the 6th
Koli Calling Baltic Sea Conference on Computing Education Research (pp. 27-31). Uppsala, Sweden.
Koli Calling.

Meyer, B. (1997). Object-oriented software construction (2nd ed). Englewood Cliffs, NJ: Prentice-Hall.

Mitchell, R., & McKim, J. (2002). Design by contract: By example. Redwood City, CA, USA: Addison
Wesley Longman.

Neuendorf, K. A. (2002). The content analysis guidebook. Thousand Oaks, CA: Sage Publications.

Or-Bach, R., & Lavy, I. (2004). Cognitive activities of abstraction in object-orientation: An empirical
study. The SIGCSE Bulletin, 36(2), 82-85.

Robillard, M. P., & Murphy, G. C. (1999). Analyzing exception flow in Java program. Proceedings of the
7th European Software Engineering Conference held jointly with the 7th ACM SIGSOFT International
Symposium on Foundations of Software Engineering. Lecture Notes in Computer Science (pp. 322–
337) vol. 1687. Springer-Verlag, New York, NY.

Robillard, M. P., & Murphy, G. C. (2000). Designing robust JAVA programs with exceptions. Proceedings
of the 8th ACM SIGSOFT International Symposium on Foundations of Software Engineering, (pp 2-
10), 25(6). ACM Press.

Robillard, M. P., & Murphy, G. C. (2003). Static analysis to support the evolution of exception structure in
object-oriented systems. ACM Transactions on Software Engineering and Methodology, 12(2), 191–
221. ACM Press, New York, NY.

Shah, H., Görg, C., & Harrold, M. J. (2008). Visualization of exception handling constructs to support pro-
gram understanding. Proceedings of the ACM Symposium on Software Visualization (pp. 19–28). Mu-
nich, Germany.

Siedersleben, J. (2006). Errors and exceptions – Rights and obligations. In C. Dony et al. (Eds.), Exception
handling (pp. 275-287). Springer-Verlag, Berlin Heidenberg.

Sim, E. R., & Wright G. (2001). The difficulties of learning object-oriented analysis and design: An ex-
ploratory study. Journal of Computer Information Systems, 42(4), 95–100.

Topi, H., Valacich, J. S., Kaiser, K., Nunamaker, J. F., Sipior, J. C., de Vreede, G. J., & Wright, R. T.
(2010). Curriculum guidelines for undergraduate degree programs in information systems. ACM/AIS
task force. Retrieved from
http://blogsandwikis.bentley.edu/iscurriculum/index.php/IS_2010_for_public_review

206

http://en.wikipedia.org/w/index.php?title=Neuendorf,_Kimberly_A.&action=edit&redlink=1
http://blogsandwikis.bentley.edu/iscurriculum/index.php/IS_2010_for_public_review

Rashkovits & Lavy

207

Biographies
Rami Rashkovits is a Lecturer at the Academic College of Emek Yez-
reel since 2000 in the department of Management Information Systems
department. His PhD dissertation (in the Technion) focused on content
management in wide-area networks using profiles concerning users'
expectations for the time they are willing to wait, and the level of obso-
lescence they are willing to tolerate. His research interests are in the
fields of distributes systems as well as computer sciences education.

Ilana Lavy is a Senior Lecturer with tenure at the Academic College
of Emek Yezreel since 2000 in the department of Management Infor-
mation Systems department. Her PhD dissertation (in the Technion)
focused on the understanding of basic concepts in elementary numbe
theory. After finishing doctorate, she was a post-Doctoral research fel-
low at the Education faculty of Haifa University. Her research interests
are in the field of pre service and mathematics teachers' professional
development as well as the acquisition and understanding of mathe-
matical and computer science concepts. She has published over sixty
papers and research reports (part of them in Hebrew).

r

	Students’ Strategies for Exception Handling
	Rami Rashkovits and Ilana LavyThe Max Stern Academic College of Emek Yezreel, Israel
	ramir@yvc.ac.il; ilanal@yvc.ac.il

	Executive Summary
	Introduction
	Theoretical Background
	Design by Contract
	Exception Handling
	Exception Handling Structures
	Exception Handling with Java's Exceptions-Handling Mechanism
	Difficulties in Applying Exception Handling
	Instructional Courses in Exception Handling
	Mapping Levels of Understanding – The SOLO Taxonomy

	The Study
	Environment and Population
	Research Tools
	The problem
	Methods of analysis

	Results and Discussion
	Strategies
	S1: Refined multi-level hierarchy of exceptions
	S2: Multi-level hierarchy of exceptions
	S3: Single level hierarchy of exceptions
	S4: Java exception
	S5: Error codes
	S6: Handling exceptions locally

	Overview of the Results
	Students’ Reflections on the Task
	Misconceptions concerning code quality
	Misconceptions concerning exception handling
	Difficulties in understanding the exception handling mechanism
	The perceived importance of exception handling
	Lack of programming experience

	Conclusions
	References
	Biographies

