
Journal of Information Technology Education: Volume 11, 2012
Innovations in Practice

Editor: Keith Willoughby

A Functional Programming Approach
to AI Search Algorithms

János Pánovics
Department of Information Technology,

University of Debrecen, Debrecen, Hungary

panovics.janos@inf.unideb.hu

Executive Summary
The theory and practice of search algorithms related to state-space represented problems form the
major part of the introductory course of Artificial Intelligence at most of the universities and col-
leges offering a degree in the area of computer science. Students usually meet these algorithms
only in some imperative or object-oriented language (e.g., Java or C#) during the seminars. In this
paper, we introduce a new approach for presenting these algorithms to the students, which is pro-
gramming them in a functional style using the F# programming language.

A couple of years ago, we created a Java class hierarchy for use in our Artificial Intelligence sem-
inars. This well-organized set of classes helps students better understand the operation of the var-
ious search algorithms. Since some parts of these algorithms can be more conveniently imple-
mented using a functional approach, we present here the F# implementation of the same class
hierarchy. F# proved to be a good choice of programming language because of its multi-paradigm
nature. This way, the classes themselves were easy to adopt, and the instructors of the seminars
may decide how much of the code they want to rewrite in a functional manner. Functional pro-
gramming can provide tremendous benefit during the implementation of methods containing log-
ical formulae in their bodies, such as the precondition of an operator. In summary, the power of
F# lies not in the fact that it is a functional programming language, but that the developer can se-
lect the programming paradigm they want to use in different parts of the program.

In the future, we would like to create a purely functional implementation of the main search algo-
rithms with as much reusable code as possible.

Keywords: artificial intelligence, search algorithms, functional programming, F#, class hierarchy.

Introduction
Until recently, programming was about using pure, single-paradigm techniques. However, nowa-
days programming languages tend to converge to one another, i.e., functional features are appear-

ing in imperative languages and vice
versa. There are a couple of domains of
computation in which solutions to prob-
lems can be expressed in a more suc-
cinct way if we use functional pro-
gramming compared to using purely
imperative or object-oriented tools. We
believe that artificial intelligence and
search algorithms, in particular, are such
domains because some substantial parts
of these algorithms (like, for example,

Material published as part of this publication, either on-line or
in print, is copyrighted by the Informing Science Institute.
Permission to make digital or paper copy of part or all of these
works for personal or classroom use is granted without fee
provided that the copies are not made or distributed for profit
or commercial advantage AND that copies 1) bear this notice
in full and 2) give the full citation on the first page. It is per-
missible to abstract these works so long as credit is given. To
copy in all other cases or to republish or to post on a server or
to redistribute to lists requires specific permission and payment
of a fee. Contact Publisher@InformingScience.org to request
redistribution permission.

mailto:panovics.janos@inf.unideb.hu
mailto:Publisher@InformingScience.org

A Functional Programming Approach to AI Search Algorithms

354

checking operator preconditions) are essentially functional. There have been numerous publica-
tions in this field (e.g., King & Launchbury, 1995).

Teaching search algorithms to our students is a great pedagogical challenge. At our university,
they first meet artificial intelligence in the frame of the course Introduction to Artificial Intelli-
gence, which is one of the core subjects of our three main undergraduate programs, Software In-
formation Technology, Business Information Technology, and Engineering Information Technol-
ogy. In the lectures, the pseudocode of these algorithms is presented, together with some exam-
ples, but this is not always enough for students to understand what is going on behind the scenes.
In the seminars, the instructors show the same algorithms written in a high-level programming
language, which used to be Pascal and C, but nowadays we use Java and C#. However, the high-
level language code is merely another representation of the pseudocode, so students with little
programming background do not find it useful in understanding the operation of the algorithms.
The idea is that we should try presenting the search algorithms also by using a very different ap-
proach, namely functional programming. A functional program can hide the unimportant steps of
searching and focuses only on the problem itself. It may be useful even if students do not have
any former knowledge of functional programming, because a functional program is just another
way for describing a problem, and not for solving it (although the problem description usually
incorporates also at least parts of the solution).

When object-oriented languages were introduced to the curricula of most of our undergraduate
programs, we created a Java (and later C#) class hierarchy, which has been used since then in our
Artificial Intelligence seminars. Since F# is a multi-paradigm language, i.e., it combines impera-
tive (object-oriented) and declarative (functional) programming techniques, it can be convenient-
ly used to convert our existing Java and C# implementations of AI search algorithms into a partly
functional implementation. We hope that this modified implementation of the class hierarchy will
help our students better understand the concepts behind the scenes.

Imperative versus Functional Programming
Let’s first have a look at the major differences between imperative (procedural) and functional
programming paradigms, the latter of which being actually a special case of declarative (non-
procedural) programming.

• With an imperative approach, the programmer writes step by step how a particular prob-
lem can be solved. In contrast, using a functional approach, the programmer only declares
what the problem is by decomposing it to simple function calls.

• The state of an imperative program is an important factor, whereas a purely functional
program does not have states, because it uses only immutable data.

• Because of stateless programming, the execution of a purely functional program does not
have side effects. This also implies that the order in which the expressions are evaluated
is not important. The program will yield the same output on the same input in any evalua-
tion order. This is called referential transparency.

• The main building blocks of an imperative program are statements, while a functional
program consists almost exclusively of expressions. Some basic control structures (such
as conditionals or loops), which are statements in an imperative language, may also ap-
pear in functional programs but only as expressions.

• Unlike in imperative programming, recursion plays a significant role in functional pro-
gramming.

 Pánovics

 355

Benefits of Functional Programming
Ever since the first programming language was invented, developers have been using mostly im-
perative languages. This is because functional programming style requires a special, sometimes
mind-bending way of thinking about things. There are, however, a lot of benefits to the functional
way. In most cases, it requires much less and clearer code to achieve the same result than impera-
tive programming because of language constructs of a higher abstraction level. Less code also
means less chance of errors, less testing, and, due to this, more productivity. Functional programs
are less error-prone, can be more easily parallelized, and they can be developed in a shorter time.
Because of these advantages, functional programming is becoming more and more popular now-
adays; even the software industry is looking for more and more programmers with expertise in
functional programming. Also, today it usually occurs in the curricula of graduate (and some-
times also undergraduate) programs in higher education.

Functional Programming in Teaching Artificial Intelligence
Besides coding in an object-oriented language, we propose using also the functional approach for
programming the solutions to state-space represented problems that students meet during the
courses for the following reasons:

• These are complex problems. We do not teach programming in the frame of this course
anymore; instead, we teach how the previously learned programming knowledge can be
combined with the theory of search algorithms. The more complex a problem is, the more
elegantly it can be implemented using functional programming.

• Some parts of the AI search algorithms are functional by their very nature. The source
code of these parts simply looks better in a functional language.

• It is worth implementing a couple of problems and search algorithms with both para-
digms so that students can see the difference between them. Later they can decide which
approach to use in their homework or during a test.

• Functional programming is an exciting challenge for the students, and challenge can be a
great motivating force. They prefer dealing with challenging problems even if those prob-
lems are difficult or abstract.

As a proof of the succinctness of a functional program solving an AI problem, we present a short
C code and a purely functional F# code of the solution to the well-known n-queens puzzle. Here
is the C code first:
#include <stdio.h>
#include <stdlib.h>

typedef enum {FALSE, TRUE} BOOL;

#define N 8

int board[N + 1];

void print_array()
{
 int i;
 for (i = 1; i <= N; ++i)
 printf("%d ", board[i]);
 putchar('\n');
}

BOOL conflicting(int col, int row)
{
 int i;
 for (i = 1; i < col; ++i)
 if (board[i] == row || col - i == abs(row - board[i]))

A Functional Programming Approach to AI Search Algorithms

356

 return TRUE;
 return FALSE;
}

void find_solutions(int col)
{
 static int num = 0;
 if (col > N)
 {
 printf("Solution #%02d: ", ++num);
 print_array();
 }
 else
 {
 int row;
 for (row = 1; row <= N; ++row)
 if (!conflicting(col, row))
 {
 board[col] = row;
 find_solutions(col + 1);
 }
 }
}

int main()
{
 find_solutions(1);
 return EXIT_SUCCESS;
}

And here is the F# code:
let N = 8

let conflicting col row (queen : int list) =
 let rec checkCol c =
 let r = queen.[c]
 c < col && (r = row || col - c = abs (row – r) || checkCol (c + 1))
 checkCol 0

let nextCol col newSolutions solution =
 seq {1 .. N}
 |> Seq.filter (fun row -> not (conflicting col row solution))
 |> Seq.fold (fun solutions row -> solutions @ [solution @ [row]]) newSolutions

let rec findSolutions col allSolutions =
 if col = N then
 allSolutions
 else
 findSolutions (col + 1) (allSolutions |> List.fold (nextCol col) [])

findSolutions 0 [[]]
 |> List.iteri (fun i solution -> printfn "Solution #%02d: %A" (i + 1) solution)

Both programs find the 92 possible solutions to the 8-queens problem, although they are not fully
equivalent. The C code uses recursive backtracking, while the F# code is more like an optimized
recursive breadth-first search, in which most of the work is done by built-in functions such as
Seq.fold.

The C code works the following way: It takes a one-dimensional array of N elements (actually
N+1 so we do not have to bother with the zero index), and calls the recursive function
find_solutions, which tries to find an appropriate (non-conflicting) row for a queen in the next
column of the table in a for loop. The index of the next column is stored in col, which is 1 at the
beginning. If there is no such row, a backtracking is performed, i.e., find_solutions returns to its
previous instance in the call stack (where the value of col was one less than its current value), and
so it tries to find the next good row in the previous column inside the for loop. While we can find
a good place for a queen in the current column, we continue calling find_solutions with an incre-

 Pánovics

 357

mented col value. When col reaches N+1, all N queens have been placed on the table, i.e., a solu-
tion is found. We print the solution, and continue with the search by backtracking (i.e., returning
to the previous function in the call stack) until we return to the main function, which means that a
backtracking was performed from the initial state.

The F# code uses a list of lists to store all the solutions. Each of the inner lists will finally contain
N numbers with the row values for each column just like the array in the C version. At the begin-
ning, we start with a one-element list of an empty list ([[]]), and then try to place a queen to all
the possible rows in the column indicated by col. For example, when col is 0 and allSolutions is
[[]], the result of the expression allSolutions |> List.fold (nextCol col) [] will
be a list of 8 one-element list containing the numbers 1 to 8: [[1], [2], [3], ...]. After
this, the findSolutions function is called recursively with an incremented col value, which results
in a list containing only 2-element lists with all the possible layouts of two queens in two col-
umns. This is repeated until col reaches N, when the resulting list will contain all possible solu-
tions.

Of course, we could also have written here the recursive breadth-first search in C. The reason we
chose backtracking instead is that it is much shorter because in backtracking, we only have to
store the current path, and it is done for us by the call stack of the find_solutions function. In
breadth-first search, however, we would have to keep track of the partial solutions (those in
which one less columns are already filled than we are currently dealing with), which would re-
quire us to handle some kind of data structure (a linked list, for example). The F# version does
this with the built-in list data type. Just for comparison, here is the C# implementation of the re-
cursive breadth-first search, which resembles the most to the F# program (C# also has a built-in
List data type):
using System;
using System.Text;
using System.Collections.Generic;

class Board
{
 public static int N = 8;

 private int[] board;
 private int col;

 public Board()
 {
 board = new int[N + 1];
 col = 1;
 }

 public Board(Board parent, int row)
 {
 board = (int[])parent.board.Clone();
 board[parent.col] = row;
 col = parent.col + 1;
 }

 public bool Conflicting(int row)
 {
 for (int i = 1; i < col; ++i)
 if (board[i] == row || col - i == Math.Abs(row - board[i]))
 return true;
 return false;
 }

 public override string ToString()
 {
 StringBuilder sb = new StringBuilder();
 for (int i = 1; i <= N; ++i)
 sb.Append(board[i] + " ");

A Functional Programming Approach to AI Search Algorithms

358

 return sb.ToString();
 }
}

class Program
{
 static List<Board> findSolutions(int col, List<Board> allSolutions)
 {
 if (col > Board.N)
 return allSolutions;
 List<Board> newSolutions = new List<Board>();
 foreach (Board solution in allSolutions)
 for (int row = 1; row <= Board.N; ++row)
 if (!solution.Conflicting(row))
 newSolutions.Add(new Board(solution, row));
 return findSolutions(col + 1, newSolutions);
 }

 static void Main()
 {
 int num = 0;
 List<Board> initialList = new List<Board>();
 initialList.Add(new Board());
 foreach (Board solution in findSolutions(1, initialList))
 Console.WriteLine("Solution #{0:00}: {1}", ++num, solution);
 }
}

As you can see, the C# code is still much longer and, in my opinion, less expressive than the F#
version of the very same algorithm.

Search Algorithms in Different Programming Languages
The first implementations of AI search algorithms were programmed using the first popular high-
level imperative programming language, Fortran, and the first functional programming language,
IPL. The General Problem Solver, created in 1959, was able to solve theoretically any formalized
symbolic problems (Newell, Shaw, & Simon, 1959). Later, as newer and newer imperative pro-
gramming languages (such as C or Pascal) dominated business computing, search algorithms
were rewritten in a number of imperative languages. With the appearance of object-oriented para-
digm, programmers had the possibility to easily create more abstract and general implementations
of these algorithms.

Meanwhile, functional programming languages were undergoing vigorous development, too.
Lisp, for example, was invented in 1958, and its variants (Common Lisp, Scheme, and Clojure
among others) are still in use today. As an example, there is a Lisp implementation for solving the
“farmer, wolf, goat, and cabbage problem” in Luger and Stubblefield (2009).

Prolog, designed specifically for logic programming in 1972, is a natural choice when it comes to
programming AI search algorithms. If we would like to create the most concise implementation,
we should use Prolog.

Why F#?
The problem with imperative languages lies in their verboseness. Even a very simple algorithm
can take a lot of lines of code to implement. On the other hand, functional and logic programming
languages require programmers to acquire a very special way of thinking about things, which
may be appropriate for some sorts of real-world problems, but is unnatural for most problems.
We think the solution is using multi-paradigm programming languages, like D, Python, C#, or F#.
As we previously mentioned, modern imperative and object-oriented programming languages
include some functional features. This way, developers may choose to do some kinds of computa-
tion functionally instead of the “traditional way.” A good example to this is LINQ in C#.

 Pánovics

 359

F# is basically a functional language extended with imperative and object-oriented features for
.NET interoperability. The programmer may write a program purely functionally, partly impera-
tively, using object-oriented tools, such as classes and objects, or by mixing any or all of these
techniques (Petricek & Skeet, 2010; Syme, Granicz, & Cisternino, 2010). In F#, programmers
may use object states, and this way we do not have to write mystic code, for example, for han-
dling complex data structures. Another drawback of pure functional programming is the ineffi-
ciency of the executable code: copying data requires more memory and more runtime than just
performing a small modification of existing data. Additionally, F# can help students realize that
no single programming paradigm is best for everything. These are the reasons why F# seemed to
be a good choice to implement the search algorithms, which we already had at our disposal in
Java and C# (Kósa, 2009; Kósa & Pánovics, 2007).

A Class Hierarchy for Search Algorithms
Next, we present the class hierarchy that contains all the classes needed to implement various
search algorithms for an arbitrary state-space represented problem. Figure 1 shows two abstract
classes for the state-space representation itself (State and Operator) as well as a couple of Node
classes, which represent the graph nodes used by the search algorithms.

Figure 1: Classes representing the state-space and the graph nodes.

A Functional Programming Approach to AI Search Algorithms

360

State is used as a base class for the classes representing the states of concrete problems, while the
Operator class serves as a base class for the concrete operators, which transform our problem
from one state to another. The members of these classes are the following:

• Operators: the set of all operators relevant to the problem.
• GoalState: true if the current state is a goal state.
• PreCondition: true if the argument operator is applicable to the current state.
• Apply: applies the argument operator to the current state and returns the resulting state.
• Heuristic: a heuristic value that is an estimation of the cost of reaching the nearest goal

state from the current state.
• Cost: the cost of applying the current operator to the argument state.

Here is the F# code which defines these two classes:
type [<AbstractClass>] State() =
 static let operators = HashSet<Operator>()
 static member Operators = operators
 abstract GoalState : bool
 abstract PreCondition : Operator -> bool
 abstract Apply : Operator -> State
 abstract Heuristic : double
 default this.Heuristic = 0.0

and [<AbstractClass>] Operator() =
 abstract Cost : State -> double
 default this.Cost(_) = 1.0

As you can see, there is a default implementation of the Heuristic property so that we can use
heuristic search algorithms (e.g., best-first search) even with states which do not override this
property. Similarly, we gave a default implementation for the Cost method of the Operator class,
this way ensuring that any operator may participate in a cost-based search (e.g., Dijkstra’s algo-
rithm; Dijkstra, 1959).

The four Node classes contain the following important members:

• State: the state represented by the node.
• Parent: the node to which an operator was applied to reach the current node.
• Oper: the operator that was applied to the parent node.
• Depth: the current node’s depth in the spanning tree of the graph.
• Cost: the total cost of reaching the current node from the start node.
• OperatorsToTry: a list of operators applicable to the current node and not tried yet.

Node is used with non-cost-based graph search algorithms (e.g., breadth-first search),
NodeWithCost is used with cost-based graph search algorithms (e.g., A algorithm),
BacktrackNode is used with backtracking, and BacktrackNodeWithCost is used with the branch-
and-bound algorithm. The latter two classes are actually used only in the C# version, which itera-
tively traverses the OperatorsToTry list. In contrast, the F# program uses recursion to go through
the applicable operators (see the Appendix for details), so there is no need to explicitly store them
in a list, and that is why there is no need for the BacktrackNode and BacktrackNodeWithCost
classes, either.

Figure 2 shows another part of the UML class diagram which contains the classes representing
some of the search algorithms and their relations to other classes.

 Pánovics

 361

Figure 2: Classes representing some search algorithms.

Here you can see two enumeration types. SearchProp contains some flags which control the op-
eration of the search algorithms. If AllSolutionsFlag is set, the algorithm will search for all solu-
tions, otherwise it will stop when the first solution is found. If SolutionIsStateFlag is set, the algo-
rithm considers the goal state as the solution, otherwise the solution is considered to be the opera-
tor sequence leading from the initial state to the goal state. CycleCheckFlag is used only with
backtracking and branch-and-bound search. If it is set, the algorithm will check for cycles in the
current path during the search, otherwise it may enter an infinite loop. Verbosity contains three
verbosity levels which control the amount of information printed to the output during the search.
The caller may pass as an argument any combination of the search property flags as well as one
of the verbosity levels to the constructor of a particular search algorithm.

A Functional Programming Approach to AI Search Algorithms

362

SearchAlg is an abstract class which is the base of all search algorithms and contains the follow-
ing members:

• AllSolutions and SolutionIsState are two logical values which are relevant to all search
algorithms. They provide easy access to two of the flags so that we do not have to mask
the flags argument every time they are needed.

• TerminalNodes: a list of the terminal nodes found during the search.
• PropertiesText: a string representation of the search properties.
• PrintLogEntry: prints the given text to the output if the verbosity level of the search algo-

rithm is greater than or equal to the given level.
• PrintSolution: prints the solution taken as an argument to the output.
• Search: an abstract method that does the actual work; it must be overridden by the con-

crete search algorithms.

In addition to these members, BacktrackSearch and BranchAndBoundSearch also store the cur-
rent path as a stack of nodes, while GraphSearchAlg stores the open and closed nodes as lists of
nodes. GraphSearchAlg also contains an abstract Expand method, which must be overridden by
the concrete graph search algorithms.

As an example, here is the listing of the DepthFirstSearch class (you can find the full listing in
the Appendix):
type DepthFirstSearch(initState, ?properties, ?verbosity) as this =
 inherit GraphSearchAlg(defaultArg properties SearchProp.None,
 defaultArg verbosity Verbosity.Info)

 let verbosity = defaultArg verbosity Verbosity.Info

 do this.OpenNodes.Add(Node(initState))

 override this.Expand(node) =
 State.Operators
 |> Seq.filter (fun op -> node.State.PreCondition(op))
 |> Seq.iter (fun op ->
 let newNode = Node(node, op)
 if not (this.OpenNodes.Contains(newNode) ||
 this.ClosedNodes.Contains(newNode)) then
 this.OpenNodes.Insert(0, newNode))

 override this.Search() =
 this.PrintInfo()
 if this.OpenNodes.Count > 0 then
 let currNode = this.OpenNodes.[0]
 if currNode.State.GoalState then
 this.TerminalNodes.Add(currNode)
 if this.AllSolutions then
 this.PrintLogEntry(Verbosity.Info, "Found a solution.")
 this.OpenNodes.Remove(currNode) |> ignore
 this.ClosedNodes.Add(currNode)
 this.Search()
 else
 this.OpenNodes.Remove(currNode) |> ignore
 this.ClosedNodes.Add(currNode)
 this.Expand(currNode)
 this.Search()

 override this.ToString() =
 if verbosity = Verbosity.None then
 ""
 else
 "Searching using depth-first search.\n"
 + this.PropertiesText

 Pánovics

 363

Let’s examine this code in a little more detail. First, we declare the class itself and an implicit
constructor with three parameters: the initial state and the optional search properties and verbosity
level. In the next line, the base class is given with a constructor call, which initializes the open
and closed nodes as empty lists. The only operation the constructor does is that it adds the start
node (representing the initial state) to the (empty) list of open nodes.

After this, the abstract Expand method is overridden: it takes all the operators relevant to the
problem, filters out those which are not applicable to the state represented by the node to be ex-
panded, and applies all the remaining operators to this state by calling the constructor of Node. If
the resulting node is not in the database, it is then added to the beginning of the list of open nodes.

The Search method is responsible for the control of the search algorithm. It is implemented here
as a recursive function which terminates when there are no more open nodes left in the database.
If there is at least one element in the list of open nodes, the first one is checked whether it is a
goal state. If so, it is added to the list of terminal nodes. When we are searching for the first solu-
tion only, the algorithm terminates with just one terminal node, otherwise the current node is
moved from the open nodes to the closed nodes, and the algorithm starts all over again. If the cur-
rent node is not a terminal node, it is expanded after turning it into a closed node.

One difference between the C# and the F# versions of this code is in the Search method: the F#
code uses tail recursion instead of a while loop. We can see a more conspicuous difference, how-
ever, in the Expand method: we get a more readable code using the forward pipe operator than
using a conditional inside a foreach loop.

A Specific Problem
Of course, defining classes is not the area where we can get the most out of F#. We can gain
much more if we implement a concrete problem with all the operator preconditions and applica-
tions. Let’s consider another well-known puzzle as a simple example problem: the Towers of Ha-
noi. Figure 3 shows the two classes representing the states and operators of this particular prob-
lem.

A Functional Programming Approach to AI Search Algorithms

364

Figure 3: Classes representing a concrete problem.

The only extra member in HanoiState is Discs, which is an array of pegs where each disc can be
found. Move comes with two members in addition to the derived ones: Disc tells us which disc to
move, while Peg is the destination peg. Here is the full listing of these two classes in F#:
type Move(disc, peg) =
 inherit Operator()
 member this.Disc = disc
 member this.Peg = peg

 override this.ToString() =
 sprintf "HanoiMove[disc=%d, peg='%c']" disc peg

 override this.Cost(_) = double disc

type HanoiState() =
 inherit State()

 static let N = 3
 let discs = Array.create N 'A'

 static do
 for disc in 1 .. N do
 for peg in 'A' .. 'C' do
 State.Operators.Add(Move(disc, peg)) |> ignore

 member private this.Discs = discs

 private new(parent : HanoiState) as this =
 HanoiState() then
 parent.Discs.CopyTo(this.Discs, 0)

 override this.GoalState =
 let rec allTheSame index =
 index >= discs.Length - 1
 || discs.[index] = discs.[index + 1]
 && allTheSame (index + 1)
 discs.[0] <> 'A' && allTheSame 0

 Pánovics

 365

 override this.PreCondition(op) =
 match op with
 | :? Move as move ->
 let rec checkSmallerDiscs index =
 index >= move.Disc - 1
 || discs.[index] <> discs.[move.Disc - 1]
 && discs.[index] <> move.Peg
 && checkSmallerDiscs (index + 1)
 checkSmallerDiscs 0 && discs.[move.Disc - 1] <> move.Peg
 | _ ->
 raise InvalidOperator

 override this.Apply(op) =
 match op with
 | :? Move as move ->
 let newState = HanoiState(this)
 newState.Discs.[move.Disc - 1] <- move.Peg
 newState :> State
 | _ ->
 raise InvalidOperator

 override this.Equals(other) =
 match other with
 | :? HanoiState as otherHanoiState ->
 this.Discs = otherHanoiState.Discs
 | _ ->
 false

 override this.GetHashCode() =
 hash discs

 override this.ToString() =
 let sb = System.Text.StringBuilder("HanoiState[discs=(")
 for i in 0 .. N - 1 do
 if i > 0 then
 sb.Append(',') |> ignore
 sb.Append(discs.[i]) |> ignore
 sb.Append(")]").ToString()

 override this.Heuristic =
 let value1 = ref N
 let value2 = ref N
 for peg in discs do
 if peg = 'B' then
 decr value1
 elif peg = 'C' then
 decr value2
 double (min !value1 !value2)

The implementation of the Move operator is fairly straightforward. It has overridden the Cost
method: the cost of moving a disc to another peg is proportional to its size, independently of the
state to which the operator is applied.

The HanoiState class defines a one-dimensional array of characters for storing the pegs of each
disc. The size of this array is N which stands for the number of discs in the problem. The smaller
the index of an array element, the smaller the disc it represents. This seems to be a very efficient
representation with very little memory required for storing a state.

The static constructor is responsible for creating all the possible operator instances and adding
them to the static Operators property. The class has two constructors: the implicit constructor
creates the initial state with each disc being on peg A, while the explicit constructor is actually a
copy constructor, which creates a clone of the HanoiState object taken as a parameter.

The GoalState property first makes sure that the smallest disc is not on peg A, then checks wheth-
er all the discs are on the same peg (with the help of a recursive function). The skeleton of the
PreCondition and Apply methods are the same: they both go through all the possible operator

A Functional Programming Approach to AI Search Algorithms

366

types (currently there is only one: Move) and throw an exception if the argument is an operator of
an unknown type. The PreCondition function has to make sure that none of the discs smaller than
the one to be moved are on the source or the destination pegs and that the disc to be moved is not
on the destination peg. The Apply method is very simple: it copies the current state and replaces
the peg of the disc to be moved with the one determined by the operator. Finally, the Heuristic
property determines the number of discs not being on peg B and the same for peg C, and returns
the smaller of the two numbers because at least that many moves are required to reach a goal
state.

There is not too much difference in code size between the C# and the F# versions of these two
classes. The reason for this is the simplicity of the problem. The main difference is in the imple-
mentation of the GoalState property and the PreCondition method, both of which use recursion
instead of loops in the F# version. With a more complex problem, we could see more improve-
ment in the code of these two members because these are the two areas where logical formulae
appear in the state-space representation, which (and especially existential and universal quantifi-
cations) can be much more conveniently implemented in F# than in C#.

Conclusion
As you may have noticed, the presented code is not purely functional. According to our experi-
ence, the code will not be shorter or more readable if we insist on writing purely functional code,
i.e., without any side effects. However, the teachers of Artificial Intelligence seminars may decide
whether they want to show a purely functional code to the students or implement the same algo-
rithms using a little (or more) imperative code with just a little change in the existing code. That
is why we think that F#, as a golden middle road between imperative and functional languages,
seems to be a good alternative for presenting the AI search algorithms to the students.

The instructors of the Artificial Intelligence seminars at the University of Debrecen have been
using our Java and C# implementation of the presented class hierarchy for more than five years
now. We hope that in the future, they can make use of its F# version, too. It may be a good choice
especially for students participating in a graduate program, who have previously learnt functional
programming. Unfortunately, the core subjects of our undergraduate programs lack a thorough
discussion of functional programming; it is only mentioned to students majoring Software Infor-
mation Technology in the frame of the course High Level Programming Languages 2 without any
practice. Later, they can take an optional course titled Programming Languages of Artificial Intel-
ligence, where they learn Clean, a purely functional language, but currently, there is no word
about multi-paradigm languages. There is, however, a subject titled New Programming Para-
digms in our Software Information Technology graduate program, and students learn F# in its
laboratories. The first real feedback about the presence of F# in our education is that an agile
graduate student chose this language to create an application for her master’s thesis, which also
includes some AI elements.

We plan to create a purely functional but reusable (not problem-specific) implementation of the
most used search algorithms in F# and maybe other functional languages, too. First, we can get
rid of the classes which are not used as a type and have only one instance, such as
DepthFirstSearch. Next, the abstract SearchAlg and GraphSearchAlg classes would be replaced
by simple functions calling other functions taken as parameter values. Finally, classes that act as
data structures can be substituted with built-in F# types such as records, tuples, or lists as well as
functions operating on them.

 Pánovics

 367

References
Dijkstra, E. W. (1959). A note on two problems in connexion with graphs. Numerische Mathematik, 1, 269-

271.

King, D. J., & Launchbury, J. (1995). Structuring depth-first search algorithms in Haskell. Proceedings of
the 22nd ACM SIGPLAN–SIGACT Symposium on Principles of Programming Languages, 344-354.

Kósa, M. (2009). Korszerű információtechnológiai módszerek bevezetése a mesterséges intelligencia
oktatásába [Introduction of modern information technology methods to the teaching of artificial intel-
ligence]. Doctoral dissertation, University of Debrecen, Hungary. Retrieved July 19, 2012, from
http://hdl.handle.net/2437/97347

Kósa, M., & Pánovics, J. (2007). Keresőalgoritmusok objektumorientált megközelítése a Mesterséges
intelligencia tárgy bevezető kurzusán [Object-oriented approach of search algorithms at the introducto-
ry course of Artificial Intelligence]. Proceedings of the 17th International Conference on Computers
and Education, 94-97.

Luger, G. F., & Stubblefield, W. A. (2009). AI algorithms, data structures, and idioms in Prolog, Lisp, and
Java. Boston: Pearson Education.

Newell, A., Shaw, J. C., & Simon, H. A. (1959). Report on a general problem-solving program. Proceed-
ings of the International Conference on Information Processing, 256-264.

Petricek, T., & Skeet, J. (2010). Real-world functional programming. Greenwich: Manning Publications.

Syme, D., Granicz, A., & Cisternino, A. (2010). Expert F# 2.0. New York: Apress.

Appendix. The F# Listing of the Full Class Hierarchy
//StateSpace.fs
namespace StateSpace

open System.Collections.Generic

type [<AbstractClass>] State() =
 static let operators = HashSet< Operator >()
 static member Operators = operators
 abstract GoalState : bool
 abstract PreCondition : Operator -> bool
 abstract Apply : Operator -> State
 abstract Heuristic : double
 default this.Heuristic = 0.0

and [<AbstractClass>] Operator() =
 abstract Cost : State -> double
 default this.Cost(_) = 1.0

exception InvalidOperator

//Node.fs
namespace SearchAlg

open System
open System.Collections.Generic
open StateSpace

type Node =
 val private state : State
 val private parent : Node option
 val private oper : Operator option
 val private depth : int

 member this.State = this.state
 member this.Parent = this.parent
 member this.Oper = this.oper
 member this.Depth = this.depth

http://hdl.handle.net/2437/97347

A Functional Programming Approach to AI Search Algorithms

368

 new(initState : State) =
 { state = initState; parent = None; oper = None; depth = 0 }

 new(parent : Node, oper : Operator) =
 { state = parent.state.Apply(oper)
 parent = Some parent
 oper = Some oper
 depth = parent.depth + 1 }

 override this.Equals(other) =
 match other with
 | :? Node as otherNode ->
 this.state.Equals(otherNode.state)
 | _ ->
 false

 override this.GetHashCode() =
 hash this.state

 override this.ToString() =
 let s =
 sprintf "%s%O (depth=%d"
 (if this.oper = None then "" else this.oper.Value.ToString() + " => ")
 this.state this.depth
 let heurProp = this.state.GetType().GetProperty("Heuristic")
 if heurProp.DeclaringType = heurProp.ReflectedType then
 s + sprintf ", heuristic=%g)" this.state.Heuristic
 else
 s + ")"

type NodeWithCost =
 inherit Node

 val private cost : double
 member this.Cost = this.cost

 new(initState : State) =
 { inherit Node(initState); cost = 0.0 }

 new(parent : NodeWithCost, oper : Operator) =
 { inherit Node(parent, oper);
 cost = parent.cost + oper.Cost(parent.State) }

 override this.ToString() =
 base.ToString() + ", cost=" + this.cost.ToString()

//SearchAlg.fs
namespace SearchAlg

open System
open System.Collections.Generic

[<Flags>]
type SearchProp =
 | None = 0b00000000
 | AllSolutionsFlag = 0b00000001
 | SolutionIsStateFlag = 0b00000010
 | CycleCheckFlag = 0b00000100

type Verbosity =
 | None = 0
 | Info = 1
 | Debug = 2

[<AbstractClass>]
type SearchAlg(?properties, ?verbosity) =
 let properties = defaultArg properties SearchProp.None
 let verbosity = defaultArg verbosity Verbosity.Info
 let allSolutions = properties &&& SearchProp.AllSolutionsFlag <> SearchProp.None

 Pánovics

 369

 let solutionIsState = properties &&& SearchProp.SolutionIsStateFlag <>
 SearchProp.None
 let terminalNodes = List< Node >()

 member this.AllSolutions = allSolutions
 member this.SolutionIsState = solutionIsState
 member this.TerminalNodes = terminalNodes

 abstract PropertiesText : string
 default this.PropertiesText =
 (if allSolutions then
 "Searching for all solutions.\n"
 else
 "Searching for the first solution.\n") +
 (if solutionIsState then
 "The goal state is considered to be the solution.\n"
 else
 "The operator sequence leading to the goal state is the solution.\n") +
 "Verbosity level: " + verbosity.ToString() + "\n"

 member this.PrintLogEntry(minLevel, entry) =
 if verbosity >= minLevel then
 printfn "%s" entry

 member this.PrintSolution(terminal : Node option) =
 if solutionIsState then
 try
 printfn "%O" terminal.Value.State
 with
 :? NullReferenceException -> printfn "Null as a solution???"
 else
 if terminal.IsSome then
 this.PrintSolution(terminal.Value.Parent)
 printfn "%O" terminal.Value

 abstract Search : unit -> unit

//Backtrack.fs
namespace SearchAlg

open System.Collections.Generic
open StateSpace

exception InvalidBound

type BacktrackSearch(initState, ?properties, ?verbosity, ?depthBound) =
 inherit SearchAlg(defaultArg properties SearchProp.None,
 defaultArg verbosity Verbosity.Info)

 let properties = defaultArg properties SearchProp.None
 let verbosity = defaultArg verbosity Verbosity.Info
 let depthBound = defaultArg depthBound 0
 let cycleCheck = properties &&& SearchProp.CycleCheckFlag <> SearchProp.None
 let currPath = Stack< Node >()

 do
 if depthBound < 0 then
 raise InvalidBound
 currPath.Push(Node(initState))

 override this.PropertiesText =
 base.PropertiesText +
 (if cycleCheck then
 "Cycle check is on.\n"
 else
 "Cycle check is off.\n") +
 (if depthBound > 0 then
 "Depth bound: " + depthBound.ToString() + "\n"
 else
 "Depth bound check is off.\n")

A Functional Programming Approach to AI Search Algorithms

370

 override this.Search() =
 let currNode = currPath.Peek()
 let depthText =
 if depthBound > 0 then
 sprintf " (depth=%d)" currNode.Depth
 else
 ""
 if currNode.State.GoalState then
 this.PrintLogEntry(Verbosity.Debug,
 sprintf "Current state: %O%s" currNode.State depthText)
 if not (this.SolutionIsState &&
 this.TerminalNodes.Contains(currNode)) then
 this.TerminalNodes.Add(currNode)
 if this.AllSolutions then
 this.PrintLogEntry(Verbosity.Info,
 "Found a solution, backtracking.")
 currPath.Pop() |> ignore
 elif depthBound > 0 && currNode.Depth = depthBound then
 this.PrintLogEntry(Verbosity.Debug,
 sprintf "Current state: %O%s" currNode.State depthText)
 this.PrintLogEntry(Verbosity.Info,
 "Reached depth bound, backtracking.")
 currPath.Pop() |> ignore
 else
 State.Operators
 |> Seq.filter (fun op -> currNode.State.PreCondition(op))
 |> Seq.takeWhile (fun _ ->
 this.AllSolutions || this.TerminalNodes.Count = 0)
 |> Seq.iter (fun op ->
 this.PrintLogEntry(Verbosity.Debug,
 sprintf "Current state: %O%s" currNode.State depthText)
 this.PrintLogEntry(Verbosity.Debug,
 sprintf "Applying operator: %O" op)
 let newNode = Node(currNode, op)
 this.PrintLogEntry(Verbosity.Debug,
 sprintf "New state: %O" newNode.State)
 if cycleCheck && currPath.Contains(newNode) then
 this.PrintLogEntry(Verbosity.Info, "Found a cycle.")
 else
 currPath.Push(newNode)
 this.Search())
 if this.AllSolutions || this.TerminalNodes.Count = 0 then
 this.PrintLogEntry(Verbosity.Debug,
 sprintf "Current state: %O%s" currNode.State depthText)
 this.PrintLogEntry(Verbosity.Info,
 "No more applicable operators, backtracking.")
 currPath.Pop() |> ignore

 override this.ToString() =
 if verbosity = Verbosity.None then
 ""
 else
 "Searching using backtracking.\n" + this.PropertiesText

type BranchAndBoundSearch(initState, ?properties, ?verbosity, ?initBound) =
 inherit SearchAlg(defaultArg properties SearchProp.None,
 defaultArg verbosity Verbosity.Info)

 let properties = defaultArg properties SearchProp.None
 let verbosity = defaultArg verbosity Verbosity.Info
 let initBound = defaultArg initBound 0.0
 let cycleCheck = properties &&& SearchProp.CycleCheckFlag <> SearchProp.None
 let currPath = Stack< NodeWithCost >()

 do currPath.Push(NodeWithCost(initState))

 override this.PropertiesText =
 base.PropertiesText +
 (if cycleCheck then
 "Cycle check is on.\n"

 Pánovics

 371

 else
 "Cycle check is off.\n") +
 (if initBound > 0.0 then
 "Initial cost bound: " + initBound.ToString() + "\n"
 else
 "No initial cost bound.\n")

 override this.Search() =
 let rec search currBound =
 let currNode = currPath.Peek()
 if currNode.State.GoalState
 && (currBound <= 0.0 || currNode.Cost <= currBound) then
 this.PrintLogEntry(Verbosity.Debug,
 sprintf "Current state: %O, cost: %g" currNode.State currNode.Cost)
 this.PrintLogEntry(Verbosity.Info,
 sprintf "Found a solution with cost %g, backtracking."
 currNode.Cost)
 if currNode.Cost < currBound then
 this.PrintLogEntry(Verbosity.Info,
 sprintf "New cost bound: %g" currNode.Cost)
 this.TerminalNodes.Clear()
 if this.TerminalNodes.Count = 0 || this.AllSolutions &&
 not (this.SolutionIsState &&
 this.TerminalNodes.Contains(currNode)) then
 this.TerminalNodes.Add(currNode)
 currPath.Pop() |> ignore
 currNode.Cost
 elif currBound > 0.0 && currNode.Cost >= currBound then
 this.PrintLogEntry(Verbosity.Debug,
 sprintf "Current state: %O, cost: %g" currNode.State currNode.Cost)
 this.PrintLogEntry(Verbosity.Info,
 "Reached cost bound, backtracking.")
 currPath.Pop() |> ignore
 currBound
 else
 let newBound =
 State.Operators
 |> Seq.filter (fun op -> currNode.State.PreCondition(op))
 |> Seq.fold (fun bound op ->
 this.PrintLogEntry(Verbosity.Debug,
 sprintf "Current state: %O, cost: %g"
 currNode.State currNode.Cost)
 this.PrintLogEntry(Verbosity.Debug,
 sprintf "Applying operator: %O" op)
 let newNode = NodeWithCost(currNode, op)
 this.PrintLogEntry(Verbosity.Debug,
 sprintf "New state: %O" newNode.State)
 if cycleCheck && currPath.Contains(newNode) then
 this.PrintLogEntry(Verbosity.Info, "Found a cycle.")
 bound
 else
 currPath.Push(newNode)
 search bound) currBound
 this.PrintLogEntry(Verbosity.Debug,
 sprintf "Current state: %O, cost: %g" currNode.State currNode.Cost)
 this.PrintLogEntry(Verbosity.Info,
 "No more applicable operators, backtracking.")
 currPath.Pop() |> ignore
 newBound

 this.PrintLogEntry(Verbosity.Debug, sprintf "Initial cost bound: %g" initBound)
 search initBound |> ignore

 override this.ToString() =
 if verbosity = Verbosity.None then
 ""
 else
 "Searching using branch and bound algorithm.\n" + this.PropertiesText

A Functional Programming Approach to AI Search Algorithms

372

//GraphSearchAlg.fs
namespace SearchAlg

open System.Collections.Generic
open StateSpace

[<AbstractClass>]
type GraphSearchAlg(?properties, ?verbosity) =
 inherit SearchAlg(defaultArg properties SearchProp.None,
 defaultArg verbosity Verbosity.Info)

 let verbosity = defaultArg verbosity Verbosity.Info
 let openNodes = List< Node >()
 let closedNodes = List< Node >()

 member this.OpenNodes = openNodes
 member this.ClosedNodes = closedNodes

 member this.PrintInfo() =
 let printNodesCount () =
 printfn "Open nodes: %d, closed nodes: %d." this.OpenNodes.Count
 this.ClosedNodes.Count

 let printDatabase () =
 printfn "Open nodes:"
 for node in openNodes do
 printfn "%O" node
 printfn "Closed nodes:"
 for node in closedNodes do
 printfn "%O" node
 printfn ""

 if verbosity = Verbosity.Info then
 printNodesCount ()
 elif verbosity = Verbosity.Debug then
 printDatabase ()

 abstract Expand : Node -> unit

type BreadthFirstSearch(initState, ?properties, ?verbosity) as this =
 inherit GraphSearchAlg(defaultArg properties SearchProp.None,
 defaultArg verbosity Verbosity.Info)

 let verbosity = defaultArg verbosity Verbosity.Info

 do this.OpenNodes.Add(Node(initState))

 override this.Expand(node) =
 State.Operators
 |> Seq.filter (fun op -> node.State.PreCondition(op))
 |> Seq.iter (fun op ->
 let newNode = Node(node, op)
 if not (this.OpenNodes.Contains(newNode) ||
 this.ClosedNodes.Contains(newNode)) then
 this.OpenNodes.Add(newNode))

 override this.Search() =
 this.PrintInfo()
 if this.OpenNodes.Count > 0 then
 let currNode = this.OpenNodes.[0]
 if currNode.State.GoalState then
 this.TerminalNodes.Add(currNode)
 if this.AllSolutions then
 this.PrintLogEntry(Verbosity.Info, "Found a solution.")
 this.OpenNodes.Remove(currNode) |> ignore
 this.ClosedNodes.Add(currNode)
 this.Search()
 else
 this.OpenNodes.Remove(currNode) |> ignore
 this.ClosedNodes.Add(currNode)
 this.Expand(currNode)

 Pánovics

 373

 this.Search()

 override this.ToString() =
 if verbosity = Verbosity.None then
 ""
 else
 "Searching using breadth-first search.\n" + this.PropertiesText

type DepthFirstSearch(initState, ?properties, ?verbosity) as this =
 inherit GraphSearchAlg(defaultArg properties SearchProp.None,
 defaultArg verbosity Verbosity.Info)

 let verbosity = defaultArg verbosity Verbosity.Info

 do this.OpenNodes.Add(Node(initState))

 override this.Expand(node) =
 State.Operators
 |> Seq.filter (fun op -> node.State.PreCondition(op))
 |> Seq.iter (fun op ->
 let newNode = Node(node, op)
 if not (this.OpenNodes.Contains(newNode) ||
 this.ClosedNodes.Contains(newNode)) then
 this.OpenNodes.Insert(0, newNode))

 override this.Search() =
 this.PrintInfo()
 if this.OpenNodes.Count > 0 then
 let currNode = this.OpenNodes.[0]
 if currNode.State.GoalState then
 this.TerminalNodes.Add(currNode)
 if this.AllSolutions then
 this.PrintLogEntry(Verbosity.Info, "Found a solution.")
 this.OpenNodes.Remove(currNode) |> ignore
 this.ClosedNodes.Add(currNode)
 this.Search()
 else
 this.OpenNodes.Remove(currNode) |> ignore
 this.ClosedNodes.Add(currNode)
 this.Expand(currNode)
 this.Search()

 override this.ToString() =
 if verbosity = Verbosity.None then
 ""
 else
 "Searching using depth-first search.\n" + this.PropertiesText

type DijkstraSearch(initState, ?properties, ?verbosity) as this =
 inherit GraphSearchAlg(defaultArg properties SearchProp.None,
 defaultArg verbosity Verbosity.Info)

 let verbosity = defaultArg verbosity Verbosity.Info

 do this.OpenNodes.Add(NodeWithCost(initState))

 override this.Expand(node) =
 State.Operators
 |> Seq.filter (fun op -> node.State.PreCondition(op))
 |> Seq.iter (fun op ->
 let newNode = NodeWithCost(node :?> NodeWithCost, op)
 let index = this.OpenNodes.IndexOf(newNode)
 if index <> -1 then
 let oldNode = this.OpenNodes.[index] :?> NodeWithCost
 if newNode.Cost < oldNode.Cost then
 this.OpenNodes.Remove(oldNode) |> ignore
 this.OpenNodes.Add(newNode)
 elif not (this.ClosedNodes.Contains(newNode)) then
 this.OpenNodes.Add(newNode))

 override this.Search() =

A Functional Programming Approach to AI Search Algorithms

374

 this.PrintInfo()
 if this.OpenNodes.Count > 0 then
 let currNode = this.OpenNodes.[0] :?> NodeWithCost
 if not (this.TerminalNodes.Count > 0 &&
 currNode.Cost > (this.TerminalNodes.[0] :?> NodeWithCost).Cost) then
 if currNode.State.GoalState then
 this.TerminalNodes.Add(currNode)
 if this.AllSolutions then
 this.PrintLogEntry(Verbosity.Info, "Found a solution.")
 this.OpenNodes.Remove(currNode) |> ignore
 this.ClosedNodes.Add(currNode)
 this.Search()
 else
 this.OpenNodes.Remove(currNode) |> ignore
 this.ClosedNodes.Add(currNode)
 this.Expand(currNode)
 this.OpenNodes.Sort(
 { new IComparer< Node > with
 member this.Compare(n1, n2) =
 (n1 :?> NodeWithCost).Cost.CompareTo(
 (n2 :?> NodeWithCost).Cost) })
 this.Search()

 override this.ToString() =
 if verbosity = Verbosity.None then
 ""
 else
 "Searching using Dijkstra's algorithm.\n" + this.PropertiesText

type BestFirstSearch(initState, ?properties, ?verbosity) as this =
 inherit GraphSearchAlg(defaultArg properties SearchProp.None,
 defaultArg verbosity Verbosity.Info)

 let verbosity = defaultArg verbosity Verbosity.Info

 do this.OpenNodes.Add(Node(initState))

 override this.Expand(node) =
 State.Operators
 |> Seq.filter (fun op -> node.State.PreCondition(op))
 |> Seq.iter (fun op ->
 let newNode = Node(node, op)
 if not (this.OpenNodes.Contains(newNode) ||
 this.ClosedNodes.Contains(newNode)) then
 this.OpenNodes.Add(newNode))

 override this.Search() =
 this.PrintInfo()
 if this.OpenNodes.Count > 0 then
 let currNode = this.OpenNodes.[0]
 if currNode.State.GoalState then
 this.TerminalNodes.Add(currNode)
 if this.AllSolutions then
 this.PrintLogEntry(Verbosity.Info, "Found a solution.")
 this.OpenNodes.Remove(currNode) |> ignore
 this.ClosedNodes.Add(currNode)
 this.Search()
 else
 this.OpenNodes.Remove(currNode) |> ignore
 this.ClosedNodes.Add(currNode)
 this.Expand(currNode)
 this.OpenNodes.Sort(
 { new IComparer< Node > with
 member this.Compare(n1, n2) =
 n1.State.Heuristic.CompareTo(n2.State.Heuristic) })
 this.Search()

 override this.ToString() =
 if verbosity = Verbosity.None then
 ""
 else

 Pánovics

 375

 "Searching using best-first search.\n" + this.PropertiesText

type AAlgorithm(initState, ?properties, ?verbosity) as this =
 inherit GraphSearchAlg(defaultArg properties SearchProp.None,
 defaultArg verbosity Verbosity.Info)

 let verbosity = defaultArg verbosity Verbosity.Info

 do this.OpenNodes.Add(NodeWithCost(initState))

 override this.Expand(node) =
 State.Operators
 |> Seq.filter (fun op -> node.State.PreCondition(op))
 |> Seq.iter (fun op ->
 let newNode = NodeWithCost(node :?> NodeWithCost, op)
 let index = this.OpenNodes.IndexOf(newNode)
 if index <> -1 then
 let oldNode = this.OpenNodes.[index] :?> NodeWithCost
 if newNode.Cost < oldNode.Cost then
 this.OpenNodes.Remove(oldNode) |> ignore
 this.OpenNodes.Add(newNode)
 else
 let index = this.ClosedNodes.IndexOf(newNode)
 if index <> -1 then
 let oldNode = this.ClosedNodes.[index] :?> NodeWithCost
 if newNode.Cost < oldNode.Cost then
 this.ClosedNodes.Remove(oldNode) |> ignore
 this.OpenNodes.Add(newNode)
 else
 this.OpenNodes.Add(newNode))

 override this.Search() =
 this.PrintInfo()
 if this.OpenNodes.Count > 0 then
 let currNode = this.OpenNodes.[0] :?> NodeWithCost
 if currNode.State.GoalState then
 this.TerminalNodes.Add(currNode)
 if this.AllSolutions then
 this.PrintLogEntry(Verbosity.Info, "Found a solution.")
 this.OpenNodes.Remove(currNode) |> ignore
 this.ClosedNodes.Add(currNode)
 this.Search()
 else
 this.OpenNodes.Remove(currNode) |> ignore
 this.ClosedNodes.Add(currNode)
 this.Expand(currNode)
 this.OpenNodes.Sort(
 { new IComparer< Node > with
 member this.Compare(n1, n2) =
 let f1 = (n1 :?> NodeWithCost).Cost + n1.State.Heuristic
 let f2 = (n2 :?> NodeWithCost).Cost + n2.State.Heuristic
 f1.CompareTo(f2) })
 this.Search()

 override this.ToString() =
 if verbosity = Verbosity.None then
 ""
 else
 "Searching using the A algorithm.\n" + this.PropertiesText

A Functional Programming Approach to AI Search Algorithms

376

Biography
János Pánovics is an assistant lecturer at the University of Debrecen,
Hungary, where he received his master’s degree in Computer Science
(IT).

His general research interests include programming languages (both
low-level and high-level), programming paradigms (imperative, object-
oriented, functional, and logic), artificial intelligence, database tech-
nologies, and IT education. He has had teaching experience in various
fields of IT, including subjects like Assembly Languages, Computer
Architectures, High-Level Programming Languages, Data Structures
and Algorithms, Database Systems, and Artificial Intelligence.

	A Functional Programming Approach to AI Search Algorithms
	János Pánovics Department of Information Technology, University of Debrecen, Debrecen, Hungary
	panovics.janos@inf.unideb.hu

	Executive Summary
	Introduction
	Imperative versus Functional Programming
	Benefits of Functional Programming
	Functional Programming in Teaching Artificial Intelligence
	Search Algorithms in Different Programming Languages
	Why F#?

	A Class Hierarchy for Search Algorithms
	A Specific Problem
	Conclusion
	References
	Appendix. The F# Listing of the Full Class Hierarchy
	Biography

