
Journal of Information Technology Education: Volume 11, 2012
Innovations in Practice

Editor: Elsje Scott

Utilizing BlueJ to Teach Polymorphism in an
Advanced Object-Oriented Programming Course

Basem Y. Alkazemi
Umm Al Qura University,

Makkah, Saudi Arabia

bykazemi@uqu.edu.sa

Grami M. Grami
King Abdulaziz University,

Jeddah, Saudi Arabia

ggrami@kau.edu.sa

Executive Summary
Teaching Polymorphism can be best implemented by using a combination of bottom-up and top-
down approaches. However, from our observation and students’ self-reporting, the former seems
to be the predominant in the Saudi context. We try to investigate whether applying a more bal-
anced approach in teaching the comprehensive concept of Polymorphism would be more benefi-
cial in developing learners’ effective analytical skills. In this project, we applied the BlueJ IDE to
address the ambiguity in expressing Polymorphism and to compensate for shortcomings resulting
from the exclusive use of common programming editors such as Eclipse. We observed that stu-
dents who were taught using BlueJ IDE did considerably better in tasks that required the produc-
ing of flexible and extensible programs than those instructed in Eclipse IDE. We therefore rec-
ommend utilizing BlueJ for teaching this design concept.

Keywords: BlueJ IDE, Polymorphism, object-oriented programming, Alternative Approaches.

Introduction
Learning programming techniques requires among other things combining bottom-up and top-
down processing in order to fully comprehend the topics under discussion (Bruning, Schraw,&
Ronning 1995; Zelle, Mooney, & Konvisser, 1994). This eclectic approach should help develop
students’ problem-solving ability especially in object-oriented programming (OOP) where system
structure reasoning is an essential learning outcome. Building this analytical skill would not be
possible without explicitly describing different OOP techniques, some of which may not be ade-
quately expressed without proper visual representation.

In OOP, a system is theoretically composed of different objects interacting with each other
through message passing or method invocations. System structure is traditionally represented ab-
stractly at the design stage using different modelling languages such as UML (Fowler, 2003).
However, when it comes to programming, the relationships between classes become very implicit
as they are tangled into the source code. Basically, certain OOP fundamental principles cannot be

taught exclusively using bottom-up
thinking, i.e., using traditional source
code editors such as Eclipse, JCreator,
JDveloper and other Integrated Devel-
opment Environments (IDE). A visual
representation that combines high-level
design (top-down approach) with exist-
ing low level implementation details
(bottom-up approach) is required.

Material published as part of this publication, either on-line or
in print, is copyrighted by the Informing Science Institute.
Permission to make digital or paper copy of part or all of these
works for personal or classroom use is granted without fee
provided that the copies are not made or distributed for profit
or commercial advantage AND that copies 1) bear this notice
in full and 2) give the full citation on the first page. It is per-
missible to abstract these works so long as credit is given. To
copy in all other cases or to republish or to post on a server or
to redistribute to lists requires specific permission and payment
of a fee. Contact Publisher@InformingScience.org to request
redistribution permission.

mailto:bykazemi@uqu.edu.sa
mailto:ggrami@kau.edu.sa
mailto:Publisher@InformingScience.org

Utilizing BlueJ to Teach Polymorphism

272

According to Sommerville (2010), two of the fundamental design principles imposed by software
engineering are the notions of loose-coupling and dynamic-binding of objects in a system struc-
ture. In this regard, OOP embraces a number of techniques to effectively implement these princi-
ples, an important example of which is the model of Polymorphism (i.e., Inclusion Polymor-
phism). While learning fundamental OOP techniques, such as inheritance, by programmers is not
necessarily insignificant (Mayer, 1989), we nonetheless observed that teaching Polymorphism as
a technique to overcome the problem of coupling and facilitate dynamic-binding is one of the
most challenging topics. As a result, students may find them hard to comprehend. This difficulty
is further complicated as it involves teaching the main concepts at high level of abstraction that is
not mapped correctly into implementation details of a system. We believe that expressing the re-
lationships between objects is very important if students are to understand the exact design deci-
sions underpinning the concept of Polymorphism. This is the main problematic area we identified
in current methods of teaching Polymorphism to programmers. In fact, it has been observed that
even UML cannot fully satisfy teaching needs especially when it comes to precise description of
Polymorphism. UML lacks the capability of demonstrating the concept at the implementation
level. Current programming editors are not capable of representing dynamic relationships in a
form easily understood by programmers. In addition, current editors cannot represent the accurate
concept of loose-coupling and dynamic-binding as they require writing additional code into a Test
class that links corresponding classes together. At first impression, this additional code fulfills
one requirement of Polymorphism. On closer inspection, however, the code actually invalidates
the fundamental principle of loose-coupling causing the annulment of particular features of Pol-
ymorphism.

Figure 1 illustrates a typical example used to teach the concept of Polymorphism. It shows a Test
class called AnimalTypes that is considered as a client to access one of three servers of different
types. It contains few lines coded to link this Test class to the other sub-types (i.e., Cow, Dog,
Snake). Although this example exemplifies the general principle of Polymorphism, it actually
invalidates expressing the comprehensive utilization of it. One problem in this example is that the
class must be compiled in case adjustments are made to any of the sub-classes (e.g., Cow, Dog,
Snake) in complete contradiction to the actual purpose of loose-coupling. Moreover, when stu-
dents are presented with similar examples, they will probably find the concept of dynamic-
binding hard to understand, as what they observe is only the static relationships hardcoded into
the class.

Figure 1: AnimalTypes Test Class

In order to address these concerns, we need an effective teaching tool capable of exploiting all the
potentials of Polymorphism. Having identified the shortcoming of traditional IDE tools and de-
cided on the criteria for choosing an alternative tool, we proposed BlueJ IDE as our tool of
choice. More details of BlueJ are provided in a following section.

 Alkazemi & Grami

 273

This paper reports on our experimentation with BlueJ and evaluates its appropriateness as an ef-
fective teaching tool capable of demonstrating the fundamental design decisions of Polymor-
phism. Our judgment is based on its capacity for eliminating unnecessary coupling between clas-
ses and facilitating dynamic-binding between objects.

The paper is organized as follows: the following section describes the principle underpinning
Polymorphism. This is followed by a representation of BlueJ’s in teaching Polymorphism. The
following two sections describe the methodological framework and also report on our experimen-
tation including an evaluation of the approach we adopted for teaching Polymorphism. Finally,
we summarize the findings and highlight the implications of our study in the conclusion. We also
acknowledge the limitations of the current study and provide recommendations for future re-
search at their respective sections.

Polymorphism
According to Rotem-Gal-Oz (2006) and Lahman (2011), a function that accepts a parameter of
type T (e.g., Person) can still work if passed a parameter of type S (i.e., Teacher or Student as
shown in Figure 2) as long as type S is a sub-type of the type T. This, in fact, is the exact seman-
tic of Polymorphism. Polymorphism is a feature mostly used in object-oriented design and pro-
gramming that is mainly associated with inheritance. Gamma, Helm, Johnson, and Vlissides
(1995) also mention it can be generalized to cover a wide range of applications that involve mul-
tiple parties such as a client-server pattern that is a one of the standard patterns in distributed sys-
tems design principles.

For example, a client can be dynamically bound to a server at run-time only if a parameter passed
to the client matches a corresponding sub-type. The notion of Polymorphism provides several
benefits to systems structure, one of which is the elimination of unnecessary coupling between
classes. So, a change in one part of an application will not affect other parts. For example, Poly-
morphism can be utilized to build a client-server based system where client code is not tightly
linked to server code at run-time, thus implying loose-coupling. Figure 2 illustrates an example of
Polymorphism generated using the BlueJ IDE that is similar to the UML class diagram.

Figure 2: Example of Polymorphism

As the above example in Figure 2 shows, the Test class (i.e., type) is not aware of the Teacher or
Student sub-types. It is only hard-coded to use the Person type regardless of the sub-types availa-
ble. At run-time, programmers deal with objects that are instances of the classes they have written
at compile-time. Based on the type of parameter passed by the Test object at run-time, the Test
object can be dynamically-bound to either Teacher object, Student object, or simply use the Per-
son object directly. The Test class assumes that the Person class implements a method that it will

Utilizing BlueJ to Teach Polymorphism

274

access to obtain the necessary functionality. Through inheritance, all sub-classes of the Person
class are guaranteed to have the required method implemented in them either as inherited ones or
overridden. So, the Person class (usually defined as an abstract class) can be considered as a con-
tract that if a class is inherited from, it can be guaranteed to fit in this application without any
compilation problems. Figure 3 depicts the source code of the Test class. A discussion about how
the Polymorphism concept can be fully explained to students is given in the next section where
this example is executed in the BlueJ IDE showing how dynamic-binding can be achieved with-
out invalidating the loose-coupling concept.

Figure 3: Test Class Source Code

The method “mySkills()” is inherited from the Person Class by both Student and Teacher
sub-classes. It can be overridden by sub-classes in order to customize its functionality as needed.

BlueJ and Teaching Polymorphism
BlueJ is a programming environment designed to improve teaching introductory programming
using Java language first developed and implemented by Michael Kölling and John Rosenberg
(1996) (Van Haaster & Hagan, 2004). Barnes and Kölling (2011) further explain BlueJ is an IDE
specifically designed to simplify different object-oriented programming capabilities particularly
in Java.

Kouznestova (2007) mentions that BlueJ is a free and easy to use tool that can be utilized to pro-
vide visual representation of small-to-medium system structure. The majority of students, accord-
ing to Van Haaster and Hagan (2004), reported positive attitudes towards BlueJ either from first
impressions during early stages of the programming course or in the final stages. In fact, the per-
centage of students passing the programming course with the help of BlueJ has increased noticea-
bly.

In Table 1 are summaries of previous studies involving Polymorphism and BlueJ. The spectrum
of these studies covers a large range of research including accounting for popular tools in teach-
ing programming languages to computer science students (Bergin, 2003; Garner, 2003; Raadt,
Watson & Toleman, 2002), the merits of polymorphism in OOP (Donchev & Torodova, 2008;
Purewal & Bennett, 2006; Van Haaster & Hagan, 2004), improving the practices of teaching pol-
ymorphism (Bergin, 2003; Ross, 2005), and the benefits of adopting BlueJ in programming
courses (Kouznestova, 2007; Laakso, Malmi, Korhonen, Rajaala, Kaila, & Salakoski, 2008; Lee,
Pradhan, & Dalgrano, 2008; Rajaala, Laakso, Kaila, & Salakoski, 2008).

 Alkazemi & Grami

 275

Table 1. The position of the current study in relation to earlier research

Related Studies (in
chronological order)

Primary Source of Data Important Findings and Arguments

Raadt et al.,(2002)
A Census of Introductory
Programming Courses in
Australian Universities

- What and how programming languages are taught.
- The percentage of students who were taught using BlueJ in
practical session (4%)

Bergin (2003) Technical Report - Using elementary patterns to teach polymorphism at early
stages.

Garner (2003) Literature Review - Discussing tools and resources in the context of software
lifecycle.

Donchev and
Torodova (2008)* Literature Review

- Mastering polymorphism helps code organization and reada-
bility
- Polymorphism helps expandability
- Classification of polymorphism is a prerequisite for success-
ful learning

Van Haaster and Ha-
gan (2004)

Literature Review and
Evaluation Study: Surveys
(n = 115)

- The effectiveness of BlueJ in OOP for teaching principles
and practice to first year programming students.
- Literature helps the selection process NOT evaluating.
- The three categories of evaluation: usability, paradigm sup-
port, and teaching and learning support.

Ross (2005) Literature Review

- OOP three requisites: encapsulation, inheritance and poly-
morphism
- Different categories of polymorphism
- Clearer definition of polymorphism is required
- Coverage of polymorphism in various C++ and VB text-
books
- Textbook selection criteria for teaching polymorphism

Purewal and Bennett
(2006)

2 second-semester student
projects

- Projects that use polymorphism in gaming are unlimited and
genuine opportunities for students to freely express their crea-
tivity.
- Polymorphism improve students’ motivation

Kouznestova (2007) A sequence of four as-
signments

- BlueJ environment helps novice students developing work-
ing models.
- BlueJ helps students develop better understanding of OOP.
- BlueJ minimizes graphic programming difficulties.

Lee et al., (2008) Case Study

- The effects of screencast-based and BlueJ-aided instruction
- Difficulties in the transition from graphic tools to writing
codes.
- Alternative approaches in teaching OOP.
- BlueJ as a cognitive tool representing learners’ schemata.
- BlueJ is more useful at high level of abstraction.

Laakso et al., (2008) Literature review and ex-
periments

- Using ViLLE in teaching program debugging (See Laakso et
al., 2008 below)
- BlueJ in program visualization

Rajaala et al., (2008) Literature Review and
Experimental Research

- Development of ViLLE (Visualization program)
- BlueJ is a static program visualization tool
- Program visualization enhance students’ learning

The Current Study
Literature Review and
Experimental Study (n =
30)

- investigating shortcomings in IDEs used in teaching
- Identifying shortcomings in teaching Polymorphism using
traditional programming editors
- Evaluating BlueJ as an alternative, top-down approach in
teaching OOP under GUI that demonstrates the full design
considerations of Polymorphism

The main relationships that BlueJ defines are the “is-a” and “has-a” relationships, representing
inheritance and association between classes respectively. Figure 2 illustrates the two types of rela-
tionships in BlueJ. The “is-a” relationship links the Teacher and Student sub-classes to the Person
super class while the “has-a” relationship links the Test class to the Person class. It is apparent

Utilizing BlueJ to Teach Polymorphism

276

that there are no interdependencies between the Test class and the Teacher or Student sub-classes.
However, it can be linked at run time as illustrated in Figure 4.

Figure 4: Polymorphism representation using BlueJ

The red boxes at the bottom of Figure 4 are the objects generated after instantiating the three clas-
ses Test, Student, and Teacher. The generated objects can be manipulated at run-time by selecting
the set of public methods displayed upon right-clicking an object. Any method can then be in-
voked if it passes the required parameter that can be either a primitive type or a defined object by
selecting one from the generated list. Passing a Student or Teacher object to the Test object re-
sults in a dynamic-binding of these objects and, thus, executing the corresponding method of the
selected class. Therefore, when a Student object is passed as a parameter to the method “public
void run(Person person)” the method “public void mySkills()” associated
with Student object is going to be executed. Figure 5 illustrates binding the Test object to the Stu-
dent object at run-time.

Figure 5: Binding Student Object to Test Object

BlueJ can facilitate expressing Polymorphism in a practical way as any modifications to the Stu-
dent or Teacher classes (i.e., servers) would not affect the Test class (e.g., client) in terms of
recompilation, hence the principle of loose-coupling is maintained and visibly shown to students.
Moreover, the notion of dynamic-binding is visually demonstrated to students and put into prac-
tice throughout this example when the Test class is dynamically-bound to either Student or
Teacher upon the type of parameter passed to it. Another added feature provided by the BlueJ
which helps to improve students’ learning curve is the ability to generate the source code auto-

 Alkazemi & Grami

 277

matically, having ensured the current system structure and design is validated. A Unit Test class
can be used to capture the actions executed by the programmer on objects at run time, and conse-
quently generates the corresponding source code that reflects these actions. Figure 6 shows a gen-
erated unit-test class called AutoGenCode which traces all the actions applied by a programmer.

Figure 6: “AutoGenCode” Unit_Test Class

The method “public void testMyTestCode()” contains the source code that defines
the instantiated objects, how they are bound together, and the sequence of their execution. This
method is generated once the programmer stops recording programmer’s actions. In other words,
whatever action the programmer performs will be reflected in the source-code of the Unit_Test
class. This additional feature in BlueJ illustrates how it can be used to teach Polymorphism in a
top-down manner as learners become familiarized with the principle of dynamic-binding before
moving on to the complexity of source-code writing.

Methodology
Kölling and Rosenberg (1996) insist that the notion of Polymorphism can be understood much
more easily if the correct tools are used in teaching, one of which is BlueJ that was developed
specifically for teaching purposes (Brunning, Schraw & Ronning, 2005). With this in mind, we
were trying to evaluate if utilizing BlueJ as a teaching tool can expose the concepts of loose-
coupling and dynamic-binding. We, therefore, opted for a comparative experimental study in the
form of experiment and control groups. The notion was that this should help us test our hypothe-
sis about the effectiveness of BlueJ IDE in comparison to traditional IDE tools like Eclipse for
instance.

Research Population and Sampling
A ‘cluster sampling’ procedure was followed in this project which Walliman (2001) describes as
cases forming clusters by sharing one or more characteristics, the samples are otherwise homoge-
nous. The only differing characteristic is the different treatment students received in the form of
BlueJ versus Eclipse. They share the same background otherwise. Other types of sampling like
systematic, simple and proportional stratified were disregarded because they were not applicable
for the intended research population.

Utilizing BlueJ to Teach Polymorphism

278

In more precise terms, two groups of undergraduate computer science students who met a set of
criteria were selected for the experiment. They were group 1 (experiment) and group 2 (control)
consisting of 15 students each. The two groups had different class schedules, group 1 had OOP
class on Monday and group 2 had the class on Wednesday. We tried to account for different fac-
tors apart from teaching methods, so the criteria of students’ inclusion in both groups were as fol-
low:

• Only computer science students were eligible for inclusion in the study as there were a
number of computer engineering majors attending the same classes.

• Only students with a GPA (Grade Point Average) of 3.0 or higher (out of 4.0) were
selected. The attempt is to evaluate the tool in terms of teaching the design decisions
underlying polymorphism (i.e., loose-coupling and dynamic-binding) not how it
correlates to the students’ potential.

• Students who obtained a grade of at least 'B+' in the Structured Programming course
were eligible.

• Students who obtained 25+ out of 30 in the Java classes and inheritance short exam
previously given, were selected.

The first criterion was designed to ensure students share similar educational background while the
other three criteria collectively were drafted to ensure that all participants in this experiment had
similar levels of competency. The argument was that this procedure should help minimize the
impact of factors other than different teaching approaches on students’ subsequent performances.

Procedures and Data Collection
The concept of Polymorphism was taught to group 1 using BlueJ while Eclipse in association
with UML like diagrams was used for the other group. Both groups were taught that the princi-
ples of loose-coupling and dynamic-binding are part of the design principles underpinning Poly-
morphism. The topic of Polymorphism was covered in two lectures for both groups in addition to
revision exercises. A short quiz was given at the end of the session to both groups simultaneously.
The quiz contained two questions (see Appendix). The first requires a general description of the
concept of Polymorphism and how it can benefit programming. The second question requires the
use of Polymorphism to write a short program in Java that retrieves the details (e.g., title, author
name, ISBN) of five different types of books in a library. These are Computer Science, Art, Math,
Physics, and Linguistics. The last question evaluates students’ understanding of polymorphism.
Different types of books requires a demonstration of students’ real understanding of the concepts
of loose-coupling and dynamic binding as integral parts of polymorphism.

Data was collected from both groups based on their performances in the quiz. The information
was processed and analyzed quantitatively using descriptive values such as counts, percentages,
and means. The aim was that these descriptive values should facilitate the intended comparison
task we set upon when initiating this project, more specifically in order to find out more about the
short-term effect of the proposed teaching method.

Results
All the participants from both groups answered question 1 correctly by describing the theory be-
hind Polymorphism as originally described to them in the lectures. Answers to the second ques-
tion vary. The exam focuses on evaluating students’ understanding of three main concepts - all
considered constituents of the intended course outcome - as follows:

• System structure: students must recognize the organization of Java classes and establish
the relationship between them. The expected answer should include a high-level class

 Alkazemi & Grami

 279

diagram that illustrates the different classes in the system.
• Usage of inheritance: students must understand how inheritance is utilized to build a

structure based on generalization-specialization of types. The ideal answer should involve
the definition of super class called "Book" and sub-classes that define the different types
of books those satisfy the “is-a” relationship.

• Utilization of polymorphism: students must generate a Test class that is completely
decoupled from sub-classes. It can only invoke methods in the Book super-class (or
interface) without any hard-coded link to sub-classes. The binding of Test class and sub-
classes should be achieved via parameter passing only at runtime. All students were
asked to demonstrate their solutions in a computer lab to exhibit their understanding.

Table 2 summarizes the main outcomes of the quiz and displays students’ achievements in each
category investigated.

Table 2. Test Outcome of Control and Experiment Groups

Outcome (understanding of) Group 1 (%) Group 2 (%)
System structure 100 100

Usage of inheritance 100 87

Utilization of Polymorphism 100 13

Discussion and Implications
The most remarkable finding of the study is that students in group 1 have performed extremely
well by scoring the maximum number of points in all three test areas. As far as system structure is
concerned, there was no immediately observed difference in students’ responses since all students
achieved the highest possible mark regardless of their group. We, therefore, infer that this particu-
lar area has no association with different types of treatment, i.e., traditional methods against the
proposed BlueJ IDE alternative method.

However, the two other categories of the test show more contrasting results. First of all, partici-
pants in group 1, as noted earlier, performed extremely well in every area including the usage of
inheritance category and duly received the full mark. Students in group 2, on the other hand, did
fairly well as the majority of them (87%) answered the question correctly, not as well as their
counterparts but good nevertheless. Despite their good performance, there is still a considerable
gap to be reckoned with when the results of the two groups are placed next to each other. We of
course cannot rule out the impact of factors other than different treatments in this result despite
our attempts to control their impact. However, in this small-scale study, we can attribute the dif-
ference in the results to the application of BlueJ IDE in our alternative approach.

The last category “utilization of Polymorphism” yields the most disproportionate result where
group 1 considerably outperforms the other group rendering our alternative approach very effec-
tive indeed. Although both groups have produced fully functioning programs capable of retriev-
ing data as requested, the first group’s code tends to be more standardized in terms of flexibility
and extensibility than that of the second group whose members mostly hardcoded invocations
into the client’s code. The first group stopped at the level of defining the composition relationship
between the Client and the Book super-class showing their awareness of potential data retrieval at
run time based on the parameters passed to the superclass, as demonstrated during the practical
session. The second group, however, provided a fully working Client that can retrieve only the
specified types of books. As a result, whenever a new book is added then the client code has to be
modified to accommodate this new requirement. In terms of client-server pattern, the operation

Utilizing BlueJ to Teach Polymorphism

280

requires a total shutdown to the server and recompile to the client code in order to proceed with
new changes. As a result, we would argue that the code designed by students in group 1 greatly
benefited from the application of BlueJ by showing the defining characteristics. This cannot be
achieved by means of Eclipse for an IDE alone as shown by the code designed by the other
group.

We believe the type of treatment students received has a significant impact on developing certain
skills, especially ones which require analytical thinking and comprehensive perception. BlueJ in
our experiment has proven to be especially useful when students had to envisage different com-
ponents of a system structure at the same time.

Conclusion
Taking all the results into consideration, we would recommend teachers to devote more time
teaching students by means beyond technical terms and formulas and in a way which would en-
hance their wider perception of the given tasks. As is the case with any new technique in the
classroom, we anticipate some challenges particularly in the early implementation stage but these
should phase out when the potential gains become obvious. Although other practical issues, like
the time limit and teacher training programs, have to be taken into consideration, these technicali-
ties, in our opinion, should be addressed by the educational authorities in the institutions.

Teaching Polymorphism is by no means a trivial task in OOP especially when teaching is carried
out from a design decisions perspective of software engineering where Polymorphism is used as
the driving vehicle to implement the concepts of loose-coupling and dynamic-binding. However,
we noticed that in some contexts Polymorphism is traditionally taught using a regular source code
editor or IDE virtually ignoring the considerations of comprehensive design. We, however, uti-
lized BlueJ IDE as a teaching tool in order to exploit the implicit capabilities of Polymorphism
that other tools usually fail to recognize.

Our empirical study of teaching certain Polymorphism features produced encouraging results.
BlueJ does not only compensate for traditional IDE methods’ shortcomings but also acts as an
effective teaching tool capable of demonstrating design concepts in a more practical and explicit
manner.

Despite the encouraging results, we are aware that our findings are more indicative than conclu-
sive due to factors like the sample size and the spectrum from where the participants were drawn.
A more comprehensive study that involves a wider range of learners from various IT backgrounds
would further verify the results. Our study in spite of that deals with a dynamic topic and follows
rigorous scientific research conventions making it valuable to teachers and learners alike. In fact,
the carefully designed experiment procedures and data analysis opportunities make us consider
applying BlueJ in our future classes and recommend others to follow suit. The study shows that
BlueJ IDE explains the design decisions underlying polymorphism better and more accurately
than more traditional coding editors like Eclipse or JCreator.

References
Barnes, D., & Kölling, M. (2011). Objects first with Java (5th ed.). Prentice Hall.

Bergin, J. (2003). Teaching Polymorphism with elementary design patterns. OOPSLA Companion 2003,
167 – 169.

Bruning, R. H., Schraw, G. J., & Ronning, R. R., (1995). Cognitive psychology and instruction. Eng-
lewood, NJ: Merrill.

 Alkazemi & Grami

 281

Donchev, I., & Todorova, E. (2008). Polymorphism in the course of object oriented programming - Di-
dactic aspects. The Sixth International Conference “INTERNET –EDUCATION - SCIENCE”,
Vinnytsia, Ukraine, pp. 100 – 113.

Fowler, M. (2003). UML distilled: A brief guide to the standard object modeling language. Boston: Addi-
son-Wesley.

Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (1995). Design patterns: Elements of reusable object-
oriented software. Boston: Addison-Wesley.

Garner, S. (2003). Learning resources and tools to aid novices learn programming. Technology Education
Joint Conference (InSITE), Finland, 213 – 222.

Kouznetsova, S. (2007). Using BlueJ and Blackjack to teach object-oriented design concepts in CS1. Jour-
nal of Computing Sciences in Colleges, 22(4), 49 – 56.

Kölling, M., & Rosenberg, J. (1996). An object-oriented program development environment for the first
programming course. SIGSE Bulletin, 28(1), 83 – 87.

Laakso, M., Malmi, L., Korhonen, A., Rajaala, T., Kaila, E., & Salakoski, T. (2008). Using rules of varia-
bles to enhance novice’s debugging work. Issues in Informing Science and Information Technology, 5,
281 – 296.

Lahman, H. (2011). Model-based development applications. Boston: Addison-Wesley.

Lee, M. J. W., Pradhan, S., & Dalgarno, B. (2008). The effectiveness of screencasts and cognitive tools as
scaffolding of novice object-oriented programmers. Journal of Information Technology, 7, 61 – 81.

Mayer, R. E. (1989). The psychology of how novices learn computer programming. In E. Soloway & J. C.
Spohrer (Eds.), Studying the novice programmer (pp. 129– 159). New Jersey: E. Lawrence Erlbaum
Associates.

Purewal, T. S., & Bennett, C. (2006). A framework for teaching Polymorphism using game programming.
Journal of Computing Sciences in Colleges. 22(2), 154 – 161.

Raadt, M., Watson, R., & Toleman, M. (2002). Language trends in introductory programming courses.
Proceedings of the InSITE Conference, pp 329 – 338. Retrieved from
http://proceedings.informingscience.org/IS2002Proceedings/papers/deRaa136Langu.pdf

Rajaala, T., Laakso, M., Kaila, E., & Salakoski, T. (2008). Effectiveness of program visualization: A case
study with ViLLE Tool. Journal of Information Technology Education: Innovations in Practice, 7, 15–
33. Retrieved from http://www.jite.org/documents/Vol7/JITEv7IIP015-032Rajala394.pdf

Ross, J. M. (2005). Polymorphism in decline? Journal of Computing Sciences in Colleges, 21(2), 328 –
334.

Rotem-Gal-Oz, A. (2006). Liskov substitution principle (Design by contract). JDJ Editors Choice.

Sommerville, I. (2010) Software engineering. Boston: Addison Wesley.

Van Haaster, K., & Hagan, D. (2004). Teaching and learning with BlueJ: An evaluation of a pedagogical
tool. Information Science and Information Technology Education Joint Conference, Rockhampton,
Australia, 99 – 110.

Walliman, N. (2001). Your research project: A step-by-step guide for the first time researcher. London:
SAGE Publications.

Zelle, J. M., Mooney, R. J., & Konvisser, J. B. (1994). Combining top-down and bottom-up techniques in
inductive logic programming. Proceedings of the Eleventh International Workshop on Machine Learn-
ing, New Jersey, 343 – 351.

http://proceedings.informingscience.org/IS2002Proceedings/papers/deRaa136Langu.pdf
http://www.jite.org/documents/Vol7/JITEv7IIP015-032Rajala394.pdf

Utilizing BlueJ to Teach Polymorphism

282

Appendix
Advanced Programming (Quiz # 3)

Q.1\ Describe, using an example, the concept of Polymorphism and discuss its impact on pro-
gramming practices?

Q.2\Apply the concept of Polymorphism to write a Java program that retrieves five different
types of books in the fields of Computer Science, Art, Math, Physics, and Linguistics In terms of
their titles, author names, and ISBNs.

Biographies
Dr Basem Alkezemi currently holds the position of vice-dean of Umm
Al-Qura University’s IT Deanship for E-Government. He received his
Bachelor degree in Electric and Computer Engineering in 1999. He
then went to study his MSc and PhD in Software Engineering at New-
castle University in the UK which he received in 2004 and 2009 re-
spectively. Dr. Alkazemi has published a number of articles in regional
and international journals and participated in many specialised confer-
ences around the world. His main research interests are in software
engineering, wireless sensor networks, computer supported education,
and e-government.

Grami M Grami graduated in 2001 with a degree in English Lan-
guage and Literature. He went to Essex University in 2003 to study his
Master’s degree before embarking on a PhD project at Newcastle Uni-
versity completed by 2010. He currently teaches English and Applied
Linguistics at King Abdulaziz University. Grami has published a num-
ber of articles in international journals about IT and education and is a
current member of the editorial board of Information Technology and
Teacher Education Journal.

	Utilizing BlueJ to Teach Polymorphism in an Advanced Object-Oriented Programming Course
	Grami M. GramiKing Abdulaziz University, Jeddah, Saudi Arabia
	ggrami@kau.edu.sa

	Basem Y. AlkazemiUmm Al Qura University, Makkah, Saudi Arabia
	bykazemi@uqu.edu.sa

	Executive Summary
	Introduction
	Polymorphism
	BlueJ and Teaching Polymorphism
	Methodology
	Research Population and Sampling
	Procedures and Data Collection

	Results
	Discussion and Implications
	Conclusion
	References
	Appendix
	Biographies

