
Journal of Information Technology Education: Innovations in Practice Volume 15, 2016
Cite as: Du, J., Wimmer, H., & Rada, R. (2016). “Hour of Code”: Can it change students’ attitudes toward program-
ming? Journal of Information Technology Education: Innovations in Practice, 15, 52-73. Retrieved from
http://www.jite.org/documents/Vol15/JITEv15IIPp053-073Du1950.pdf

Editor: Bronwyn Hegarty
Submitted: May 12, 2015; Revised: September 25, December 20, 2015, March 4, 2016;

Accepted: March 23, 2016

“Hour of Code”: Can It Change
Students’ Attitudes toward Programming?

Jie Du
Grand Valley State University,

Allendale, MI, United States
dujie@gvsu.edu

Hayden Wimmer
Georgia Southern University,
Statesboro, GA, United States
hwimmer@georgiasouthern.edu

Roy Rada
University of Maryland, Baltimore County,

Baltimore, MD, United States
rada@umbc.edu

Abstract
The Hour of Code is a one-hour introduction to computer science organized by Code.org, a non-
profit dedicated to expanding participation in computer science. This study investigated the im-
pact of the Hour of Code on students’ attitudes towards computer programming and their
knowledge of programming. A sample of undergraduate students from two universities was se-
lected to participate. Participants completed an Hour of Code tutorial as part of an undergraduate
course. An electronic questionnaire was implemented in a pre-survey and post-survey format to
gauge the change in student attitudes toward programming and their programming ability. The
findings indicated the positive impact of the Hour of Code tutorial on students’ attitude toward
programming. However, the students’ programming skills did not significantly change. The au-
thors suggest that a deeper alignment of marketing, teaching, and content would help sustain the
type of initiative exemplified by the Hour of Code.

Keywords: computer science education, advocacy, Hour of Code, Code.org, online tutorials, in-
troductory computer programming, survey.

Introduction
Enhancing students’ attitudes toward programming has long been a hot topic for educators. One
website, Code.org, created an enormous interest in its Hour of Code initiative. Code.org is a non-

profit organization that was founded in
2012 and whose vision is every student
in every school should have the
opportunity to learn computer science
(Guynn, 2013). The organization
operates largely as a virtual organization
associated with its web site
www.code.org. One of Code.org’s most
famous initiatives is called the Hour of
Code which encourages students to
complete short programming tutorials.

Material published as part of this publication, either on-line or
in print, is copyrighted by the Informing Science Institute.
Permission to make digital or paper copy of part or all of these
works for personal or classroom use is granted without fee
provided that the copies are not made or distributed for profit
or commercial advantage AND that copies 1) bear this notice
in full and 2) give the full citation on the first page. It is per-
missible to abstract these works so long as credit is given. To
copy in all other cases or to republish or to post on a server or
to redistribute to lists requires specific permission and payment
of a fee. Contact Publisher@InformingScience.org to request
redistribution permission.

http://www.jite.org/documents/Vol15/JITEv15IIPp053-073Du1950.pdf
mailto:dujie@gvsu.edu
mailto:hwimmer@georgiasouthern.edu
mailto:rada@umbc.edu
http://code.org/
mailto:Publisher@InformingScience.org

‘Hour of Code’: Can It Change Students’ Attitudes Toward Programming?

54

Code.org developed a catalog of tutorials that are suitable for an introduction to programming,
and this paper refers to these as either Code.org or Hour of Code tutorials. As of March 2015,
over one hundred million students have done the Hour of Code. Assessing student experience
with some of the tutorials is the primary goal of this paper.

A review of the tools available to support the teaching of programming concludes that more
needs to be done to help students learn to code (Daly, 2009). Even though computer program-
ming is deemed important, there is a lack of student interest in programming. This study aimed to
identify the attitude change of students towards programming after they finished an hour long
tutorial at Code.org, investigate whether their skills changed, and was designed to provide
insights for the dissemination of computer science education.

The Code.org’s Hour of Code is delivered annually during Computer Science Education Week.
The authors reported on a study conducted across two universities in the United States. A sample
of undergraduate students was asked to do a one hour tutorial at Code.org as part of their course.
An electronic questionnaire was implemented to survey these students before and after they com-
pleted the online tutorial regarding their attitudes toward programming and their skills for coding.

The remainder of this paper is organized as follows. First, a brief review of the literature and
background information on Code.org and other approaches to teaching programming visually is
described. Next, the methodology is presented followed by results. Subsequently, a discussion of
the results occurs with a conclusion completing the work.

Literature Review
STEM, or science technology engineering and math, education is of national interest with an ever
increasing amount of federal grant funding supporting developing STEM education. Primary edu-
cation is overwhelmingly lacking in technology subjects, specifically (Sanders, 2008). Industry
alliances, such as Microsoft, VMWare, and EMC, have joined with universities and, in some cas-
es, primary and trade schools to offer technology to students. Computer programming is one criti-
cal aspect to STEM education that poses especially difficult challenges.

Computer programming is not a task easily conquered by a novice. This results in lower student
retention and difficulties passing programming courses. Student attitudes toward programming
have been studied for decades (Koohang, 1989) and shown to cause anxiety (Raub, 1981). In fact,
the phenomenon is so commonplace that researchers have collaborated on developing a standard-
ized survey (Elliott Tew, Dorn, & Schneider, 2012; Kay, 1994). Besides student grades, retention,
attitudes, and anxiety, studies have indicated gender differences in introductory programming
courses (Rubio, Romero-Zaliz, Mañoso, & Angel, 2015). Java is one of the most common lan-
guages employed in introductory programming courses; however, Java’s peculiarities make it
difficult to learn (Pendergast, 2006). The academic literature is teeming with studies on methods
to facilitate programming education. Languages have been shown to have an impact on compre-
hension. For example, Nikula, Sajaniemi, Tedre, and Wray (2007) demonstrated that languages
with a higher level of abstraction, namely Python, improved student retention and comprehen-
sion. Similarly, visual tools for programming can be employed to aid novice programmers over-
come the aforementioned difficulties (Moor & Deek, 2006). Following the visual programming
strategy, Lee, Pradhan, and Dalgarno (2008) argued that visual tools facilitate a novice program-
mer to develop and manipulate mental models and schemas.

Gaming strategies are considered more enjoyable than traditional training environments
(Venkatesh, 1999). Goel and Kathuria (2010) demonstrated that having students work on sub
problems and combine the sub problems to solve a larger problem is effective in improving the
quality, efficiency, and teamwork of introductory programming students. Games involve working
on smaller tasks to achieve a goal. For example, many video games have levels and once all lev-

 Du, Wimmer, & Rada

 55

els have been successfully completed the player wins the game. IBM’s Robocode is an environ-
ment that improved users programming skills while deemed an enjoyable experience (Long,
2007). Code.org seeks to intersect the visual approach with gaming strategies.

What Is Code.org?
Code.org is a non-profit foundation headquartered in Seattle, Washington. According to its char-
ter, Code.org wants to help make computer science education available to all United States of
America (USA) students in all K-12 public schools by 2020. Its charter further says:

Code.org is ... leveraging years of foundational effort by the National Science Foundation
.... ...Code.org plans to ...: 1) Educate; 2) Advocate; and 3) Celebrate The ‘Educate’
strategy consists of bringing computer science to schools by developing our own curricu-
lum, vetting and recommending additional third-party-designed curriculum, and training
teachers to implement and use these curricula in the classroom. The ‘Advocate’ lever in-
volves changing the rules in states that currently don’t recognize CS as satisfying gradua-
tion credits in math and/or science.... Finally, the ‘Celebrate’ piece involves inspiring
students, parents, and schools to want to participate through high-level marketing via vid-
eos, events and celebrity endorsements. (GuideStar, 2014)

As of 2013, the ‘Educate Initiative’ has a budget of $3.3 million that was to provide 1) $10,000
per teacher for training and 2) the development of an open-source curriculum in the programming
language Block. The ‘Advocate Initiative’ has a budget of $900,000 for advocating computer sci-
ence education. As of 2013, in 33 of 50 USA states ‘computer science’ does not count toward K-
12 math or science requirements. Also, if a student studied computer science this subject failed to
meet graduation requirements. In 2013, Code.org helped change this policy in Washington State
and aims to do so in the 35 other states. The ‘Celebrate Initiative’ has a budget of $900,000 and
aims to use marketing, celebrities, and events to motivate students, parents, and teachers to sup-
port computer science education. This paper focuses on investigating the ‘Celebrate Initiative’ by
studying students’ attitudes toward programming after they complete an Hour of Code tutorial.
Code.org said that the metric of success for the ‘Celebrate Initiative’ was the number of students
who attempted to learn the Hour of Code online. The Hour of Code is a one-hour introduction to
computer science and organized by Code.org. The goal of the Hour of Code is to demystify code
and show that anybody can learn the basics. Participation in computer science week in 2014 was
represented by 180 countries and 76,000 students in the classroom (Wilson, 2015). Code.org has
extended its reach in computer science education by providing curriculum guides for AP comput-
er science (Franke & Osborne, 2015) and is being deployed in K-5 and K-12 curriculum (Apone
et al., 2015).

Approaches to Teaching Programming Visually
Code.org employs a visual approach to teaching computer programming. Visual approaches have
been shown to enhance program comprehension (Rajala, Laakso, Kaila, & Salakoski, 2008) and
may be paired with goals and plans (Hu, Winikoff, & Cranefield, 2012) or screencasts (Powell,
2015). Other visual programming tools have been employed in computer science education. One
such tool is Alice (Dann, Cooper, & Pausch, 2011). Alice is a virtual environment where students
use visual programming in the form of puzzle pieces to construct code that causes actors in a vir-
tual environment to perform tasks (i.e., a rabbit hopping). Alice was employed in a general educa-
tion programming course for students who did not require the in-depth knowledge of a computer
science course (Ali & Smith, 2014). Alice was shown to be an effective alternative to standard
programming languages in teaching programming to undergraduate computer science students
(Sykes, 2007) as Alice’s approach addresses many of the issues plaguing programming education
(Ali & Smith, 2014).

‘Hour of Code’: Can It Change Students’ Attitudes Toward Programming?

56

Like Alice, Scratch is a visual tool for teaching computer programming, primarily for ages 8-16
(J. Maloney, Resnick, Rusk, Silverman, & Eastmond, 2010). Scratch involves tasks such as draw-
ing and animating characters, creating stories, and games (Resnick et al., 2009). Scratch has been
deployed as a tool for teaching programming to inner-city youth (J. H. Maloney, Peppler, Kafai,
Resnick, & Rusk, 2008). Scratch has proven its worth in preparing at-risk computer science stu-
dents for further computer science courses (Rizvi, Humphries, Major, Jones, & Lauzun, 2011).
Additionally, universities have used Scratch as a first computer programming course ultimately
transitioning students to Java or other languages (Malan & Leitner, 2007).

Similar to Alice and Scratch, MIT App Inventor is a visual programming tool where students
build code by assembling blocks or pieces of a puzzle (Wolber, Abelson, Spertus, & Looney,
2011). App Inventor creates mobile applications for android devices. As part of a Google pilot
program, App Inventor was deployed at the University of San Francisco and gained interest since
students could create applications for their devices (Wolber, 2011). App Inventor was also de-
ployed with a template-based approach to mobile programming for electrical engineering students
and, judged by surveys, proved successful (Akopian, Melkonyan, Golgani, Yuen, & Saygin,
2013). Demonstrating its flexibility to teach introductory programming concepts, App Inventor
has been deployed at summer camps for high school students in Georgia with mixed results (Roy,
2012).

Around the World
Programming education is widely recognized as important to a country, and research is being
conducted on different approaches that may be necessary in different cultural contexts (Apiola &
Tedre, 2012). At a workshop in Saudi Arabia on computer science education, the Code.org initia-
tive was introduced (Rada, 2013). Another speaker at the same workshop, Sami Al-Wakeel, ex-
plained that Saudi students had already been introduced to computing and thus an initiative such
as Code.org’s Hour of Code might be less relevant in Saudi Arabia than in the USA (Al-Wakeel,
2013). Al-Wakeel served as leader of the National Computer Education Committee of the Saudi
Arabian Ministry of Education from 1996 to 2006 and described how Saudi Arabia decided that
computer science education for all students at all levels was important to its economic develop-
ment (Al-Wakeel, 2001). Accordingly, the government installed networked computer labs in all
secondary schools and most elementary schools. Additionally, the Saudi government created new
teacher training departments in teacher education colleges so that ample computer science teach-
ers were educated. In such a system, the Code.org initiative is not as relevant, as all students have
already been exposed to computer science. Singapore has one of the world’s most advanced edu-
cational systems. Unlike the Saudi approach and the Code.org approach, the Singaporean goal is
not that everyone learns computer science but that everyone uses computers to improve learning
and a large fraction (but not all) of the population participates in the program.

As computers become more pervasive in society the need for skills in computer programming
increases. Research demonstrates that learning and teaching computer programming is challeng-
ing and student retention proves difficult. Code.org, with support from the National Science
Foundation, has emerged as an advocate for computer science education with programming tuto-
rials as well as international outreach. With the emergence of Code.org’s Hour of Code initiative,
research is required to understand how these tutorials can improve students’ attitudes and com-
prehension of computer programming. Two hypotheses were examined in this research.

1. The Hour of Code tutorials at Code.org would significantly enhance students’ attitudes
toward programming.

2. The Hour of Code tutorials at Code.org would significantly improve students’ skill for
coding.

 Du, Wimmer, & Rada

 57

Methodology
Students were asked to undertake one tutorial, as part of its Hour of Code initiative. The proce-
dure, data processing, and analysis are described in the forthcoming sections.

Procedure
Undergraduate students, especially freshmen and freshwomen, were randomly selected from re-
quired core course sections in an effort to capture a diverse group of students within the sample.
Undergraduate students from two universities participated. In particular, one hundred and sixteen
students with a spectrum of majors including business, accounting, criminal justice, allied health
sciences, geography, hospitality tourism management, and psychology agreed to take part in this
study. Among them, 44 students were from one university (call it A) and 72 students from the
other university (call it B).

Data collection
The methods for collecting data involved three steps.

1. Pre-survey.
2. Online tutorial.
3. Post-survey.

Pre and post surveys were used to study the change in students’ attitudes and skills based on the
work by Bouhnik and Giat (2009). An electronic pre and post-test Likert-scale questionnaire was
implemented to survey the participants about their attitudes toward programming (see the Appen-
dix). Participants’ responses to the pre and post surveys were matched using a PIN number ran-
domly created for each participant. The electronic questionnaire included a variety of questions
relating to programming experience and attitudes toward programming. Background information
such as participants’ programming experience was captured first. Participants were asked whether
they had ever taken any programming courses. Next, participants were asked the number of years
of programming experience.

The next set of questions was targeted on understanding participants’ attitudes toward program-
ming (see Table 1). Among the four questions relating to students’ attitudes toward programming,
three (Q1, Q3, and Q4) used a five-point Likert scale: “Strongly disagree”, “Disagree”, “Neutral”,
“Agree”, and “Strongly agree”. Question 2 (Q2) used a four-point Liker scale: “Very likely”,
“Moderately likely”, “Slightly likely” and “Not at all likely”. Another set of questions was related
to programming knowledge. Three questions were asked to test participants’ understanding of
three basic programming concepts: sequence, if-then, and loop. For each programming question,
four options were provided and students were asked to select the best answer. At the end of the
questionnaire, participants were asked to provide additional comments regarding programming.
In summary, the pre-survey contained eight questions covering the topics mentioned above. The
post survey contained the same eight questions that appeared in the pre-survey plus two new
questions (Q3 and Q4) with the assumption that the students’ attitudes toward programming and
their coding skills would change as a result of taking the tutorial.

Table 1. The four questions relating to attitudes towards programming.
Q1 To what extent do you agree or disagree with the following statement: Everybody in this

country should learn how to program a computer because it teaches you how to think.
Q2 How likely are you to take a programming course?
Q3 Did you enjoy the tutorial provided by Code.org?
Q4 Completing the tutorial changed your attitude towards programming how?

‘Hour of Code’: Can It Change Students’ Attitudes Toward Programming?

58

Coding tutorial used in the study
Given that most of the participants were freshmen or freshwomen and had very limited program-
ming experience, the tutorial “write your first computer program” from the category of “Tutorial
for Beginners” was selected to use in this study. The participants were asked to complete the tuto-
rial in class. This tutorial invited the student to work through 20 progressively more complex
mazes to get an angry bird to reach a pig (see http://learn.code.org/hoc/1). The student could
cause the bird to take one step forward, left, or right using the programming language called
Block. The only other instructions available to the student were to repeat an instruction or to
make an if-then decision. The student began with the simple maze in which the pig is two steps in
front of the bird. If the student solved the maze, then the student was given positive feedback and
presented a more challenging maze. For instance, the 8th maze involves ‘do loops’ (see Figure 1).
The student was given feedback after each attempt. After a few successful mazes had been
solved, a video appeared to introduce the next sequence of mazes. The videos were presented by
famous people, including one by Bill Gates and another by Mark Zuckerberg. For instance, after
the ‘do loops’ sequence of mazes, the student was introduced to the ‘if instruction’ by Bill Gates
(see Figure 2). When the student came across difficulties, he or she was encouraged to first ask
the classmates for help. The Hour of Code emphasized the value of having students turn to one
another for help.

Figure 1. "Do Loops"

http://learn.code.org/hoc/1

 Du, Wimmer, & Rada

 59

Figure 2. Bill Gates Video

Data Processing
The participants were asked to take the electronic questionnaire before and after they completed
the tutorial, “write your first computer program”. All data were anonymized so students could not
be individually identified. Student responses were collected automatically by a secured third party
online survey platform (http://www.qualtrics.com/).

The data were processed differently for the questions relating to attitudes toward programming
and programming experience. In order to compare the change of students’ attitudes toward pro-
gramming, for the questions relating to attitudes toward programming, the participants’ response
to the Likert-scale questions was processed into a binary number, 1 or 0 depending on the posi-
tive or negative response.

The responses, r captured by Qualtrics.com were recorded as 1 to 5, corresponding to strongly
disagree to strongly agree, respectively. Next, the r was processed into a binary value, x (see Eq.
1). Only the positive responses (agree and strongly agree) were recorded as one. Other responses
were recorded as zero.

ijx
� = �

0 𝑤ℎ𝑒𝑒 𝑟𝑖𝑖 < 4
1 𝑤ℎ𝑒𝑒 𝑟𝑖𝑖 ≥ 4

 (Eq.1)

Where rij is Student i’s original response to Question j and xij is the processed Student i’s
response for Question j.

For the questions relating to programming experience, the participants’ response was processed
into a binary number, 1 or 0 depending on whether it matches the correct answer. Four options
were provide for each programming question. Students were asked to select one that best an-
swered the question.

http://www.qualtrics.com/

‘Hour of Code’: Can It Change Students’ Attitudes Toward Programming?

60

In this case, the responses, r captured by Qualtrics.com were recorded as 1 to 4, corresponding to
a to d, respectively. Next, the r was processed into a binary value, x (see Eq. 2) depending on
whether it matched the correct answer.

𝑥𝑖𝑖 = �
0 𝑤ℎ𝑒𝑒 𝑟𝑖𝑖 ≠ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑎𝑎𝑎𝑎𝑎𝑎
1 𝑤ℎ𝑒𝑒 𝑟𝑖𝑖 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑎𝑎𝑎𝑎𝑎𝑎 (Eq.2)

Where rij is Student i’s original response to Question j and xij is the processed Student i’s
response for Question j.

For example, a question related to programming concepts was:

In the following pseudocode, what is printed?

a = 1
b = 2
c = a
a = b
b = c
print a, b

Choice of responses.

a. nothing
b. 1 2
c. 2 1
d. None of the above

The correct answer is c. The response was coded as 0 when the participant chose the incorrect
answer and 1 when he or she selected the correct answer, c.

Analysis
The hypotheses suggest that the Hour of Code tutorials at Code.org would significantly enhance
student’s attitudes toward programming as well as their coding skills. In order to test the hypothe-
ses, students’ responses from both pre and post survey were compared. The comparison analysis
contained two steps. First, the frequency of different responses for the four attitude questions was
compared. One can learn basic information about the changes from those numbers, such as in-
creased (or decreased) positive (or negative) responses for certain questions. Accuracy is defined
as the percentage of the programming questions that were correctly answered and used to evalu-
ate students’ performance on the three programming questions. Accuracies between two universi-
ties were compared.

It should be noted that frequencies cannot be used to tell whether the responses from pre and post
survey were statistically different. A statistical test is necessary for measuring significance.
Therefore, the second step was to conduct a two-tailed, paired-sample t-test to examine whether
the difference between pre and post survey responses was significant. The t value and p value
were used to evaluate the difference.

Results
Students were asked to enter the same PIN randomly created for each participant when they took
the pre and post-survey so that their responses in the pre and post survey could be matched. The
mismatch happened at two situations 1) when two students completed the pre-survey but not the
post survey, and 2) when one student did not enter a PIN in both surveys. Accordingly these three
responses were dropped from the dataset. As a result, the data set contains 116 students’ respons-

http://en.wikipedia.org/wiki/Statistical_hypothesis_testing

 Du, Wimmer, & Rada

 61

es. All comparisons were conducted within one sample of 116 participants. Of the 116 students
participating in this study, the majority (72%) had never taken any computer programming cours-
es. The average number of years of programming experience was one year. This information con-
firmed the assumption that the tutorial “write your first computer program” was appropriate to
use in this study due to participants’ very limited programming experience.

Awareness of Importance of Programming
In the pre-survey, 29% of the participants believed that everyone in the country should learn how
to program a computer compared to 26% who did not while 45% remained neutral. By contrast,
in the post-survey, the majority (54%) of the participants indicated that they agreed with the
statement, 29% were neutral, and 16% disagreed. Figure 3 shows the distribution of the different
responses. It shows that more students have positive attitudes toward programming after complet-
ing an Hour of Code tutorial.

Pre-Survey (n=116)

Post-Survey (n=116)

Figure 3. Students’ responses to whether everyone in USA should learn to program

There was a significant difference in students’ attitudes towards learning programming, before
the tutorial (M = 0.29, SD = 0.21) and afterwards (M = 0.54, SD = 0.25); t (115) = -5.92, p = <
0.001. These results suggest that the tutorial changed participants’ attitudes toward learning pro-
gramming. After taking the tutorial, students were more positive about learning programming.

In the pre-survey, the majority (58%) of participants considered it unlikely that they would take a
programming course compared to 42% who did. In the post-survey, the reversal occurred with
57% indicating they would do so. The difference between the pre and post survey responses is
shown in Figure 4. Students are more likely to take a programming course after completing an
Hour of Code tutorial.

0
0.1
0.2
0.3
0.4
0.5

6%
20%

45%

25%

4%

Pre-survey

0
0.1
0.2
0.3
0.4
0.5

4%
12%

29%

46%

9%

Post-survey

‘Hour of Code’: Can It Change Students’ Attitudes Toward Programming?

62

Pre-Survey (n=116)

Post-Survey (n=116)

Figure 4. Students’ responses to how likely they are to take a programming course

There was a significant difference in students’ responses, before the tutorial (M = 0.42, SD =
0.25) and afterwards (M = 0.57, SD = 0.25); t (115) = -3.93, p = < 0.001. These results suggest
that the tutorial changed participants’ attitudes toward learning programming. After taking the
tutorial, students are more likely to take a programming course.

The third and fourth questions were asked only in the post survey. The majority of participants
(79%) enjoyed the tutorial provided by Code.org compared to 8% who did not (see Figure 5).
When asked about how the tutorial changed their attitude towards programming, the majority of
participants (60 %) answered “strongly positive” or “positive” (see Figure 6). Interestingly, over a
third (35%) were non-committal. It is possible that working on the tutorial for an hour was inade-
quate for those participants to detect changes in their attitudes toward programming. One would
expect to see an increase in the positive feedback if participants were to complete a series of tuto-
rials. Both Figure 5 and 6 illustrate the distribution of the responses after students completed the
Hour of Code tutorial and show that students have more positive attitudes toward programming
after completing an Hour of Code tutorial.

Figure 5. Students’ responses to whether they enjoyed the tutorial provided by Code.org
(n=116)

0
0.1
0.2
0.3
0.4
0.5

very
likely

likely unlikely very
unlikely

4%

38%
44%

14%

Pre-survey

0
0.1
0.2
0.3
0.4
0.5

very
likely

likely unlikely very
unlikely

7%

50%

32%

11%

Post-survey

4% 4%

13%

61%

18%

Strongly disagree

Disagree

Neither Agree nor
Disagree
Agree

Strongly Agree

 Du, Wimmer, & Rada

 63

Figure 6. Students’ responses to how completing the tutorial changed their attitude toward
programming (n=116)

Of the 116 participants, a small percentage, 14% provided additional comments regarding pro-
gramming. In the pre-survey, one common, repeated comment is “I have no clue what I’m do-
ing”, which is expected given the participants’ limited programming experience. By contrast, par-
ticipants’ comments were much more positive in the post-survey. The selected quotes from par-
ticipants’ comments represent four themes – fun, interesting, important, and great – that emerged
and illustrate that participants appreciated the Hour of Code tutorial.

Fun: “I thought it would be hard but it was actually fun”
Interesting: “It is a very interesting language and although it is complex it can be
learned by virtually anybody! It would just take time just like anything else!”
Important: “Became much more interested with programming and realized how im-
portant it truly is”
Great: “Great way to learn! It was a fun, interactive way to learn how to "code".”

Skills for Coding
Three questions related to programming concepts, loop, if, and sequence, were asked before and
after participants completed the tutorial. Questions related to comprehension were similar to those
employed by Ford and Venema (2010); however, pseudo-code was employed in lieu of Java or
C++. The difference on accuracy was tested by using a two-tailed, paired-sample t-test. These
differences were not statistically significant. The detailed results are shown in Table 2.

Table 2. T-test statistics comparing skills for coding before and after the tutorial

Questions n mean SD t p

Loop
Before taking the tutorial 116 0.41 0.24
After taking the tutorial 116 0.47 0.25
 -1.35 0.179

If
Before taking the tutorial 116 0.72 0.2
After taking the tutorial 116 0.66 0.23
 1.47 0.1449

Sequence
Before taking the tutorial 116 0.19 0.16
After taking the tutorial 116 0.18 0.15
 0.26 0.7975

10%

50%

35%

3% 2%

strongly positive

positive

neutral

negative

strongly negative

‘Hour of Code’: Can It Change Students’ Attitudes Toward Programming?

64

Completing an Hour of Code tutorial did not make a difference in the accuracy of the three pro-
gramming skills questions. One possible reason for that is the code in the survey is more tradi-
tional and does not closely mimic the code on “the write your first computer program” at
Code.org. Another possible reason is that using Hour of Code alone was not effective in teaching
students how to program. The Hour of Code was not designed to replace traditional computer
classes but could be incorporated into computer science curricula as another dimension of com-
puter science education.

Of the 116 participants, 44 were from University A and 72 from University B. It is interesting to
notice that the accuracy of participants varied between the institutions. For the loop question,
there was no significant difference for the participants from University A, before the tutorial (M =
0.48, SD = 0.26) and afterwards (M = 0.43, SD = 0.25); t (43) = 0.53, p = 0.60. Therefore, com-
pleting an Hour of Code tutorial did not make a difference in the accuracy for the participants
from University A. By contrast, there was a significant difference on the accuracy for the partici-
pants from University B, before the tutorial (M = 0.36, SD = 0.23) and afterwards (M = 0.49, SD
= 0.25); t (71) = -2.59, p = 0.01. Hence, the accuracy was significantly increased for the partici-
pants from University B (p < 0.05). This increased accuracy demonstrated enhanced understand-
ing of the loop concept for participants who completed the Hour of Code tutorial. The student
populations from both universities consisted of first year undergraduate business majors; howev-
er, the structure of the courses was slightly different. University A’s course covered a more di-
verse range of computing topics such as networking, I/O, security, and communications whereas
University B was focused solely on business and office applications. Since students from Univer-
sity B had more depth in applications they would have more background to understand looping
concepts.

For the IF question, no significant difference was detected for the participants from University A,
before the tutorial (M = 0.66, SD = 0.23) and afterwards (M = 0.68, SD = 0.22); t (43) = - 0.27, p
= 0.79. Therefore, completing an Hour of Code tutorial did not enhance the students’ understand-
ing of the IF concept from University A. However, there was a significant difference for the par-
ticipants from University B, before the tutorial (M = 0.76, SD = 0.18) compared to afterwards (M
= 0.64, SD = 0.23); t (71) = 2.24, p = 0.03. Thus accuracy, post-survey, was significantly de-
creased for the participants from University B (p < 0.05). Students at University B had reviewed
‘if’ statements in Microsoft Excel so it is possible transitioning an Excel formula to code caused
confusion. It seems that the stylized, visual instructions in the Hour of Code tutorials confused the
participants when they were later tested on a traditional format what was usually taught in intro-
ductory computer science courses.

In summary, the findings show that completing the Hour of Code tutorials positively impacted the
students’ attitudes toward programming. However, changes in understanding and accuracy de-
pended on the type of coding questions and the university group. Introducing the Hour of Code
tutorials into classrooms sheds some insight into the future development of computer science ed-
ucation. However, sometimes the students were unclear on the purpose of the tutorial, or more
generally, the purpose of computing, as manifested by this comment from one student, “It was
fun, yet it didn’t actually teach me code. It taught me it a basic coding concept, but I figure it’s a
first step.”

The primary limitation of this study was the small sample size. Due to the exploratory nature of
this study, the convenience sample provided a good foundation for exploring the impact of the
Hour of Code tutorials on students’ attitudes toward programming as well as their skill for cod-
ing. Future work should consider incorporation of more participants from a variety of locations.
Another limitation is the inconsistency of Likert scale in the survey questions. One question uses
four-point Likert scale instead of the five-point scale. Although it should not cause any bias since
the ‘distance’ between each successive item category is equivalent, it is better to use the same

 Du, Wimmer, & Rada

 65

Likert scale for all questions. In addition, the questions (have you ever taken any programming
courses and what’s your experience with programming) should not be asked twice (in the pre and
post surveys) when the same group was surveyed. These limitations will be addressed in our fu-
ture research.

Discussion
In this section, the authors first examine how the findings from the study helped to answer the
hypotheses. Next, the authors suggest several ways to further improve Hour of Code.

The change of students’ attitudes toward programming following the tutorial was statistically sig-
nificant, and it demonstrated an increased awareness of the importance of programming. There-
fore the first hypothesis was proven, and Hour of Code tutorials successfully inspired students
toward learning the skills of computer programming.

However, the second hypothesis was not proven as no significant difference was found in the ac-
quisition of skills for coding following the tutorial. The comment from a student in the post-
survey highlighted that although the tutorial was fun it was not useful for teaching actual code.

The results shed light for future work. The question format used to test participants’ understand-
ing of basic programming concepts needs to mimic the ones adopted by Hour of Code. The Hour
of Code utilizes a gaming strategy and emphasizes interactive learning. However the current sur-
veys use multiple choice questions. Using a more interactive question format in a gaming context
would help students apply the concepts to solve a problem. This confirms the study of Rajala et
al. (2008) where visual approaches aid in program comprehension. Similarly, visual approaches
such as Alice have been an effective alternative to standard approaches to programming educa-
tion (Sykes, 2007) and Scratch is used to transition students to other languages such as Java
(Malan & Leitner, 2007). Furthermore, gaming strategies are considered more enjoyable than tra-
ditional environments (Venkatesh, 1999) and dividing problems into sub-problems are effective
in improving introductory programming students (Goel & Kathuria, 2010). The success of
Code.org is likely due to the aforementioned reasons. Code.org follows a visual approach and
divides the larger problem into sub-problems as a series of steps. This is all framed within a game
context similar to the popular Angry Birds.

The Hour of Code is remarkable for its ability to capture the attention of the mass media and has,
of necessity, needed to simplify its pitch to succeed in the mass media. The Hour of Code is not
ultimately teaching coding for an hour. Hour of Code is designed to take advantage of infor-
mation technology to address the challenge of getting people to recognize a problem and be able
to convert it into an algorithm. The Hour of Code aims to get students engaged in a tutorial high-
lighting how a problem can have a solution, expressed as an algorithm which can be translated
into code. This code can be run on a computer to solve the problem. Therefore, to help people
appreciate the importance of this process, Hour of Code tutorials have a focus on problems that
students can readily grasp and on tutorials that are fun to perform. Of course, the purpose is not
entertainment or fun but teaching and learning. If teachers are to use the Hour of Code in their
classrooms, they need to appreciate the learning objectives of the Hour of Code and integrate the
tutorials appropriately into their teaching.

Ways to Further Improve Hour of Code
People are increasingly adept at using simple computing devices through a kind of visual pro-
gramming which may be a different ability than the needs of classically trained computer scien-
tists. What does that mean for the initiative of Hour of Code? Several opportunities for improve-
ments are discussed next.

‘Hour of Code’: Can It Change Students’ Attitudes Toward Programming?

66

Motivation and Synchronization
A student’s motivation is crucial in determining whether that student finds a particular resource
helpful (Chen & Rada, 1996). Motivational factors might include:

• obtaining credentials toward a certificate or degree,
• securing jobs, and
• the potential for peer support.

In education, if a student wants a diploma, the school generally determines the sequence of ‘tuto-
rials’ the student must master to earn the diploma. However, since the purpose of the diploma
may be partly to help the student get a job, a student’s progress in the coding tutorials could be
connected to tasks and rewards relevant to finding employment. A simple example of a pro-
gramming-type task that small businesses might find helpful could be developing a web site to
market the business. A student who lives in the same neighborhood could learn about the busi-
ness’s marketing requirements. That same student could learn how to develop a web site through
online tutorials. A different example might be tutorials for developing applications for
smartphones. Students could sell their applications through app stores.

Students may be intimidated when they are asked to learn programming. This phenomenon was
possibly caused by the non-interactive traditional training environments (Cheng, Jayasuriya, &
Lim, 2010). The Code.org adopts a gaming strategy and tries to provide more interactive tutorials
to students. The vision of Code.org is that students have the opportunity to learn aspects of com-
puter science. An effective way to motivate students is to keep them open-minded toward pro-
gramming and encourage them to try new things. Students appreciate that effort. Just as one stu-
dent commented when he completed an Hour of Code tutorial, “I thought it would be hard but it
was actually fun.”

The guides at Code.org for delivering the Hour of Code emphasize the value of having students
turn to one another for help. This peer-to-peer learning can be valuable for multiple reasons
(Hanks, Fitzgeral, McCauley, Murphy, & Zander, 2011). The benefits of pair programming in-
clude increased success rates in introductory courses, higher student confidence in solutions, and
improvement in learning outcomes. Systems have been proposed for Massively Multiplayer
Online Role-Playing Games for teaching introductory computer programming (Malliarakis,
Satratzemi, & Xinogalos, 2013).

As an advocacy organization, Code.org succeeded in marketing online computer programming
tutorials. The Hour of Code, as a global movement, is reaching tens of millions of students in
over 180 countries. The organizations providing the tutorials and those providing the students
were, however, not always synchronized. Perhaps the marketing schedule was overly ambitious?
From the authors’ perspective, the incentives for alignment of marketing and service provision
may be better served should both get housed in the same super-organization. Code.org could offer
another Hour of Code in another year, and next time further align marketing, tutorial access, and
school delivery.

Time Cures All Woes
The incentive for the Hour of Code was that too many people lack a basic understanding of com-
puting. However, in the existing tutorials, such as the Angry Birds tutorial or the MIT App De-
velopment tutorial, the programming is different from what was taught in introductory computer
science thirty years ago. Instead, the student has stylized, visual instructions and not a general-
purpose programming language. This may help to explain why students who completed an Hour
of Code tutorial did not show improved skills for coding when they were later asked to answer
the traditional programming questions.

 Du, Wimmer, & Rada

 67

Increasingly people are able to get computational devices to perform useful tasks by engaging a
highly stylized programming interface. In the 1980s, human-computer interaction experts showed
that spreadsheets were special declarative programming systems for accountant-type activities
and that their purpose was extremely powerful (Lewis, 1985). The argument for new computer
science courses for students who major in the arts is that those courses should focus on helping
students develop media objects with computers whether or not the ‘programming tool’ fits the
classical model of a programming language (Forte & Guzdial, 2005). From these and many other
examples, one sees that the trend is to have people achieve every day results with computers in a
way that is a restricted kind of programming. That is exactly what Hour of Code tutorials try to
teach students.

When a person uses his online calendar to schedule a meeting every Monday at 11 a.m. for the
next two months, the person has implemented a simple computer program in the highly stylized
language of online calendars. When a person tells his GPS system that he wants to go from home
to the store and then to work, to avoid highways and traffic, but otherwise take the shortest route,
the person has given a computer instructions in a stylized language for GPS. As such applications
spread, more people become engaged in some basic and invisible ‘programming’. The intention
of Hour of Code tutorials is to make students aware that learning how to code is very important
and to keep them open-minded to learning coding. Those who understand loops and conditionals
are ahead of others in their ability to master the world everyone faces. However, whether or not
an Hour of Code is taught to everyone, this ability to ‘program devices’ will become increasingly
pervasive. An Hour of Code might help people understand and control their world of devices.

Conclusion
The Code.org video of February 2013 reached millions of viewers, and the Hour of Code is
claimed by its organizers to be a success. The authors conducted a study by asking a group of un-
dergraduate students to participate in an Hour of Code tutorial and then surveying them about
their attitudes toward programming and their understanding of programming knowledge. The re-
sults indicate the positive impact of the Hour of Code on students’ attitudes toward programming.
However, completing an Hour of Code tutorial alone does not necessarily impact students’ skills
for coding, which suggests that a combination of online tutorials with a traditional computer sci-
ence lecture may be necessary to improve students’ coding knowledge.

Motivating students is a challenge for any future Hour of Code tutorials. This depends on whether
students are working toward a credential from a school or seeking external rewards, such as con-
nection with an employer or financial gain. Code.org wants to see a computer science curriculum
that is mandatory in schools and run by appropriately trained teachers. The Hour of Code was
basically a marketing effort. Further connecting this marketing effort to the goals of mandating
computer science education and training computer science teachers might help volunteers better
understand how they can support future Hour of Code initiatives.

References
Akopian, D., Melkonyan, A., Golgani, S., Yuen, T., & Saygin, C. (2013). A template-based short

course concept on android application development. Journal of Information Technology
Education: Innovations in Practice, 12(1), 13-28. Retrieved from
http://www.jite.org/documents/Vol12/JITEv12IIPp013-028Akopian1196.pdf

Al-Wakeel, S. S. (2001). Innovation in computer education curriculum for the computerization of
Saudi Arabia: a model for developing countries. Paper presented at the Frontiers in Education
Conference, 2001. 31st Annual.

http://www.jite.org/documents/Vol12/JITEv12IIPp013-028Akopian1196.pdf

‘Hour of Code’: Can It Change Students’ Attitudes Toward Programming?

68

Al-Wakeel, S. S. (2013). Creativity and innovation in computer education: A solid foundation
for the Saudi society’s knowledge. Paper presented at the First Workshop on Computer and
Information Sciences: Computer Education Quality and Innovation, Tabuk, Saudi Arabia, ,
Nov 21-22.

Ali, A., & Smith, D. (2014). Teaching an introductory programming language in a general
education course. Journal of Information Technology Education: Innovations in Practice, 13,
57-67. Retrieved from http://www.jite.org/documents/Vol13/JITEv13IIPp057-
067Ali0496.pdf

Apiola, M., & Tedre, M. (2012). New perspectives on the pedagogy of programming in a
developing country context. Computer Science Education, 22(3), 285-313.

Apone, K., Bers, M., Brennan, K., Franklin, D., Israel, M., & Yongpradit, P. (2015). Bringing
grades K-5 to the mainstream of computer science education. Paper presented at the
Proceedings of the 46th ACM Technical Symposium on Computer Science Education.

Bouhnik, D., & Giat, Y. (2009). Teaching high school students applied logical reasoning. Journal
of Information Technology Education: Innovations in Practice, 8(1), 1-16. Retrieved from
http://www.jite.org/documents/Vol8/JITEv8IIP001-016Bouhnik681.pdf

Chen, C., & Rada, R. (1996). Interacting with hypertext: A meta-analysis of experimental studies.
Human-Computer Interaction, 11(2), 125-156.

Cheng, T. K., Jayasuriya, M., & Lim, J. (2010). Removing the fear factor in Programming. The
Python Papers Monograph, 2, 1-9.

Daly, T. (2009). Using introductory programming tools to teach programming concepts: A
literature review. The Journal for Computing Teachers, Fall. Retrieved from
http://www.iste.org/jct

Dann, W. P., Cooper, S., & Pausch, R. (2011). Learning to program with Alice (w/CD ROM):
Prentice Hall Press.

Elliott Tew, A., Dorn, B., & Schneider, O. (2012). Toward a validated computing attitudes
survey. Proceedings of the Ninth Annual International Conference on International
Computing Education Research, 135-142.

Ford, M., & Venema, S. (2010). Assessing the success of an introductory programming course.
Journal of Information Technology Education: Research, 9(1), 133-145. Retrieved from
http://www.jite.org/documents/Vol9/JITEv9p133-145Ford810.pdf

Forte, A., & Guzdial, M. (2005). Motivation and nonmajors in computer science: Identifying
discrete audiences for introductory courses. IEEE Transactions on Education, 48(2), 248-
253.

Franke, B., & Osborne, B. (2015). Decoding CS principles: A curriculum from Code. org. Paper
presented at the 46th ACM Technical Symposium on Computer Science Education.

Goel, S., & Kathuria, V. (2010). A novel approach for collaborative pair programming. Journal
of Information Technology Education: Research, 9(1), 183-196. Retrieved from
http://www.jite.org/documents/Vol9/JITEv9p183-196Goel314.pdf

GuideStar. (2014). GuideStar exchange report on Code.org. Retrieved from
http://www.guidestar.org/organizations/46-0858543/code-org.aspx

Guynn, J. (2013, Feb. 26). Silicon Valley launches campaign to get kids to code. Los Angeles
Times.

http://www.jite.org/documents/Vol13/JITEv13IIPp057-067Ali0496.pdf
http://www.jite.org/documents/Vol13/JITEv13IIPp057-067Ali0496.pdf
http://www.jite.org/documents/Vol8/JITEv8IIP001-016Bouhnik681.pdf
http://www.iste.org/jct
http://www.jite.org/documents/Vol9/JITEv9p133-145Ford810.pdf
http://www.jite.org/documents/Vol9/JITEv9p183-196Goel314.pdf
http://www.guidestar.org/organizations/46-0858543/code-org.aspx

 Du, Wimmer, & Rada

 69

Hanks, B., Fitzgeral, S., McCauley, R., Murphy, L., & Zander, C. (2011). Pair programming in
education: A literature review. Computers Science Education, 21(2), 135-173.

Hu, M., Winikoff, M., & Cranefield, S. (2012). Teaching novice programming using goals and
plans in a visual notation. Proceedings of the Fourteenth Australasian Computing Education
Conference-Volume 123, pp. 43-52.

Kay, R. H. (1994). An exploration of theoretical and practical foundations for assessing attitudes
toward computers: The computer attitude measure (CAM). Computers in Human Behavior,
9(4), 371-386.

Koohang, A. A. (1989). A study of attitudes toward computers: Anxiety, confidence, liking, and
perception of usefulness. Journal of Research on Computing in Education, 22(2), 137-150.

Lee, M., Pradhan, S., & Dalgarno, B. (2008). The effectiveness of screencasts and cognitive tools
as scaffolding for novice object-oriented programmers. Journal of Information Technology
Education: Research, 7(1), 61-80. Retrieved from
http://www.jite.org/documents/Vol7/JITEv7p061-080Lee332.pdf

Lewis, C. (1985). Extending the spreadsheet interface to handle approximate quantities and
relationships. Paper presented at the CHI’85 Human Factors in Computing Systems, San
Francisco, California.

Long, J. (2007). Just for fun: Using programming games in software programming training and
education. Journal of Information Technology Education: Research, 6(1), 279-290. Retrieved
from http://www.jite.org/documents/Vol6/JITEv6p279-290Long169.pdf

Malan, D. J., & Leitner, H. H. (2007). Scratch for budding computer scientists. ACM SIGCSE
Bulletin, 39(1), 223-227.

Malliarakis, C., Satratzemi, M., & Xinogalos, S. (2013, Sept 19-21). Towards a new massive
multiplayer online role playing game for introductory programming. Paper presented at the
BCI’13, Thessaloniki, Greece.

Maloney, J. H., Resnick, M., Rusk, N., Silverman, B., & Eastmond, E. (2010). The scratch
programming language and environment. ACM Transactions on Computing Education
(TOCE), 10(4), 16.

Maloney, J. H., Peppler, K., Kafai, Y., Resnick, M., & Rusk, N. (2008). Programming by choice:
Urban youth learning programming with scratch. Proceedings of the 39th SIGCSE Technical
Symposium on Computer Science Education, pp. 367-371.

Moor, B., & Deek, F. (2006). On the design and development of a UML-based visual
environment for novice programmers. Journal of Information Technology Education:
Research, 5(1), 53-76. Retrieved from http://www.jite.org/documents/Vol5/v5p053-
076Moor29.pdf

Nikula, U., Sajaniemi, J., Tedre, M., & Wray, S. (2007). Python and roles of variables in
introductory programming: Experiences from three educational institutions. Journal of
Information Technology Education: Research, 6(1), 199-214. Retrieved from
http://www.jite.org/documents/Vol6/JITEv6p199-214Nikula269.pdf

Pendergast, M. (2006). Teaching introductory programming to IS students: Java problems and
pitfalls. Journal of Information Technology Education: Research, 5(1), 491-515. Retrieved
from http://www.jite.org/documents/Vol5/v5p491-515Pendergast128.pdf

http://www.jite.org/documents/Vol7/JITEv7p061-080Lee332.pdf
http://www.jite.org/documents/Vol6/JITEv6p279-290Long169.pdf
http://www.jite.org/documents/Vol5/v5p053-076Moor29.pdf
http://www.jite.org/documents/Vol5/v5p053-076Moor29.pdf
http://www.jite.org/documents/Vol6/JITEv6p199-214Nikula269.pdf
http://www.jite.org/documents/Vol5/v5p491-515Pendergast128.pdf

‘Hour of Code’: Can It Change Students’ Attitudes Toward Programming?

70

Powell, L. M. (2015). Evaluating the effectiveness of self-created student screencasts as a tool to
increase student learning outcomes in a hands-on computer programming course. Information
Systems Education Journal, 13(5), 106.

Rada, R. (2013, Nov 20-21). Opportunities in CS education. Paper presented at the First
Workshop on Computers and Information Sciences: Computer Education Quality and
Innovation, Tabuk, Saudi Arabia.

Rajala, T., Laakso, M.-J., Kaila, E., & Salakoski, T. (2008). Effectiveness of program
visualization: A case study with the ViLLE tool. Journal of Information Technology
Education: Innovations in Practice, 7. Retrieved from
http://www.jite.org/documents/Vol7/JITEv7IIP015-032Rajala394.pdf

Raub, A. C. (1981). Correlates of computer anxiety in college students. (Doctoral dissertation:
University of Pennsylvania) ProQuest paper AAI8208027.

Resnick, M., Maloney, J., Monroy-Hernández, A., Rusk, N., Eastmond, E., Brennan, K., . . .
Silverman, B. (2009). Scratch: programming for all. Communications of the ACM, 52(11),
60-67.

Rizvi, M., Humphries, T., Major, D., Jones, M., & Lauzun, H. (2011). A CSO course using
scratch. Journal of Computing Sciences in Colleges, 26(3), 19-27.

Roy, K. (2012). App inventor for android: Report from a summer camp. Proceedings of the 43rd
ACM Technical Symposium on Computer Science Education, pp. 283-288.

Rubio, M. A., Romero-Zaliz, R., Mañoso, C., & Angel, P. (2015). Closing the gender gap in an
introductory programming course. Computers & Education, 82, 409-420.

Sanders, M. E. (2008). STEM, STEM Education, STEMmania. The Technology Teacher, 68(4),
20-26

Sykes, E. R. (2007). Determining the effectiveness of the 3D Alice programming environment at
the computer science I level. Journal of Educational Computing Research, 36(2), 223-244.

Venkatesh, V. (1999). Creation of favorable user perceptions: Exploring the role of intrinsic
motivation. MIS Quarterly, 239-260.

Wilson, C. (2015). Hour of code---A record year for computer science. ACM Inroads, 6(1), 22-
22.

Wolber, D. (2011). App inventor and real-world motivation. Proceedings of the 42nd ACM Tech-
nical Symposium on Computer Science Education (pp. 601-606).

Wolber, D., Abelson, H., Spertus, E., & Looney, L. (2011). App Inventor. Sabastopol, CA, USA:
O’Reilly Media, Inc.

http://www.jite.org/documents/Vol7/JITEv7IIP015-032Rajala394.pdf

 Du, Wimmer, & Rada

 71

Appendix
We would like to examine students’ responses in order to detect changes, if any, in their attitudes
toward programing and coding skills. Therefore, we use the same questions in both pre and post
survey and compare their responses. Two additional questions only show up in the post survey to
ask their feedback of taking the tutorial.

The sample of survey questions:
1) First, please enter a PIN number (Please note: You need to enter the SAME number when you

take the pre and post-survey so that your responses in the pre and post survey will be matched.
You choose your own PIN)

2) Have you ever taken any programming courses?

• Yes
• No

3) What’s your experience with programming?

• Less than 1 year
• 2 to 3 years
• 4-5 years
• 5+ years

4) To what extent do you agree or disagree with the following statement: Everybody in this country

should learn how to program a computer because it teaches you how to think.

• Strongly Disagree
• Disagree
• Neither agree nor disagree
• Agree
• Strongly Agree

5) How likely are you to take a programming course?

• Very likely
• Moderately likely
• Slightly likely
• Not at all likely

6) Which of the lettered choices is equivalent to the following decision?

if x> 10 then
 if x>y then
 Print “x”
 endif
endif

a. If x>10 or y>10 then print “x”
b. If x>10 and x>y then print “x”
c. If y>x then print “x”
d. If x>10 and y>10 then print “x”

‘Hour of Code’: Can It Change Students’ Attitudes Toward Programming?

72

7) In the following pseudocode, what is printed?
g = 6
h = 4
while g < h
 g = g+1
endwhile
print g, h

a. nothing
b. 4 6
c. 5 6
d. 6 4

8) * Did you enjoy the tutorial provided by code.org?

• Strongly disagree
• Disagree
• Neutral
• Agree
• Strongly agree

9) * Completing the tutorial positively changed your attitude towards programming?

• Strongly disagree
• Disagree
• Neutral
• Agree
• Strongly agree

10) In the space below, please share any additional comments regarding programming.

* The questions will only appear in the post-survey

Biographies
Jie Du is an Assistant Professor in the School of Computing and In-
formation Systems at Grand Valley State University. She received her
BS in Information Systems from Southwest Jiaotong University, MS
and PhD in Information Systems from the University of Maryland,
Baltimore County. Her main research interests include artificial intelli-
gence and decision support systems.

Hayden Wimmer is an Assistant Professor in the Department of In-
formation Technology at Georgia Southern University. He has a Ph.D.
from the University of Maryland Baltimore County in Information Sys-
tems based in data mining and artificial intelligence applied to finan-
cial data. He also holds an M.S. is in Information Systems from
UMBC, an M.B.A. from the Pennsylvania State University, and a
B.S.in Information Systems from York College of PA. Dr. Wimmer
has multiple journal publications related to multi-agent systems, artifi-

 Du, Wimmer, & Rada

 73

cial intelligence, data science, and I.S. education; and serves in various editorial capacities includ-
ing co-editor in chief, board member, and reviewer of various journals and conferences and is a
member of the Association of Information Systems.

Roy Rada has a B.A. in Psychology from Yale University, a M.D.
from Baylor College of Medicine, and a Ph.D. in Computer Science
from Univ. Illinois. He was a Professor of Computer Science at the
University of Liverpool where his group created the Many Using and
Creating Hypermedia system, and many journal articles were published
about the applications of that system to education and training. After
that he was the Virtual University Academic Officer at Washington
State University and led that universities efforts to create a virtual uni-
versity. At the same he published a book called ‘Virtual Education
Manifesto’. He later moved to the University of Maryland Baltimore
County as the founding Director of its Online Master’s Degree in In-
formation Systems. He and his students have extensively studied

many aspects of the use of information technology in education.

	“Hour of Code”: Can It Change Students’ Attitudes toward Programming?
	Hayden Wimmer Georgia Southern University, Statesboro, GA, United States
	hwimmer@georgiasouthern.edu

	Jie DuGrand Valley State University, Allendale, MI, United States
	dujie@gvsu.edu

	Roy RadaUniversity of Maryland, Baltimore County,Baltimore, MD, United States
	rada@umbc.edu

	Abstract
	Introduction
	Literature Review
	What Is Code.org?
	Approaches to Teaching Programming Visually
	Around the World

	Methodology
	Procedure
	Data collection
	Coding tutorial used in the study

	Data Processing
	Analysis

	Results
	Awareness of Importance of Programming
	Skills for Coding

	Discussion
	Ways to Further Improve Hour of Code
	Motivation and Synchronization
	Time Cures All Woes

	Conclusion
	References
	Appendix
	Biographies

