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Abstract  
The transfer and teaching of programming and programming related skills has become, increas-
ingly difficult on an undergraduate level over the past years. This is partially due to the number of 
programming languages available as well as access to readily available source code over the 
Web. Source code plagiarism is common practice amongst many undergraduate students. This 
practice has a detrimental effect on the presentation of specific content relating to introduction to 
programming courses.  One of the problems identified in the research conducted is that turn-
around time with relation to assessment and feedback, which are presented to the students, is a 
critical factor in the subsequent success rates of the subject. 

This paper investigates, utilizing a literature review, how plagiarism detection metrics and a 
framework for providing effective feedback to students and educators could be implemented to 
enhance the teaching and learning processes.   

The predominant technique used for detecting plagiarism is to evaluate how a piece of source 
code was constructed over time. By analyzing the students’ programming patterns, lectures can 
be adapted to address problem areas and react accordingly. The paper also provides an overview 
of current metrics used for plagiarism detection and suggests ways of improving the process by 
including enhanced techniques for the gathering of metrics over time as well as suggesting ways 
to use the metrics to aid learning on all cognitive levels. 

Some of the key considerations presented as part of this research include effective feedback 
mechanisms and real-time responses to plagiarism as well as contributing towards learning on 
different cognitive levels.  
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Alternative Source Code Plagiarism Detection Framework 

Introduction, Background Problem and Prior Research 
The positive effects of the digital revolution are offset by the negative impact it is having on aca-
demic institutions. As the digital age is evolving, thereby increasing student access to informa-
tion, it is becoming more difficult for academic institutions to maintain academic integrity across 
instructional programs.  

This paper utilize a combination of a literature review and  the creation of a framework that aims 
at addressing some of the core issues identified as part of the literature survey, as well as reflec-
tions and insights provided by academia and colleges.  

Zobel (2004, p. 147) emphasizes the fact that a literature study should contribute text in providing 
the reader with a better understanding of the elements of the study as well as the topic researched.  
He explained that in an ideal research document the literature study should be as interesting and 
thorough as the description of the paper’s contribution. 

Some of the benefits of a literature study, as listed by Leedy and Ormond (2004, p. 70), will 
greatly contribute to the understanding and implementation of the research objectives, the rele-
vant benefits are: 

 The capability of such a study to reveal approaches followed by other researchers in the 
same area or field. 

 Show and introduce some relevant measurement tools developed in previous studies of a 
similar nature.  

 Revealing methods of dealing with problem situations that may be similar in nature to the 
current research study. 

 
As can be derived from the benefits, a literature study will play a key role in this study to be done, 
both from an informative and active learning point of view. 

Plagiarism, as defined by Merriam Webster (“Plagiarism,” 2012), is “the act of using another per-
son’s words or ideas without giving credit to that person.” The threat of plagiarism is not only 
limited to academic writing, but also includes source code that is written as part of the learning 
process.  

In addition to verbatim copying of assignments between students, a programming assignment 
may also be considered plagiarized if the code was converted directly from another programming 
language, if code is reused between assignments (self plagiarizing), if students collaborate exten-
sively when writing code, or when other people are paid to write code (Joy, Cosma, Yau, & Sin-
clair, 2011). 

There are numerous examples of websites and services that host searchable code which is acces-
sible by the public, e.g., question and answer sites that provide ready-made solutions to pro-
gramming problems and websites where, for a relatively small fee, a programmer can be hired to 
complete a task. This provides enough resources to tempt a student into plagiarizing part of, or an 
entire, assignment. The Internet should not carry all the blame for the prevalence of student pla-
giarism (Cosma & Joy, 2008). 

A study done by Lim and See (2001) involving data collected from three educational institutions 
in Singapore showed that about 94% of students admitted allowing their own work to be copied 
by other students. A similar study in Australia involving first year students found that those par-
ticipating in the study thought that it was acceptable to collaborate on assignments that were 
meant to be completed individually (Sheard, Dick, Markham, Macdonald, & Walsh, 2002). 
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Current Source Code Plagiarism Detection and 
Prevention Techniques 

Methods for dealing with the problem of plagiarism can be classified based on approach fol-
lowed, i.e., ‘proactive’ methods for preventing plagiarism from taking place and ‘reactive’ meth-
ods of detecting plagiarism after work has been completed and submitted (Lukashenko, Graudina, 
& Grundspenkis, 2007).     

Recent proactive methods used by academic institutions are educating students on plagiarism, 
creating clear anti-plagiarism policies across different academic programs, and adopting honor 
codes (Devlin, 2006; Olt, 2002; Park, 2003). 

Reactive methods used for plagiarism detection in source code are widely considered to be a pat-
tern-matching problem which produces a number of metrics. The metrics can then be analyzed to 
determine how much of the source code was copied between different documents in the corpus 
that is being evaluated (Jones, 2001). Lancaster and Culwin (2005, p. 4) define a ‘metric’ as a 
rule that can convert a document into a numeric value for representing similarity. 

Traditional Detection Approaches 
sA common approach to plagiarism detection in source code relies on parsing the source code 
contained in the document and then generating token strings. Using an algorithm, the token 
strings generated by this approach are, then, compared to other token strings. The Sim utility is an 
example of the approach. It uses string alignment techniques and algorithms originally developed 
to detect similarity between DNA strings (Gitchell & Tran, 1999). An alternative method also 
relies on tokenization, but determines similarity by analyzing the structure of the source code.  

Whale (1990) has argued that better results can be achieved by analyzing source code structure, 
and has supported these arguments by developing a utility called ‘Plague’. Wise (1992) identified 
some problems with Plague, but supports the notion of analyzing structure similarities as opposed 
to text similarities. 

The deterrent posed by effective plagiarism detection engines provides the only link between pro-
active and reactive methods. Implementing proactive methods to prevent plagiarism may require 
more time to implement, but it may produce a positive effect in the longer term (Lukashenko et 
al., 2007). Howard (2002) notes how the amount of effort used in detecting academic plagiarism 
may result in students seeing the educator as the enemy instead of the mentor. Blindly using de-
tection tools gives no insight into the student’s reasons for plagiarizing. The researchers believe 
that the notion of Howard (2002) opens the door to try and find ways in which the detection prac-
tice could also improve the teaching and learning process, and not just act as a deterrent. 

It would seem that proactive and reactive methods for dealing with plagiarism are not well 
aligned. Reactive methods provide instant results that show whether a piece of source code was 
plagiarized or not. The researchers, however, stress that, in the long term, this method may not 
add much value to the academic process leading to students focusing on ways to defeat the en-
gine. In contrast, the proactive approach may provide positive results in the long term. It should 
be noted, that the proactive methods still do not produce immediate results that can be used to 
verify originality of code.  

Figure 1 indicates the traditional workflow of how a student may complete and submit a pro-
gramming assignment. In this traditional workflow, only the final document, or documents, (con-
taining the code) are submitted to the detection engine. The engine then analyses the documents 
in the corpus and feedback is provided to the educator for further analysis. The student is notified 
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after the educator has interpreted the results on whether the submission is considered plagiarized 
on or not.  

 

Start

Develop

Test/Debug

Submit

Student

Educator

Evaluates 
individual or
collated feedback. 
Has final decision.

Works on the 
assignment

Detection Engine

Determines the degree of plagiarism 
based on the complete corpus.

 
Figure 1: Workflow followed in traditional detection engines 

One problem identified with the workflow described above is that the history of how the student 
created the piece of source code is lost. Students code and develop software in different ways. 
Due to the nature of programming, and the inclusion of various code constructs and units in the 
development of a solution, the authors believe that it is important to track and monitor the com-
plete development process rather than just the final product. Because there is no time-line of how 
the source code was constructed, any direct evidence that the student used to try to conceal pla-
giarism is also lost.  

There are various reasons for students plagiarizing a piece of source code including: 
 Lack of technical knowledge 
 Self-plagiarising or plagiarising commonly repeated functionality 
 Poor time management  
 Academic pressure  

 
Power (2009) concluded that students often don’t understand what is considered plagiarism.  Ac-
cording to Voelker, Love, and Pentina. (2012) a similarity exists regarding how both graduate and 
undergraduate students understand plagiarism. This suggests that students’ lack of understanding 
about plagiarism is not strongly correlated to a certain level of education. Voelker et al. (2012) go 
on to mention the way in which many students think plagiarism can be avoided by citation and 
reference alone.    

The problem of plagiarism due to a lack of understanding can be interpreted differently when the 
task is to write a piece of source code. When writing source code as opposed to writing academic 
work, there is no generally acceptable rules regarding citing and reference.  

The task is to solve a specific problem writing a number of statements in a logical sequence using 
the syntax of a specific programming language. The lack of understanding in this case may be an 
inability to use this specific language and its syntax to solve the problem at hand. The student 
may not have sufficient knowledge of the language or syntax to solve the given problem in the 
first place. As a result and sometimes a last effort students may revert to plagiarism. 
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A programming problem can also be solved using code by breaking the problem up into a number 
of small sub-problems. When unable to solve one of these smaller problems, a student may revert 
to plagiarism while still being able to solve other sub-problems. In the process of combining the 
smaller problems, the student may learn what the purpose of the plagiarized code is and how the 
code works. A student may also use a piece of code that was previously written and well under-
stood to solve a sub-problem. 

Students may feel they have not been given enough time to complete an assignment or may gen-
erally procrastinate leading to time pressures (Power, 2009). Koul, Clariana, Jitgarun, and Songs-
riwittaya (2009) concluded that performance oriented students are more likely to plagiarize. This 
may be due to pressure to from society, family or educators to obtain good grades (Devlin & 
Gray, 2007).    

Two other factors that might influence the decision to plagiarize are the consequences of getting 
caught and how uniformly plagiarism detection techniques are enforced across different subjects 
(Miller, Shoptaugh, & Wooldridge, 2011; Power, 2009). Other possible reasons for plagiarizing 
include personal and cultural attitudes towards plagiarism and the desire to test the system (Wan, 
Md Nordin, Halib, & Ghazali, 2011). 

Using traditional detection engines gives no indication of the student’s motives or underlying 
academic reason for plagiarizing. Another academic reason which could motivate a student to 
plagiarize is the fact that the student had a difficult time in interpreting and understanding a lec-
ture presented by an educator, based on a certain topic. Language barriers could also have an im-
pact on the student’s motivation. The metrics used to detect the plagiarism are of no further use 
once it has been determined that a student has plagiarized.  

Defining a new set of metrics that provide indications of both that a piece of source code has been 
plagiarized and why its creator plagiarized may be beneficial to both the student and educator. 

Plagiarism Detection Engine Based On New Metrics 
To determine when source code plagiarism occurred, as well as the possible reason(s) for the pla-
giarism, a detection engine needs to be developed that may track the source code being written by 
students in real time. The engine may then produce the required metrics to guide the educator in 
identifying plagiarism while adding value to the academic process.  

Evens and Peck (2006) have suggested that the use of light weight analysis may enhance teaching 
software engineering. By introducing the concepts in a pilot course to test the assumptions made 
by the researchers, students were asked to record the time spent on each programming assign-
ment. Jones (2001) attempted to use physical metrics – namely number of lines, words, and char-
acters. Further detection relied on the source code, the compilation log, and the execution log. 

It should be noted that both of the above approaches only consider source code after submission. 
In addition, no detection of plagiarism is attempted as the code is being written. Metrics to iden-
tify plagiarism of source code, as it is being written include:     

 Time spent writing code for the assignment. 
 Number of modifications, including the text that was modified each time. 
 Length of each modification that was made.  

 
Tracking the time that a student spent writing code for the assignment may be the first indication 
of possible plagiarism. This metric may also give a unique insight on the student’s time manage-
ment skills as well as insights on how assignments are completed, and in addition, may indicate 
the possibility of the student having plagiarized some or all of the code in the assignment. This 
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may be evident especially if there is a big discrepancy between how long the educator expects the 
student to work on the assignment and the actual time to completion.  

Tracking the number of modifications over time may point to possible plagiarism or plagiarism 
avoidance. This is especially true if the student adds a large number or lines to the code base and 
then proceeds to make a number of small changes over time. Tracking the text that was inserted 
or deleted can aid the educator in determining whether the motive for the number of changes was 
to avoid plagiarism detection or to integrate code that was previously written to solve a similar 
problem. If data is collected from multiple students with multiple attempts, patterns could be 
identified and used by the educator to design or to modify future lectures.  

Finally, the length of each modification can be used to detect both plagiarism and plagiarism 
avoidance. When using these metrics, the problem of detecting extra-corpal plagiarism – like 
sources from the web and textbooks – is largely made irrelevant by the fact that the engine does 
not need these source documents when analyzing the corpus instead making a deduction based on 
the metrics mentioned above.   

Figure 2 shows an updated workflow, which may support the effort to gather the new metrics 
identified. This workflow consists of the Code Snapshot Service (CSS), Notification Service 
(NS), and the Plagiarism Detection Tool (PDT). The student may work on the programming as-
signment while the CSS takes regular snapshots of the code that is being written. Each snapshot 
may contain the code for the assignment as it was during the particular time that the snapshot was 
taken. These snapshots are delivered to the PDT that continuously analyses new snapshots as they 
arrive.  
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Figure 2: Workflow to support metrics identified 

To generate the metric that indicates time spent on writing code for the assignment the time dif-
ference between when the first snapshot and last snapshot were received may be used. The num-
ber of modifications and the text that was modified may be determined by comparing the source 
code of successive snapshots. Each snapshot taken over time may also indicate the length of the 
addition which has significant value in the detection process.  

Because the PDT does not compare different assignments in the corpus with each other, but rather 
analyzes the snapshots based on the new metrics (e.g., time spent on writing code, number of 
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modifications including the text that was modified, and the length of each modification), the tool 
does not need to wait for all documents to be present in the corpus before analyzing for possible 
plagiarism.    

The notification service may be responsible for notifying students about the determination the 
PDT makes in real time. In contrast to traditional detection engines, the proposed method allows 
the student to be notified that the PDT has determined that possible plagiarism is occurring, while 
the student still has time to take corrective action. 

After the student submits the final version of the assignment, the NS notifies the educator, who 
may use all the metrics gained by the PDT to make a final determination in each case.  

In addition to being used to detect whether plagiarism has occurred, the new metrics gained from 
the PDT can provide clues on why the code was plagiarized. 

Enhancing Teaching and Learning by Providing Possible 
Reasons for Plagiarism 

Figure 3 shows how the metrics gained from the PDT can be used by the educator to identify pos-
sible reasons for why a student plagiarized a programming assignment. As the metrics are gath-
ered by the PDT they are analyzed by the educator to identify the possible reason for plagiarism. 
Either a single metric or a combination of metrics may be used to identify the reason for plagia-
rism.    
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Figure 3: Metrics gathered by PDT to indicate possible reasons for plagiarism 

 

First, a lack of technical knowledge can be identified by looking at the number of modifications 
including the text that was modified in each successive snapshot. If the code that was inserted in 
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each successive snapshot varies widely between snapshots, it may indicate that the student is at-
tempting to fit code to the situation blindly and hoping to find a possible solution. Further analy-
sis of the text that was modified can be compared to publicly available code repositories to pin-
point the sources that the student consulted in order to find the solution. This behavior may also 
point to academic pressure as a possible reason for plagiarism. If a large change occurs between 
snapshots, and if the code that is changed between successive snapshots shows that both snap-
shots solve the same problem in a different way, the student may have found code which, in the 
student’s mind, may get a better academic result then the original code written by the student. 

Second, poor time management can be identified by looking at the time spent on writing the code. 
Since the PDT receives regular snapshots while the assignment is being completed, the total time 
spent should be relatively accurate by considering when the first and last snapshots were re-
ceived. Successive snapshots with no code difference can be ignored. By combining information 
regarding the number of modifications including the text that was modified and the time spent on 
writing code, it is possible to detect students that have added a large number of lines to their code 
base close to the submission deadline. This indicates that possible plagiarism because of time 
constraints has occurred. Combining the metric for all submissions may also provide an average 
time of completion for all students and can be compared to previous assignments with the same 
level of difficulty by the educator.  

Third, self-plagiarizing, or plagiarizing commonly repeated functionality, can be identified by 
detecting that a student has inserted many lines of code at once and then proceeded to make many 
small changes. This activity can be detected when a snapshot reveals that a large amount of code 
has been inserted, and then subsequent snapshots reveal only minor changes being made. This 
may likely indicate that the student is using code previously written and is adapting the code to fit 
a given problem. By analyzing the code that was inserted and deleted in each successive snap-
shot, it is possible to determine whether the small changes the student made were due to self-
plagiarism or whether the student made those changes in an attempt to avoid plagiarism detection. 

Because an educator may make the final determination as to whether plagiarism has occurred 
only after all final submissions have been received and reviewed, students can be warned in real-
time as the assignment is being completed that they run the risk of plagiarizing their assignments. 
This real-time feedback provides a more proactive approach to detecting plagiarism than the reac-
tive approach followed by current detection engines. In addition, the proposed method can en-
hance teaching and learning as the student completes the programming assignment. 

Using Plagiarism Detection Tools to Provide Feedback to 
Students in Real-Time 
As part of the student learning through effective feedback project, Juwah et al. (2004) have iden-
tified seven principles of good feedback practice in academic environments. According to the 
reasearchers’ view, a good feedback practice is one that: 

1. Facilitates the development of self-assessment in learning. 
2. Encourages teacher and peer dialog around learning. 
3. Helps clarify what good performance is. 
4. Provides opportunities to close the gap between current and desired performances. 
5. Delivers high quality information to students about their learning. 
6. Encourages positive motivational beliefs and self esteem. 
7. Provides information that can be used to help shape the teaching.  

 
The authors have also developed a conceptual model for information feedback. This ‘formative 
assessment and feedback model’ is based on a model developed by Butler and Winne (1995). The 
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biggest problem the originally proposed model aims to address is the problem that feedback is 
usually only available after a learning activity has been completed. In the adapted model the stu-
dent is placed in a central role regarding the feedback process. The student and educator are at all 
times actively involved in monitoring and regulating the goals as set out by the educator. Figure 4 
shows how the PDT can be incorporated into the formative assessment and feedback model. 

A learning activity like a programming assignment may start with the educator providing the cri-
teria and other goals that should be accomplished by the student. From there, most activities take 
part as part of the internal student process. 

The student may start by studying the provided goals and criteria and may draw on previous do-
main knowledge to develop a number of personal goals to be achieved while completing the as-
signment. The next stage involves the student applying a number of tactics and strategies to com-
plete the assignment, or part of the assignment, by producing a learning outcome. In this case the 
learning outcome may be a document(s) containing source code.  
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Figure 4: Incorporating the PDT into the formative assessment feedback model 

The process of writing the source code for the assignment may be influenced by internal feed-
back. This feedback may be generated by the student on a continuous basis. This may lead to the 
student re-assessing personal goals. It may even lead to the student revising and updating existing 
domain knowledge which stimulates cognitive development. This internal feedback is continu-
ously augmented by the PDT via the Notification Service (NS) based on results from analyzing 
the code provided by the Code Snapshot Service (CSS).  
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As part of the external processes, the student’s performance is measured and feedback is provided 
by an external entity. Usually, this external feedback occurs only after a learning outcome is 
achieved. The new knowledge gained from the external feedback is only used and tested by the 
student during the next learning activity, whilst some academic value is lost in the current in-
stance.  

Because the PDT may provide students with feedback in real time, the external feedback proc-
esses can play an active role in the students’ own internal feedback and learning process. The 
feedback generated by the PDT can also influence the educator. In addition to being useful for 
detecting plagiarism, the metrics gained by the tool may influence an educator’s decisions regard-
ing the goals and criteria for future programming assignments. It may also impact and highlight 
certain areas in the curriculum which needs additional modifications in instruction. The metrics, 
and the way that they are being gathered, may also allow for different types of programming as-
signments to be used when assessing students. 

Plagiarism Detection Tool to Aid Learning on All Cognitive 
Levels 
Buck and Stucki (2000) argue strongly that teaching computer programming should start at a low 
cognitive level and slowly progress to a higher level. This approach of moving from a lower level 
to a higher level often relies on Bloom’s taxonomy of cognitive learning (or on the revised digital 
version thereof (cf. Churches, 2009)) for its structure. 

Bloom’s revised taxonomy follows the process of learning through a number of categories, start-
ing with lower order thinking skills and progressing to higher order thinking skills. Unlike 
Bloom’s original taxonomy, the revised taxonomy names each category by using a verb. Begin-
ning with the lowest order, marked by the name remembering, the revised taxonomy progresses 
through categories named with the verbs understanding, applying, analyzing, and evaluating. The 
taxonomy ends with the highest order thinking skill being named creating. As a learning process, 
Bloom essentially requires a concept to be remembered before it can be understood. Once under-
stood, the concept can be applied and then analyzed to evaluate the impact. It is only after all the 
other categories have been adhered to that creation can take place (Churches, 2009; Krathwohl, 
2002). 

A plagiarism detection tool that provides real time feedback with metrics indicating how the code 
was constructed can help educators evaluate and ensure the academic reliability of different as-
sessment methods and strategies beyond those requiring students to write complete programs. 
Some of these alternative assessment methods may include the use of skeleton programs, code 
inspection, and self-assessment.  

Lister (2000) describes an alternate approach to letting students write complete programs as soon 
as possible in the academic calendar year. That approach concentrates on the first four levels of 
Bloom’s taxonomy; namely remembering, understanding, applying, and analyzing. Multiple-
choice questions were used in combination with the completion of skeleton programs where only 
a skeleton is provided and the students should complete the program by writing lines of code that 
had been left out of a complete program. Lister argues that skeleton programs teach students good 
programming practice and guide their thinking into a productive learning pattern.  

Using traditional plagiarism detection engines that rely on comparing text may be problematic in 
skeleton programs. This is because the code submitted may not vary significantly between stu-
dents. In addition the code may consist of a number of small changes to the original program. In 
contrast, with the PDT the educator can evaluate the time spent on writing the code and what 
changes were made between each successive snapshot. If the snapshots are made in quick enough 
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succession they should give a good indication of how given code was inserted to complete the 
skeleton.    

McMeekin, von Konsky, Chang, and Cooper (2009) conducted a pilot study that required under-
graduate students to inspect code. The authors concluded that code inspections can lead to stu-
dents developing higher cognitive levels. Alaoutinen and Smolander (2010) noted how a goal-
oriented learning environment can motivate students and result in meaningful learning. The au-
thors go on to say that this goal-oriented environment can be created by involving self-assessment 
in the teaching process, but self-assessment is often disregarded because of reliability issues. We 
believe that combining self-assessment with code inspection while maintaining reliability may be 
made possible by the implementation of the PDT. 

Using the PDT the educator can provide students with some code to inspect and to comment on. 
Using the metric gained by the PDT (e.g., time spent on writing code, number of modifications 
including the text that modified, and the length of each modification), the educator can assess 
how students interpreted the code. This has great teaching value for both the educator as well as 
the students. 

Since the PDT gives a complete overview on how code was constructed line by line, the succes-
sive snapshots and the differences between the snapshots can be used by a student to not only as-
sess his or hers own work but also the work of other students. 

The authors believe that the utilization of the PDT could aid in the presentation of programming, 
by allowing process to evaluate student’s performance on assessments, based on each of the digi-
tal taxonomy levels as presented by Churches, (2009). 

Conclusion 
Literature suggests that plagiarism remains an active and ongoing problem and threat to academic 
institutions. Reactive and proactive methods of plagiarism prevention and detection do not align 
and complement each other. In traditional source code plagiarism detection engines that consider 
plagiarism detection a pattern matching problem, no indication is given on the reason for the stu-
dent choosing to plagiarize. The proposed implementation of detecting plagiarism by utilizing 
metrics gained over time which is reported in real-time aims to improve the link between pro-
active and re-active methods of plagiarism detection.  

The formative assessment and feedback model presented as part of this paper aims to limit the 
practice of plagiarism by providing real-time feedback to the student as well as the educator. This 
process could act as a deterrent for the practice as well as enhance the learning processes of the 
individual student. By incorporating real time feedback the student is proactively warned of pos-
sible plagiarism infringement and can correct the situation. The educator will still have the final 
say on a case by case basis maintaining the ability to reactively respond to plagiarism.   

The next phase of this research is addressing the issues identified in the literature review by the 
creation of a prototype based on the PDT framework. Research needs to be conducted on how 
best to implement the PDT and the associated services. Once the PDT prototype is created ex-
periments can be conducted to investigate if the method of plagiarism detection presented in this 
paper acts as an effective plagiarism deterrent.  
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