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Executive Summary 
The theory and practice of search algorithms related to state-space represented problems form the 
major part of the introductory course of Artificial Intelligence at most of the universities and col-
leges offering a degree in the area of computer science. Students usually meet these algorithms 
only in some imperative or object-oriented language (e.g., Java or C#) during the seminars. In this 
paper, we introduce a new approach for presenting these algorithms to the students, which is pro-
gramming them in a functional style using the F# programming language. 

A couple of years ago, we created a Java class hierarchy for use in our Artificial Intelligence sem-
inars. This well-organized set of classes helps students better understand the operation of the var-
ious search algorithms. Since some parts of these algorithms can be more conveniently imple-
mented using a functional approach, we present here the F# implementation of the same class 
hierarchy. F# proved to be a good choice of programming language because of its multi-paradigm 
nature. This way, the classes themselves were easy to adopt, and the instructors of the seminars 
may decide how much of the code they want to rewrite in a functional manner. Functional pro-
gramming can provide tremendous benefit during the implementation of methods containing log-
ical formulae in their bodies, such as the precondition of an operator. In summary, the power of 
F# lies not in the fact that it is a functional programming language, but that the developer can se-
lect the programming paradigm they want to use in different parts of the program. 

In the future, we would like to create a purely functional implementation of the main search algo-
rithms with as much reusable code as possible. 
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Introduction 
Until recently, programming was about using pure, single-paradigm techniques. However, nowa-
days programming languages tend to converge to one another, i.e., functional features are appear-

ing in imperative languages and vice 
versa. There are a couple of domains of 
computation in which solutions to prob-
lems can be expressed in a more suc-
cinct way if we use functional pro-
gramming compared to using purely 
imperative or object-oriented tools. We 
believe that artificial intelligence and 
search algorithms, in particular, are such 
domains because some substantial parts 
of these algorithms (like, for example, 
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checking operator preconditions) are essentially functional. There have been numerous publica-
tions in this field (e.g., King & Launchbury, 1995). 

Teaching search algorithms to our students is a great pedagogical challenge. At our university, 
they first meet artificial intelligence in the frame of the course Introduction to Artificial Intelli-
gence, which is one of the core subjects of our three main undergraduate programs, Software In-
formation Technology, Business Information Technology, and Engineering Information Technol-
ogy. In the lectures, the pseudocode of these algorithms is presented, together with some exam-
ples, but this is not always enough for students to understand what is going on behind the scenes. 
In the seminars, the instructors show the same algorithms written in a high-level programming 
language, which used to be Pascal and C, but nowadays we use Java and C#. However, the high-
level language code is merely another representation of the pseudocode, so students with little 
programming background do not find it useful in understanding the operation of the algorithms. 
The idea is that we should try presenting the search algorithms also by using a very different ap-
proach, namely functional programming. A functional program can hide the unimportant steps of 
searching and focuses only on the problem itself. It may be useful even if students do not have 
any former knowledge of functional programming, because a functional program is just another 
way for describing a problem, and not for solving it (although the problem description usually 
incorporates also at least parts of the solution). 

When object-oriented languages were introduced to the curricula of most of our undergraduate 
programs, we created a Java (and later C#) class hierarchy, which has been used since then in our 
Artificial Intelligence seminars. Since F# is a multi-paradigm language, i.e., it combines impera-
tive (object-oriented) and declarative (functional) programming techniques, it can be convenient-
ly used to convert our existing Java and C# implementations of AI search algorithms into a partly 
functional implementation. We hope that this modified implementation of the class hierarchy will 
help our students better understand the concepts behind the scenes. 

Imperative versus Functional Programming 
Let’s first have a look at the major differences between imperative (procedural) and functional 
programming paradigms, the latter of which being actually a special case of declarative (non-
procedural) programming. 

• With an imperative approach, the programmer writes step by step how a particular prob-
lem can be solved. In contrast, using a functional approach, the programmer only declares 
what the problem is by decomposing it to simple function calls. 

• The state of an imperative program is an important factor, whereas a purely functional 
program does not have states, because it uses only immutable data. 

• Because of stateless programming, the execution of a purely functional program does not 
have side effects. This also implies that the order in which the expressions are evaluated 
is not important. The program will yield the same output on the same input in any evalua-
tion order. This is called referential transparency. 

• The main building blocks of an imperative program are statements, while a functional 
program consists almost exclusively of expressions. Some basic control structures (such 
as conditionals or loops), which are statements in an imperative language, may also ap-
pear in functional programs but only as expressions. 

• Unlike in imperative programming, recursion plays a significant role in functional pro-
gramming. 
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Benefits of Functional Programming 
Ever since the first programming language was invented, developers have been using mostly im-
perative languages. This is because functional programming style requires a special, sometimes 
mind-bending way of thinking about things. There are, however, a lot of benefits to the functional 
way. In most cases, it requires much less and clearer code to achieve the same result than impera-
tive programming because of language constructs of a higher abstraction level. Less code also 
means less chance of errors, less testing, and, due to this, more productivity. Functional programs 
are less error-prone, can be more easily parallelized, and they can be developed in a shorter time. 
Because of these advantages, functional programming is becoming more and more popular now-
adays; even the software industry is looking for more and more programmers with expertise in 
functional programming. Also, today it usually occurs in the curricula of graduate (and some-
times also undergraduate) programs in higher education. 

Functional Programming in Teaching Artificial Intelligence 
Besides coding in an object-oriented language, we propose using also the functional approach for 
programming the solutions to state-space represented problems that students meet during the 
courses for the following reasons: 

• These are complex problems. We do not teach programming in the frame of this course 
anymore; instead, we teach how the previously learned programming knowledge can be 
combined with the theory of search algorithms. The more complex a problem is, the more 
elegantly it can be implemented using functional programming. 

• Some parts of the AI search algorithms are functional by their very nature. The source 
code of these parts simply looks better in a functional language. 

• It is worth implementing a couple of problems and search algorithms with both para-
digms so that students can see the difference between them. Later they can decide which 
approach to use in their homework or during a test. 

• Functional programming is an exciting challenge for the students, and challenge can be a 
great motivating force. They prefer dealing with challenging problems even if those prob-
lems are difficult or abstract. 

As a proof of the succinctness of a functional program solving an AI problem, we present a short 
C code and a purely functional F# code of the solution to the well-known n-queens puzzle. Here 
is the C code first: 
#include <stdio.h> 
#include <stdlib.h> 
 
typedef enum {FALSE, TRUE} BOOL; 
 
#define N 8 
 
int board[N + 1]; 
 
void print_array() 
{ 
  int i; 
  for (i = 1; i <= N; ++i) 
    printf("%d ", board[i]); 
  putchar('\n'); 
} 
 
BOOL conflicting(int col, int row) 
{ 
  int i; 
  for (i = 1; i < col; ++i) 
    if (board[i] == row || col - i == abs(row - board[i])) 
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      return TRUE; 
  return FALSE; 
} 
 
void find_solutions(int col) 
{ 
  static int num = 0; 
  if (col > N) 
  { 
    printf("Solution #%02d: ", ++num); 
    print_array(); 
  } 
  else 
  { 
    int row; 
    for (row = 1; row <= N; ++row) 
      if (!conflicting(col, row)) 
      { 
        board[col] = row; 
        find_solutions(col + 1); 
      } 
  } 
} 
 
int main() 
{ 
  find_solutions(1); 
  return EXIT_SUCCESS; 
} 

And here is the F# code: 
let N = 8 
 
let conflicting col row (queen : int list) = 
    let rec checkCol c = 
        let r = queen.[c] 
        c < col && (r = row || col - c = abs (row – r) || checkCol (c + 1)) 
    checkCol 0 
 
let nextCol col newSolutions solution = 
    seq {1 .. N} 
        |> Seq.filter (fun row -> not (conflicting col row solution)) 
        |> Seq.fold (fun solutions row -> solutions @ [solution @ [row]]) newSolutions 
 
let rec findSolutions col allSolutions = 
    if col = N then 
        allSolutions 
    else 
        findSolutions (col + 1) (allSolutions |> List.fold (nextCol col) []) 
 
findSolutions 0 [[]] 
    |> List.iteri (fun i solution -> printfn "Solution #%02d: %A" (i + 1) solution) 

Both programs find the 92 possible solutions to the 8-queens problem, although they are not fully 
equivalent. The C code uses recursive backtracking, while the F# code is more like an optimized 
recursive breadth-first search, in which most of the work is done by built-in functions such as 
Seq.fold. 

The C code works the following way: It takes a one-dimensional array of N elements (actually 
N+1 so we do not have to bother with the zero index), and calls the recursive function 
find_solutions, which tries to find an appropriate (non-conflicting) row for a queen in the next 
column of the table in a for loop. The index of the next column is stored in col, which is 1 at the 
beginning. If there is no such row, a backtracking is performed, i.e., find_solutions returns to its 
previous instance in the call stack (where the value of col was one less than its current value), and 
so it tries to find the next good row in the previous column inside the for loop. While we can find 
a good place for a queen in the current column, we continue calling find_solutions with an incre-
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mented col value. When col reaches N+1, all N queens have been placed on the table, i.e., a solu-
tion is found. We print the solution, and continue with the search by backtracking (i.e., returning 
to the previous function in the call stack) until we return to the main function, which means that a 
backtracking was performed from the initial state. 

The F# code uses a list of lists to store all the solutions. Each of the inner lists will finally contain 
N numbers with the row values for each column just like the array in the C version. At the begin-
ning, we start with a one-element list of an empty list ([[]]), and then try to place a queen to all 
the possible rows in the column indicated by col. For example, when col is 0 and allSolutions is 
[[]], the result of the expression allSolutions |> List.fold (nextCol col) [] will 
be a list of 8 one-element list containing the numbers 1 to 8: [[1], [2], [3], ...]. After 
this, the findSolutions function is called recursively with an incremented col value, which results 
in a list containing only 2-element lists with all the possible layouts of two queens in two col-
umns. This is repeated until col reaches N, when the resulting list will contain all possible solu-
tions. 

Of course, we could also have written here the recursive breadth-first search in C. The reason we 
chose backtracking instead is that it is much shorter because in backtracking, we only have to 
store the current path, and it is done for us by the call stack of the find_solutions function. In 
breadth-first search, however, we would have to keep track of the partial solutions (those in 
which one less columns are already filled than we are currently dealing with), which would re-
quire us to handle some kind of data structure (a linked list, for example). The F# version does 
this with the built-in list data type. Just for comparison, here is the C# implementation of the re-
cursive breadth-first search, which resembles the most to the F# program (C# also has a built-in 
List data type): 
using System; 
using System.Text; 
using System.Collections.Generic; 
 
class Board 
{ 
  public static int N = 8; 
   
  private int[] board; 
  private int col; 
 
  public Board() 
  { 
    board = new int[N + 1]; 
    col = 1; 
  } 
 
  public Board(Board parent, int row) 
  { 
    board = (int[])parent.board.Clone(); 
    board[parent.col] = row; 
    col = parent.col + 1; 
  } 
 
  public bool Conflicting(int row) 
  { 
    for (int i = 1; i < col; ++i) 
      if (board[i] == row || col - i == Math.Abs(row - board[i])) 
        return true; 
    return false; 
  } 
 
  public override string ToString() 
  { 
    StringBuilder sb = new StringBuilder(); 
    for (int i = 1; i <= N; ++i) 
      sb.Append(board[i] + " "); 
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    return sb.ToString(); 
  } 
} 
 
class Program 
{ 
  static List<Board> findSolutions(int col, List<Board> allSolutions) 
  { 
    if (col > Board.N) 
      return allSolutions; 
    List<Board> newSolutions = new List<Board>(); 
    foreach (Board solution in allSolutions) 
      for (int row = 1; row <= Board.N; ++row) 
        if (!solution.Conflicting(row)) 
          newSolutions.Add(new Board(solution, row)); 
    return findSolutions(col + 1, newSolutions); 
  } 
 
  static void Main() 
  { 
    int num = 0; 
    List<Board> initialList = new List<Board>(); 
    initialList.Add(new Board()); 
    foreach (Board solution in findSolutions(1, initialList)) 
      Console.WriteLine("Solution #{0:00}: {1}", ++num, solution); 
  } 
} 

As you can see, the C# code is still much longer and, in my opinion, less expressive than the F# 
version of the very same algorithm. 

Search Algorithms in Different Programming Languages 
The first implementations of AI search algorithms were programmed using the first popular high-
level imperative programming language, Fortran, and the first functional programming language, 
IPL. The General Problem Solver, created in 1959, was able to solve theoretically any formalized 
symbolic problems (Newell, Shaw, & Simon, 1959). Later, as newer and newer imperative pro-
gramming languages (such as C or Pascal) dominated business computing, search algorithms 
were rewritten in a number of imperative languages. With the appearance of object-oriented para-
digm, programmers had the possibility to easily create more abstract and general implementations 
of these algorithms. 

Meanwhile, functional programming languages were undergoing vigorous development, too. 
Lisp, for example, was invented in 1958, and its variants (Common Lisp, Scheme, and Clojure 
among others) are still in use today. As an example, there is a Lisp implementation for solving the 
“farmer, wolf, goat, and cabbage problem” in Luger and Stubblefield (2009). 

Prolog, designed specifically for logic programming in 1972, is a natural choice when it comes to 
programming AI search algorithms. If we would like to create the most concise implementation, 
we should use Prolog. 

Why F#? 
The problem with imperative languages lies in their verboseness. Even a very simple algorithm 
can take a lot of lines of code to implement. On the other hand, functional and logic programming 
languages require programmers to acquire a very special way of thinking about things, which 
may be appropriate for some sorts of real-world problems, but is unnatural for most problems. 
We think the solution is using multi-paradigm programming languages, like D, Python, C#, or F#. 
As we previously mentioned, modern imperative and object-oriented programming languages 
include some functional features. This way, developers may choose to do some kinds of computa-
tion functionally instead of the “traditional way.” A good example to this is LINQ in C#. 
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F# is basically a functional language extended with imperative and object-oriented features for 
.NET interoperability. The programmer may write a program purely functionally, partly impera-
tively, using object-oriented tools, such as classes and objects, or by mixing any or all of these 
techniques (Petricek & Skeet, 2010; Syme, Granicz, & Cisternino, 2010). In F#, programmers 
may use object states, and this way we do not have to write mystic code, for example, for han-
dling complex data structures. Another drawback of pure functional programming is the ineffi-
ciency of the executable code: copying data requires more memory and more runtime than just 
performing a small modification of existing data. Additionally, F# can help students realize that 
no single programming paradigm is best for everything. These are the reasons why F# seemed to 
be a good choice to implement the search algorithms, which we already had at our disposal in 
Java and C# (Kósa, 2009; Kósa & Pánovics, 2007). 

A Class Hierarchy for Search Algorithms 
Next, we present the class hierarchy that contains all the classes needed to implement various 
search algorithms for an arbitrary state-space represented problem. Figure 1 shows two abstract 
classes for the state-space representation itself (State and Operator) as well as a couple of Node 
classes, which represent the graph nodes used by the search algorithms. 

 
Figure 1: Classes representing the state-space and the graph nodes. 
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State is used as a base class for the classes representing the states of concrete problems, while the 
Operator class serves as a base class for the concrete operators, which transform our problem 
from one state to another. The members of these classes are the following: 

• Operators: the set of all operators relevant to the problem. 
• GoalState: true if the current state is a goal state. 
• PreCondition: true if the argument operator is applicable to the current state. 
• Apply: applies the argument operator to the current state and returns the resulting state. 
• Heuristic: a heuristic value that is an estimation of the cost of reaching the nearest goal 

state from the current state. 
• Cost: the cost of applying the current operator to the argument state. 

Here is the F# code which defines these two classes: 
type [<AbstractClass>] State() = 
    static let operators = HashSet<Operator>() 
    static member Operators = operators 
    abstract GoalState : bool 
    abstract PreCondition : Operator -> bool 
    abstract Apply : Operator -> State 
    abstract Heuristic : double 
    default this.Heuristic = 0.0 
 
and [<AbstractClass>] Operator() = 
    abstract Cost : State -> double 
    default this.Cost(_) = 1.0 

As you can see, there is a default implementation of the Heuristic property so that we can use 
heuristic search algorithms (e.g., best-first search) even with states which do not override this 
property. Similarly, we gave a default implementation for the Cost method of the Operator class, 
this way ensuring that any operator may participate in a cost-based search (e.g., Dijkstra’s algo-
rithm; Dijkstra, 1959). 

The four Node classes contain the following important members: 

• State: the state represented by the node. 
• Parent: the node to which an operator was applied to reach the current node. 
• Oper: the operator that was applied to the parent node. 
• Depth: the current node’s depth in the spanning tree of the graph. 
• Cost: the total cost of reaching the current node from the start node. 
• OperatorsToTry: a list of operators applicable to the current node and not tried yet. 

Node is used with non-cost-based graph search algorithms (e.g., breadth-first search), 
NodeWithCost is used with cost-based graph search algorithms (e.g., A algorithm), 
BacktrackNode is used with backtracking, and BacktrackNodeWithCost is used with the branch-
and-bound algorithm. The latter two classes are actually used only in the C# version, which itera-
tively traverses the OperatorsToTry list. In contrast, the F# program uses recursion to go through 
the applicable operators (see the Appendix for details), so there is no need to explicitly store them 
in a list, and that is why there is no need for the BacktrackNode and BacktrackNodeWithCost 
classes, either. 

Figure 2 shows another part of the UML class diagram which contains the classes representing 
some of the search algorithms and their relations to other classes. 
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Figure 2: Classes representing some search algorithms. 

Here you can see two enumeration types. SearchProp contains some flags which control the op-
eration of the search algorithms. If AllSolutionsFlag is set, the algorithm will search for all solu-
tions, otherwise it will stop when the first solution is found. If SolutionIsStateFlag is set, the algo-
rithm considers the goal state as the solution, otherwise the solution is considered to be the opera-
tor sequence leading from the initial state to the goal state. CycleCheckFlag is used only with 
backtracking and branch-and-bound search. If it is set, the algorithm will check for cycles in the 
current path during the search, otherwise it may enter an infinite loop. Verbosity contains three 
verbosity levels which control the amount of information printed to the output during the search. 
The caller may pass as an argument any combination of the search property flags as well as one 
of the verbosity levels to the constructor of a particular search algorithm. 
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SearchAlg is an abstract class which is the base of all search algorithms and contains the follow-
ing members: 

• AllSolutions and SolutionIsState are two logical values which are relevant to all search 
algorithms. They provide easy access to two of the flags so that we do not have to mask 
the flags argument every time they are needed. 

• TerminalNodes: a list of the terminal nodes found during the search. 
• PropertiesText: a string representation of the search properties. 
• PrintLogEntry: prints the given text to the output if the verbosity level of the search algo-

rithm is greater than or equal to the given level. 
• PrintSolution: prints the solution taken as an argument to the output. 
• Search: an abstract method that does the actual work; it must be overridden by the con-

crete search algorithms. 

In addition to these members, BacktrackSearch and BranchAndBoundSearch also store the cur-
rent path as a stack of nodes, while GraphSearchAlg stores the open and closed nodes as lists of 
nodes. GraphSearchAlg also contains an abstract Expand method, which must be overridden by 
the concrete graph search algorithms. 

As an example, here is the listing of the DepthFirstSearch class (you can find the full listing in 
the Appendix): 
type DepthFirstSearch(initState, ?properties, ?verbosity) as this = 
    inherit GraphSearchAlg(defaultArg properties SearchProp.None, 
                           defaultArg verbosity Verbosity.Info) 
 
    let verbosity = defaultArg verbosity Verbosity.Info 
 
    do this.OpenNodes.Add(Node(initState)) 
 
    override this.Expand(node) = 
        State.Operators 
            |> Seq.filter (fun op -> node.State.PreCondition(op)) 
            |> Seq.iter (fun op -> 
                let newNode = Node(node, op) 
                if not (this.OpenNodes.Contains(newNode) || 
                        this.ClosedNodes.Contains(newNode)) then 
                    this.OpenNodes.Insert(0, newNode)) 
 
    override this.Search() = 
        this.PrintInfo() 
        if this.OpenNodes.Count > 0 then 
            let currNode = this.OpenNodes.[0] 
            if currNode.State.GoalState then 
                this.TerminalNodes.Add(currNode) 
                if this.AllSolutions then 
                    this.PrintLogEntry( Verbosity.Info, "Found a solution." ) 
                    this.OpenNodes.Remove(currNode) |> ignore 
                    this.ClosedNodes.Add(currNode) 
                    this.Search() 
            else 
                this.OpenNodes.Remove(currNode) |> ignore 
                this.ClosedNodes.Add(currNode) 
                this.Expand(currNode) 
                this.Search() 
 
    override this.ToString() = 
        if verbosity = Verbosity.None then 
            "" 
        else 
            "Searching using depth-first search.\n" 
                + this.PropertiesText 
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Let’s examine this code in a little more detail. First, we declare the class itself and an implicit 
constructor with three parameters: the initial state and the optional search properties and verbosity 
level. In the next line, the base class is given with a constructor call, which initializes the open 
and closed nodes as empty lists. The only operation the constructor does is that it adds the start 
node (representing the initial state) to the (empty) list of open nodes. 

After this, the abstract Expand method is overridden: it takes all the operators relevant to the 
problem, filters out those which are not applicable to the state represented by the node to be ex-
panded, and applies all the remaining operators to this state by calling the constructor of Node. If 
the resulting node is not in the database, it is then added to the beginning of the list of open nodes. 

The Search method is responsible for the control of the search algorithm. It is implemented here 
as a recursive function which terminates when there are no more open nodes left in the database. 
If there is at least one element in the list of open nodes, the first one is checked whether it is a 
goal state. If so, it is added to the list of terminal nodes. When we are searching for the first solu-
tion only, the algorithm terminates with just one terminal node, otherwise the current node is 
moved from the open nodes to the closed nodes, and the algorithm starts all over again. If the cur-
rent node is not a terminal node, it is expanded after turning it into a closed node. 

One difference between the C# and the F# versions of this code is in the Search method: the F# 
code uses tail recursion instead of a while loop. We can see a more conspicuous difference, how-
ever, in the Expand method: we get a more readable code using the forward pipe operator than 
using a conditional inside a foreach loop. 

A Specific Problem 
Of course, defining classes is not the area where we can get the most out of F#. We can gain 
much more if we implement a concrete problem with all the operator preconditions and applica-
tions. Let’s consider another well-known puzzle as a simple example problem: the Towers of Ha-
noi. Figure 3 shows the two classes representing the states and operators of this particular prob-
lem. 
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Figure 3: Classes representing a concrete problem. 

The only extra member in HanoiState is Discs, which is an array of pegs where each disc can be 
found. Move comes with two members in addition to the derived ones: Disc tells us which disc to 
move, while Peg is the destination peg. Here is the full listing of these two classes in F#: 
type Move(disc, peg) = 
    inherit Operator() 
    member this.Disc = disc 
    member this.Peg = peg 
 
    override this.ToString() = 
        sprintf "HanoiMove[ disc=%d, peg='%c' ]" disc peg 
 
    override this.Cost(_) = double disc 
 
type HanoiState() = 
    inherit State() 
 
    static let N = 3 
    let discs = Array.create N 'A' 
 
    static do 
        for disc in 1 .. N do 
            for peg in 'A' .. 'C' do 
                State.Operators.Add(Move(disc, peg)) |> ignore 
 
    member private this.Discs = discs 
 
    private new(parent : HanoiState) as this = 
        HanoiState() then 
            parent.Discs.CopyTo(this.Discs, 0) 
 
    override this.GoalState = 
        let rec allTheSame index = 
            index >= discs.Length - 1 
                || discs.[index] = discs.[index + 1] 
                && allTheSame (index + 1) 
        discs.[0] <> 'A' && allTheSame 0 
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    override this.PreCondition(op) = 
        match op with 
            | :? Move as move -> 
                let rec checkSmallerDiscs index = 
                    index >= move.Disc - 1 
                        || discs.[index] <> discs.[move.Disc - 1] 
                        && discs.[index] <> move.Peg 
                        && checkSmallerDiscs (index + 1) 
                checkSmallerDiscs 0 && discs.[move.Disc - 1] <> move.Peg 
            | _ -> 
                raise InvalidOperator 
 
    override this.Apply(op) = 
        match op with 
            | :? Move as move -> 
                let newState = HanoiState(this) 
                newState.Discs.[move.Disc - 1] <- move.Peg 
                newState :> State 
            | _ -> 
                raise InvalidOperator 
 
    override this.Equals(other) = 
        match other with 
            | :? HanoiState as otherHanoiState -> 
                this.Discs = otherHanoiState.Discs 
            | _ -> 
                false 
 
    override this.GetHashCode() = 
        hash discs 
     
    override this.ToString() = 
        let sb = System.Text.StringBuilder( "HanoiState[ discs=(" ) 
        for i in 0 .. N - 1 do 
            if i > 0 then 
                sb.Append(',') |> ignore 
            sb.Append(discs.[i]) |> ignore 
        sb.Append(") ]").ToString() 
 
    override this.Heuristic = 
        let value1 = ref N 
        let value2 = ref N 
        for peg in discs do 
            if peg = 'B' then 
                decr value1 
            elif peg = 'C' then 
                decr value2 
        double ( min !value1 !value2 ) 

The implementation of the Move operator is fairly straightforward. It has overridden the Cost 
method: the cost of moving a disc to another peg is proportional to its size, independently of the 
state to which the operator is applied. 

The HanoiState class defines a one-dimensional array of characters for storing the pegs of each 
disc. The size of this array is N which stands for the number of discs in the problem. The smaller 
the index of an array element, the smaller the disc it represents. This seems to be a very efficient 
representation with very little memory required for storing a state. 

The static constructor is responsible for creating all the possible operator instances and adding 
them to the static Operators property. The class has two constructors: the implicit constructor 
creates the initial state with each disc being on peg A, while the explicit constructor is actually a 
copy constructor, which creates a clone of the HanoiState object taken as a parameter. 

The GoalState property first makes sure that the smallest disc is not on peg A, then checks wheth-
er all the discs are on the same peg (with the help of a recursive function). The skeleton of the 
PreCondition and Apply methods are the same: they both go through all the possible operator 
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types (currently there is only one: Move) and throw an exception if the argument is an operator of 
an unknown type. The PreCondition function has to make sure that none of the discs smaller than 
the one to be moved are on the source or the destination pegs and that the disc to be moved is not 
on the destination peg. The Apply method is very simple: it copies the current state and replaces 
the peg of the disc to be moved with the one determined by the operator. Finally, the Heuristic 
property determines the number of discs not being on peg B and the same for peg C, and returns 
the smaller of the two numbers because at least that many moves are required to reach a goal 
state. 

There is not too much difference in code size between the C# and the F# versions of these two 
classes. The reason for this is the simplicity of the problem. The main difference is in the imple-
mentation of the GoalState property and the PreCondition method, both of which use recursion 
instead of loops in the F# version. With a more complex problem, we could see more improve-
ment in the code of these two members because these are the two areas where logical formulae 
appear in the state-space representation, which (and especially existential and universal quantifi-
cations) can be much more conveniently implemented in F# than in C#. 

Conclusion 
As you may have noticed, the presented code is not purely functional. According to our experi-
ence, the code will not be shorter or more readable if we insist on writing purely functional code, 
i.e., without any side effects. However, the teachers of Artificial Intelligence seminars may decide 
whether they want to show a purely functional code to the students or implement the same algo-
rithms using a little (or more) imperative code with just a little change in the existing code. That 
is why we think that F#, as a golden middle road between imperative and functional languages, 
seems to be a good alternative for presenting the AI search algorithms to the students. 

The instructors of the Artificial Intelligence seminars at the University of Debrecen have been 
using our Java and C# implementation of the presented class hierarchy for more than five years 
now. We hope that in the future, they can make use of its F# version, too. It may be a good choice 
especially for students participating in a graduate program, who have previously learnt functional 
programming. Unfortunately, the core subjects of our undergraduate programs lack a thorough 
discussion of functional programming; it is only mentioned to students majoring Software Infor-
mation Technology in the frame of the course High Level Programming Languages 2 without any 
practice. Later, they can take an optional course titled Programming Languages of Artificial Intel-
ligence, where they learn Clean, a purely functional language, but currently, there is no word 
about multi-paradigm languages. There is, however, a subject titled New Programming Para-
digms in our Software Information Technology graduate program, and students learn F# in its 
laboratories. The first real feedback about the presence of F# in our education is that an agile 
graduate student chose this language to create an application for her master’s thesis, which also 
includes some AI elements. 

We plan to create a purely functional but reusable (not problem-specific) implementation of the 
most used search algorithms in F# and maybe other functional languages, too. First, we can get 
rid of the classes which are not used as a type and have only one instance, such as 
DepthFirstSearch. Next, the abstract SearchAlg and GraphSearchAlg classes would be replaced 
by simple functions calling other functions taken as parameter values. Finally, classes that act as 
data structures can be substituted with built-in F# types such as records, tuples, or lists as well as 
functions operating on them. 
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Appendix. The F# Listing of the Full Class Hierarchy 
//StateSpace.fs 
namespace StateSpace 
 
open System.Collections.Generic 
 
type [<AbstractClass>] State() = 
    static let operators = HashSet< Operator >() 
    static member Operators = operators 
    abstract GoalState : bool 
    abstract PreCondition : Operator -> bool 
    abstract Apply : Operator -> State 
    abstract Heuristic : double 
    default this.Heuristic = 0.0 
 
and [<AbstractClass>] Operator() = 
    abstract Cost : State -> double 
    default this.Cost( _ ) = 1.0 
 
exception InvalidOperator 

//Node.fs 
namespace SearchAlg 
 
open System 
open System.Collections.Generic 
open StateSpace 
 
type Node = 
    val private state  : State 
    val private parent : Node option 
    val private oper   : Operator option 
    val private depth  : int 
 
    member this.State  = this.state 
    member this.Parent = this.parent 
    member this.Oper   = this.oper 
    member this.Depth  = this.depth 

http://hdl.handle.net/2437/97347
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    new( initState : State ) = 
        { state = initState; parent = None; oper = None; depth = 0 } 
     
    new( parent : Node, oper : Operator ) = 
        { state  = parent.state.Apply( oper ) 
          parent = Some parent 
          oper   = Some oper 
          depth  = parent.depth + 1 } 
     
    override this.Equals( other ) = 
        match other with 
            | :? Node as otherNode -> 
                this.state.Equals( otherNode.state ) 
            | _ -> 
                false 
     
    override this.GetHashCode() = 
        hash this.state 
     
    override this.ToString() = 
        let s = 
            sprintf "%s%O (depth=%d" 
                ( if this.oper = None then "" else this.oper.Value.ToString() + " => " ) 
                this.state this.depth 
        let heurProp = this.state.GetType().GetProperty( "Heuristic" ) 
        if heurProp.DeclaringType = heurProp.ReflectedType then 
            s + sprintf ", heuristic=%g)" this.state.Heuristic 
        else 
            s + ")" 
 
type NodeWithCost = 
    inherit Node 
 
    val private cost : double 
    member this.Cost = this.cost 
 
    new( initState : State ) = 
        { inherit Node( initState ); cost = 0.0 } 
 
    new( parent : NodeWithCost, oper : Operator ) = 
        { inherit Node( parent, oper ); 
          cost = parent.cost + oper.Cost( parent.State ) } 
 
    override this.ToString() = 
        base.ToString() + ", cost=" + this.cost.ToString() 

//SearchAlg.fs 
namespace SearchAlg 
 
open System 
open System.Collections.Generic 
 
[<Flags>] 
type SearchProp = 
    | None                = 0b00000000 
    | AllSolutionsFlag    = 0b00000001 
    | SolutionIsStateFlag = 0b00000010 
    | CycleCheckFlag      = 0b00000100 
 
type Verbosity = 
    | None  = 0 
    | Info  = 1 
    | Debug = 2 
 
[<AbstractClass>] 
type SearchAlg( ?properties, ?verbosity ) = 
    let properties = defaultArg properties SearchProp.None 
    let verbosity = defaultArg verbosity Verbosity.Info 
    let allSolutions = properties &&& SearchProp.AllSolutionsFlag <> SearchProp.None 
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    let solutionIsState = properties &&& SearchProp.SolutionIsStateFlag <> 
                              SearchProp.None 
    let terminalNodes = List< Node >() 
 
    member this.AllSolutions = allSolutions 
    member this.SolutionIsState = solutionIsState 
    member this.TerminalNodes = terminalNodes 
 
    abstract PropertiesText : string 
    default this.PropertiesText = 
        ( if allSolutions then 
              "Searching for all solutions.\n" 
          else 
              "Searching for the first solution.\n" ) + 
        ( if solutionIsState then 
              "The goal state is considered to be the solution.\n" 
          else 
              "The operator sequence leading to the goal state is the solution.\n" ) + 
        "Verbosity level: " + verbosity.ToString() + "\n" 
 
    member this.PrintLogEntry( minLevel, entry ) = 
        if verbosity >= minLevel then 
            printfn "%s" entry 
 
    member this.PrintSolution( terminal : Node option ) = 
        if solutionIsState then 
            try 
                printfn "%O" terminal.Value.State 
            with 
                :? NullReferenceException -> printfn "Null as a solution???" 
        else 
            if terminal.IsSome then 
                this.PrintSolution( terminal.Value.Parent ) 
                printfn "%O" terminal.Value 
 
    abstract Search : unit -> unit 

//Backtrack.fs 
namespace SearchAlg 
 
open System.Collections.Generic 
open StateSpace 
 
exception InvalidBound 
 
type BacktrackSearch( initState, ?properties, ?verbosity, ?depthBound ) = 
    inherit SearchAlg( defaultArg properties SearchProp.None, 
                       defaultArg verbosity Verbosity.Info ) 
 
    let properties = defaultArg properties SearchProp.None 
    let verbosity = defaultArg verbosity Verbosity.Info 
    let depthBound = defaultArg depthBound 0 
    let cycleCheck = properties &&& SearchProp.CycleCheckFlag <> SearchProp.None 
    let currPath = Stack< Node >() 
 
    do 
        if depthBound < 0 then 
            raise InvalidBound 
        currPath.Push( Node( initState ) ) 
 
    override this.PropertiesText = 
        base.PropertiesText + 
            ( if cycleCheck then 
                  "Cycle check is on.\n" 
              else 
                  "Cycle check is off.\n" ) + 
            ( if depthBound > 0 then 
                  "Depth bound: " + depthBound.ToString() + "\n" 
              else 
                  "Depth bound check is off.\n" ) 
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    override this.Search() = 
        let currNode = currPath.Peek() 
        let depthText = 
            if depthBound > 0 then 
                sprintf " (depth=%d)" currNode.Depth 
            else 
                "" 
        if currNode.State.GoalState then 
            this.PrintLogEntry( Verbosity.Debug, 
                sprintf "Current state: %O%s" currNode.State depthText ) 
            if not ( this.SolutionIsState && 
                this.TerminalNodes.Contains( currNode ) ) then 
                this.TerminalNodes.Add( currNode ) 
            if this.AllSolutions then 
                this.PrintLogEntry( Verbosity.Info, 
                    "Found a solution, backtracking." ) 
                currPath.Pop() |> ignore 
        elif depthBound > 0 && currNode.Depth = depthBound then 
            this.PrintLogEntry( Verbosity.Debug, 
                sprintf "Current state: %O%s" currNode.State depthText ) 
            this.PrintLogEntry( Verbosity.Info, 
                "Reached depth bound, backtracking." ) 
            currPath.Pop() |> ignore 
        else 
            State.Operators 
                |> Seq.filter ( fun op -> currNode.State.PreCondition( op ) ) 
                |> Seq.takeWhile ( fun _ -> 
                    this.AllSolutions || this.TerminalNodes.Count = 0 ) 
                |> Seq.iter ( fun op -> 
                    this.PrintLogEntry( Verbosity.Debug, 
                        sprintf "Current state: %O%s" currNode.State depthText ) 
                    this.PrintLogEntry( Verbosity.Debug, 
                        sprintf "Applying operator: %O" op ) 
                    let newNode = Node( currNode, op ) 
                    this.PrintLogEntry( Verbosity.Debug, 
                        sprintf "New state: %O" newNode.State ) 
                    if cycleCheck && currPath.Contains( newNode ) then 
                        this.PrintLogEntry( Verbosity.Info, "Found a cycle." ) 
                    else 
                        currPath.Push( newNode ) 
                        this.Search() ) 
            if this.AllSolutions || this.TerminalNodes.Count = 0 then 
                this.PrintLogEntry( Verbosity.Debug, 
                    sprintf "Current state: %O%s" currNode.State depthText ) 
                this.PrintLogEntry( Verbosity.Info, 
                    "No more applicable operators, backtracking." ) 
                currPath.Pop() |> ignore 
 
    override this.ToString() = 
        if verbosity = Verbosity.None then 
            "" 
        else 
            "Searching using backtracking.\n" + this.PropertiesText 
 
type BranchAndBoundSearch( initState, ?properties, ?verbosity, ?initBound ) = 
    inherit SearchAlg( defaultArg properties SearchProp.None, 
                       defaultArg verbosity Verbosity.Info ) 
 
    let properties = defaultArg properties SearchProp.None 
    let verbosity = defaultArg verbosity Verbosity.Info 
    let initBound = defaultArg initBound 0.0 
    let cycleCheck = properties &&& SearchProp.CycleCheckFlag <> SearchProp.None 
    let currPath = Stack< NodeWithCost >() 
 
    do currPath.Push( NodeWithCost( initState ) ) 
 
    override this.PropertiesText = 
        base.PropertiesText + 
            ( if cycleCheck then 
                  "Cycle check is on.\n" 



 Pánovics 

 371 

              else 
                  "Cycle check is off.\n" ) + 
            ( if initBound > 0.0 then 
                  "Initial cost bound: " + initBound.ToString() + "\n" 
              else 
                  "No initial cost bound.\n" ) 
 
    override this.Search() = 
        let rec search currBound = 
            let currNode = currPath.Peek() 
            if currNode.State.GoalState 
                && ( currBound <= 0.0 || currNode.Cost <= currBound ) then 
                this.PrintLogEntry( Verbosity.Debug, 
                    sprintf "Current state: %O, cost: %g" currNode.State currNode.Cost ) 
                this.PrintLogEntry( Verbosity.Info, 
                    sprintf "Found a solution with cost %g, backtracking." 
                    currNode.Cost ) 
                if currNode.Cost < currBound then 
                    this.PrintLogEntry( Verbosity.Info, 
                        sprintf "New cost bound: %g" currNode.Cost ) 
                    this.TerminalNodes.Clear() 
                if this.TerminalNodes.Count = 0 || this.AllSolutions && 
                    not ( this.SolutionIsState && 
                    this.TerminalNodes.Contains( currNode ) ) then 
                    this.TerminalNodes.Add( currNode ) 
                currPath.Pop() |> ignore 
                currNode.Cost 
            elif currBound > 0.0 && currNode.Cost >= currBound then 
                this.PrintLogEntry( Verbosity.Debug, 
                    sprintf "Current state: %O, cost: %g" currNode.State currNode.Cost ) 
                this.PrintLogEntry( Verbosity.Info, 
                    "Reached cost bound, backtracking." ) 
                currPath.Pop() |> ignore 
                currBound 
            else 
                let newBound = 
                    State.Operators 
                        |> Seq.filter ( fun op -> currNode.State.PreCondition( op ) ) 
                        |> Seq.fold ( fun bound op -> 
                            this.PrintLogEntry( Verbosity.Debug, 
                                sprintf "Current state: %O, cost: %g" 
                                    currNode.State currNode.Cost ) 
                            this.PrintLogEntry( Verbosity.Debug, 
                                sprintf "Applying operator: %O" op ) 
                            let newNode = NodeWithCost( currNode, op ) 
                            this.PrintLogEntry( Verbosity.Debug, 
                                sprintf "New state: %O" newNode.State ) 
                            if cycleCheck && currPath.Contains( newNode ) then 
                                this.PrintLogEntry( Verbosity.Info, "Found a cycle." ) 
                                bound 
                            else 
                                currPath.Push( newNode ) 
                                search bound ) currBound 
                this.PrintLogEntry( Verbosity.Debug, 
                    sprintf "Current state: %O, cost: %g" currNode.State currNode.Cost ) 
                this.PrintLogEntry( Verbosity.Info, 
                    "No more applicable operators, backtracking." ) 
                currPath.Pop() |> ignore 
                newBound 
 
        this.PrintLogEntry( Verbosity.Debug, sprintf "Initial cost bound: %g" initBound ) 
        search initBound |> ignore 
 
    override this.ToString() = 
        if verbosity = Verbosity.None then 
            "" 
        else 
            "Searching using branch and bound algorithm.\n" + this.PropertiesText 
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//GraphSearchAlg.fs 
namespace SearchAlg 
 
open System.Collections.Generic 
open StateSpace 
 
[<AbstractClass>] 
type GraphSearchAlg( ?properties, ?verbosity ) = 
    inherit SearchAlg( defaultArg properties SearchProp.None, 
                       defaultArg verbosity Verbosity.Info ) 
 
    let verbosity = defaultArg verbosity Verbosity.Info 
    let openNodes = List< Node >() 
    let closedNodes = List< Node >() 
 
    member this.OpenNodes = openNodes 
    member this.ClosedNodes = closedNodes 
 
    member this.PrintInfo() = 
        let printNodesCount () = 
            printfn "Open nodes: %d, closed nodes: %d." this.OpenNodes.Count 
                this.ClosedNodes.Count 
 
        let printDatabase () = 
            printfn "Open nodes:" 
            for node in openNodes do 
                printfn "%O" node 
            printfn "Closed nodes:" 
            for node in closedNodes do 
                printfn "%O" node 
            printfn "" 
 
        if verbosity = Verbosity.Info then 
            printNodesCount () 
        elif verbosity = Verbosity.Debug then 
            printDatabase () 
 
    abstract Expand : Node -> unit 
 
type BreadthFirstSearch( initState, ?properties, ?verbosity ) as this = 
    inherit GraphSearchAlg( defaultArg properties SearchProp.None, 
                            defaultArg verbosity Verbosity.Info ) 
 
    let verbosity = defaultArg verbosity Verbosity.Info 
 
    do this.OpenNodes.Add( Node( initState ) ) 
 
    override this.Expand( node ) = 
        State.Operators 
            |> Seq.filter ( fun op -> node.State.PreCondition( op ) ) 
            |> Seq.iter ( fun op -> 
                let newNode = Node( node, op ) 
                if not ( this.OpenNodes.Contains( newNode ) || 
                         this.ClosedNodes.Contains( newNode ) ) then 
                    this.OpenNodes.Add( newNode ) ) 
 
    override this.Search() = 
        this.PrintInfo() 
        if this.OpenNodes.Count > 0 then 
            let currNode = this.OpenNodes.[ 0 ] 
            if currNode.State.GoalState then 
                this.TerminalNodes.Add( currNode ) 
                if this.AllSolutions then 
                    this.PrintLogEntry( Verbosity.Info, "Found a solution." ) 
                    this.OpenNodes.Remove( currNode ) |> ignore 
                    this.ClosedNodes.Add( currNode ) 
                    this.Search() 
            else 
                this.OpenNodes.Remove( currNode ) |> ignore 
                this.ClosedNodes.Add( currNode ) 
                this.Expand( currNode ) 
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                this.Search() 
 
    override this.ToString() = 
        if verbosity = Verbosity.None then 
            "" 
        else 
            "Searching using breadth-first search.\n" + this.PropertiesText 
 
type DepthFirstSearch( initState, ?properties, ?verbosity ) as this = 
    inherit GraphSearchAlg( defaultArg properties SearchProp.None, 
                            defaultArg verbosity Verbosity.Info ) 
 
    let verbosity = defaultArg verbosity Verbosity.Info 
 
    do this.OpenNodes.Add( Node( initState ) ) 
 
    override this.Expand( node ) = 
        State.Operators 
            |> Seq.filter ( fun op -> node.State.PreCondition( op ) ) 
            |> Seq.iter ( fun op -> 
                let newNode = Node( node, op ) 
                if not ( this.OpenNodes.Contains( newNode ) || 
                         this.ClosedNodes.Contains( newNode ) ) then 
                    this.OpenNodes.Insert( 0, newNode ) ) 
 
    override this.Search() = 
        this.PrintInfo() 
        if this.OpenNodes.Count > 0 then 
            let currNode = this.OpenNodes.[ 0 ] 
            if currNode.State.GoalState then 
                this.TerminalNodes.Add( currNode ) 
                if this.AllSolutions then 
                    this.PrintLogEntry( Verbosity.Info, "Found a solution." ) 
                    this.OpenNodes.Remove( currNode ) |> ignore 
                    this.ClosedNodes.Add( currNode ) 
                    this.Search() 
            else 
                this.OpenNodes.Remove( currNode ) |> ignore 
                this.ClosedNodes.Add( currNode ) 
                this.Expand( currNode ) 
                this.Search() 
 
    override this.ToString() = 
        if verbosity = Verbosity.None then 
            "" 
        else 
            "Searching using depth-first search.\n" + this.PropertiesText 
 
type DijkstraSearch( initState, ?properties, ?verbosity ) as this = 
    inherit GraphSearchAlg( defaultArg properties SearchProp.None, 
                            defaultArg verbosity Verbosity.Info ) 
 
    let verbosity = defaultArg verbosity Verbosity.Info 
 
    do this.OpenNodes.Add( NodeWithCost( initState ) ) 
 
    override this.Expand( node ) = 
        State.Operators 
            |> Seq.filter ( fun op -> node.State.PreCondition( op ) ) 
            |> Seq.iter ( fun op -> 
                let newNode = NodeWithCost( node :?> NodeWithCost, op ) 
                let index = this.OpenNodes.IndexOf( newNode ) 
                if index <> -1 then 
                    let oldNode = this.OpenNodes.[ index ] :?> NodeWithCost 
                    if newNode.Cost < oldNode.Cost then 
                        this.OpenNodes.Remove( oldNode ) |> ignore 
                        this.OpenNodes.Add( newNode ) 
                elif not ( this.ClosedNodes.Contains( newNode ) ) then 
                    this.OpenNodes.Add( newNode ) ) 
 
    override this.Search() = 
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        this.PrintInfo() 
        if this.OpenNodes.Count > 0 then 
            let currNode = this.OpenNodes.[ 0 ] :?> NodeWithCost 
            if not ( this.TerminalNodes.Count > 0 && 
                currNode.Cost > ( this.TerminalNodes.[ 0 ] :?> NodeWithCost ).Cost ) then 
                if currNode.State.GoalState then 
                    this.TerminalNodes.Add( currNode ) 
                    if this.AllSolutions then 
                        this.PrintLogEntry( Verbosity.Info, "Found a solution." ) 
                        this.OpenNodes.Remove( currNode ) |> ignore 
                        this.ClosedNodes.Add( currNode ) 
                        this.Search() 
                else 
                    this.OpenNodes.Remove( currNode ) |> ignore 
                    this.ClosedNodes.Add( currNode ) 
                    this.Expand( currNode ) 
                    this.OpenNodes.Sort( 
                        { new IComparer< Node > with 
                            member this.Compare( n1, n2 ) = 
                                ( n1 :?> NodeWithCost ).Cost.CompareTo( 
                                    ( n2 :?> NodeWithCost ).Cost ) } ) 
                    this.Search() 
 
    override this.ToString() = 
        if verbosity = Verbosity.None then 
            "" 
        else 
            "Searching using Dijkstra's algorithm.\n" + this.PropertiesText 
 
type BestFirstSearch( initState, ?properties, ?verbosity ) as this = 
    inherit GraphSearchAlg( defaultArg properties SearchProp.None, 
                            defaultArg verbosity Verbosity.Info ) 
 
    let verbosity = defaultArg verbosity Verbosity.Info 
 
    do this.OpenNodes.Add( Node( initState ) ) 
 
    override this.Expand( node ) = 
        State.Operators 
            |> Seq.filter ( fun op -> node.State.PreCondition( op ) ) 
            |> Seq.iter ( fun op -> 
                let newNode = Node( node, op ) 
                if not ( this.OpenNodes.Contains( newNode ) || 
                         this.ClosedNodes.Contains( newNode ) ) then 
                    this.OpenNodes.Add( newNode ) ) 
 
    override this.Search() = 
        this.PrintInfo() 
        if this.OpenNodes.Count > 0 then 
            let currNode = this.OpenNodes.[ 0 ] 
            if currNode.State.GoalState then 
                this.TerminalNodes.Add( currNode ) 
                if this.AllSolutions then 
                    this.PrintLogEntry( Verbosity.Info, "Found a solution." ) 
                    this.OpenNodes.Remove( currNode ) |> ignore 
                    this.ClosedNodes.Add( currNode ) 
                    this.Search() 
            else 
                this.OpenNodes.Remove( currNode ) |> ignore 
                this.ClosedNodes.Add( currNode ) 
                this.Expand( currNode ) 
                this.OpenNodes.Sort( 
                    { new IComparer< Node > with 
                        member this.Compare( n1, n2 ) = 
                            n1.State.Heuristic.CompareTo( n2.State.Heuristic ) } ) 
                this.Search() 
 
    override this.ToString() = 
        if verbosity = Verbosity.None then 
            "" 
        else 
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            "Searching using best-first search.\n" + this.PropertiesText 
 
type AAlgorithm( initState, ?properties, ?verbosity ) as this = 
    inherit GraphSearchAlg( defaultArg properties SearchProp.None, 
                            defaultArg verbosity Verbosity.Info ) 
 
    let verbosity = defaultArg verbosity Verbosity.Info 
 
    do this.OpenNodes.Add( NodeWithCost( initState ) ) 
 
    override this.Expand( node ) = 
        State.Operators 
            |> Seq.filter ( fun op -> node.State.PreCondition( op ) ) 
            |> Seq.iter ( fun op -> 
                let newNode = NodeWithCost( node :?> NodeWithCost, op ) 
                let index = this.OpenNodes.IndexOf( newNode ) 
                if index <> -1 then 
                    let oldNode = this.OpenNodes.[ index ] :?> NodeWithCost 
                    if newNode.Cost < oldNode.Cost then 
                        this.OpenNodes.Remove( oldNode ) |> ignore 
                        this.OpenNodes.Add( newNode ) 
                else 
                    let index = this.ClosedNodes.IndexOf( newNode ) 
                    if index <> -1 then 
                        let oldNode = this.ClosedNodes.[ index ] :?> NodeWithCost 
                        if newNode.Cost < oldNode.Cost then 
                            this.ClosedNodes.Remove( oldNode ) |> ignore 
                            this.OpenNodes.Add( newNode ) 
                    else 
                        this.OpenNodes.Add( newNode ) ) 
 
    override this.Search() = 
        this.PrintInfo() 
        if this.OpenNodes.Count > 0 then 
            let currNode = this.OpenNodes.[ 0 ] :?> NodeWithCost 
            if currNode.State.GoalState then 
                this.TerminalNodes.Add( currNode ) 
                if this.AllSolutions then 
                    this.PrintLogEntry( Verbosity.Info, "Found a solution." ) 
                    this.OpenNodes.Remove( currNode ) |> ignore 
                    this.ClosedNodes.Add( currNode ) 
                    this.Search() 
            else 
                this.OpenNodes.Remove( currNode ) |> ignore 
                this.ClosedNodes.Add( currNode ) 
                this.Expand( currNode ) 
                this.OpenNodes.Sort( 
                    { new IComparer< Node > with 
                        member this.Compare( n1, n2 ) = 
                            let f1 = ( n1 :?> NodeWithCost ).Cost + n1.State.Heuristic 
                            let f2 = ( n2 :?> NodeWithCost ).Cost + n2.State.Heuristic 
                            f1.CompareTo( f2 ) } ) 
                this.Search() 
 
    override this.ToString() = 
        if verbosity = Verbosity.None then 
            "" 
        else 
            "Searching using the A algorithm.\n" + this.PropertiesText 
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