
Journal of Information Technology Education: Innovations in Practice Volume 15, 2016
Cite as: Dongo, T., Reed, A. H., & O’Hara, M. (2016). Exploring pair programming Benefits for MIS majors. Journal
of Information Technology Education: Innovations in Practice, 15, 223-239. Retrieved from
http://www.informingscience.org/Publications/3625

Editor: Keith A. Willoughby
Submitted: July 29, 2016; Revised: October 30, November 14, 2016; Accepted: December 13, 2016

Exploring Pair Programming Benefits
for MIS Majors

Tendai Dongo, April H. Reed, and Margaret O’Hara
East Carolina University, College of Business,

Greenville, NC 27858

TendaiDongo@alumni.ecu.edu; reeda@ecu.edu; oharam@ecu.edu

Abstract
Pair programming is a collaborative programming practice that places participants in dyads,
working in tandem at one computer to complete programming assignments. Pair programming
studies with Computer Science (CS) and Software Engineering (SE) majors have identified bene-
fits such as technical productivity, program/design quality, academic performance, and increased
satisfaction for their participants. In this paper, pair programming is studied with Management
Information Systems (MIS) majors, who (unlike CS and SE majors taking several programming
courses) typically take only one programming course and often struggle to develop advanced
programming skills within that single course. The researchers conducted two pair programming
experiments in an introductory software development course for MIS majors over three semesters
to determine if pair programming could enhance learning for MIS students. The program results,
researchers’ direct observations, and participants’ responses to a survey questionnaire were ana-
lyzed after each experiment. The results indicate that pair programming appears to be beneficial
to MIS students’ technical productivity and program design quality, specifically the ability to cre-
ate programs using high-level concepts. Additionally, results confirmed increased student satis-
faction and reduced frustration, as the pairs worked collaboratively to produce a program while
actively communicating and enjoying the process.

Keywords: pair programming, collaborative learning, MIS curriculum, collaborative program-
ming

Introduction
Pair programming is a collaborative programming practice that has been studied often with com-
puter science students and professional programmers (Nagappan et al., 2003; Salleh, Mendes, &
Grundy, 2011; VanDeGrift, 2004; Woszczynski, Guthrie & Shade, 2005). Pair programming
places participants in dyads, working in tandem at one computer to complete programming as-

signments. Each student takes on one of two roles,
the “driver” or the “navigator.” The “driver” con-
trols the mouse and keyboard while the “navigator”
makes suggestions, points out errors, and asks ques-
tions. The partners must routinely switch roles in
order to gain the benefits of each role (NCWIT,
2009). Pair programming is a learning strategy de-
rived from cooperative learning theory where in-
structors use cooperative methods to teach students
various subjects (Slavin, 1999). While students

(CC BY-NC 4.0) This article is licensed to you
under a Creative Commons Attribution-
NonCommercial 4.0 International License. When
you copy and redistribute this paper in full or in
part, you need to provide proper attribution to it
to ensure that others can later locate this work
(and to ensure that others do not accuse you of
plagiarism). You may (and we encourage you to)
adapt, remix, transform, and build upon the mate-
rial for any non-commercial purposes. This li-
cense does not permit you to use this material for
commercial purposes.

http://www.informingscience.org/Publications/3625
mailto:TendaiDongo@alumni.ecu.edu
mailto:reeda@ecu.edu
mailto:oharam@ecu.edu
https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/

Exploring Pair Programming

224

learn in teams and achieve group goals, they are assessed individually. The terms “pair program-
ming” and “collaborative programming” are often used interchangeably (Cockburn & Williams,
2001).

Although a wealth of prior literature discusses pair programming for Computer Science (CS) ma-
jors, very few studies have focused on pair programming for students majoring in Management
Information Systems (MIS). The contribution of this research will be to fill the gap in the area of
pair programming research as it relates specifically to MIS majors. Prior research by Woszczyn-
ski et al. (2005) found that, since MIS is a less technical degree, students often struggle in the
programming course that is a part of the MIS curriculum. They suggest IS educators should ex-
plore every method that may improve success rates (Woszczynski et al., 2005). One of the re-
searchers in this research study observed many MIS students struggling to develop programming
skills in the introductory programming course, and the researchers were curious to determine if
pair programming would improve student learning. Thus, the importance of this research was to
determine if pair programming can benefit MIS students.

A review of 73 pair programming studies identified several benefits of this practice, including
technical productivity (time spent on the program), improved program/design quality, better aca-
demic performance, and greater perceived satisfaction (Salleh et al. 2011). Pair programming im-
proved retention within the CS major, which was defined as students who were more likely to
pursue a higher level programming course and/or eventually to pursue a degree in CS (McDow-
ell, Werner, Bullock, & Fernald, 2006). Although there are benefits to using this practice, there
are several potential disadvantages, such as partners who do not get along or do not work well
together. In the business world, the initial introduction of pair programming effectively doubles
the time spent on a project; however, subsequent application of the practice results in only about
15% more time being spent on a project (Cockburn & Williams, 2001). Moreover, the resulting
robustness of a pair programming project leads to reduced costs in correcting defects because er-
rors are discovered earlier in the development process. Cost savings resulting from early detection
of errors far outweigh the increased programming time (Cockburn & Williams, 2001. Still, a firm
must closely examine the cost/benefit aspect of the pair programming practice.

Proficiency in advanced programming concepts was identified as a likely outcome in a pair pro-
gramming experiment with CS majors. The experiment resulted in “a laboratory environment
conducive to more advanced, active learning.” (Nagappan et al., 2003, p. 3). The study found that
lab time was more productive and less frustrating than individual work (Nagappan et al., 2003).

The main goal of this study was to determine if pair programming could enhance the software
development abilities (i.e., solid knowledge of the programming language) of MIS students by
making them more proficient in advanced programming concepts upon completion of one course.

The research question was: What are the particular benefits of pair programming in the MIS cur-
riculum? The benefits to be explored were based on four broad categories identified by Salleh et
al. (2011) in their research: technical productivity, program/design quality, academic perfor-
mance, and perceived satisfaction. MIS undergraduate students in the required introductory soft-
ware design course were the participants in the experiment, which was conducted at a large uni-
versity in the southeast United States. After a literature review, this paper next describes the re-
search methodology. Results are presented and discussed, followed by conclusions and study lim-
itations.

Literature Review
Research supports collaborative learning (i.e., pair programming) as preparation for work as an IS
professional (Taneja, 2014). IS professionals are often the liaison between technical and non-
technical members of an organization working together on project teams. As such, “It is im-

 Dongo, T., Reed, A. H., & O’Hara

 225

portant for instructors to enable students to experience teamwork and collaboration while prepar-
ing them for their professional careers” (Taneja, 2014, p. 181). The IS 2010 Curriculum Guide-
lines for Undergraduate Degree Programs in Information Systems include the need for collabora-
tive learning in an MIS curriculum (Topi et al., 2010). A study focused on project-based team
learning, using a group of MIS students, found that it is essential to create an environment for
active participation and a collaboration mode in order for collaborative learning to be successful
(Andres & Shipps, 2010).

In one study positive “pair pressure” produced better quality programs and allowed students to
learn new languages faster compared to individual programming. There were fewer defects in the
programs, with students reporting that defect removal was easier with lower frustration levels
when debugging compared to individual programming. In the study, students reported satisfaction
in jointly translating the customer requirements into product design and also reported that they
were more productive and motivated when they worked with a partner because they kept each
other focused on the task at hand (Williams & Kessler, 2000). Another experiment identified con-
tinuous reviews that lead to fewer defects in a finished program as a key benefit in pair program-
ming. When a programmer works with a partner, there is always someone inspecting the code
and, therefore, defects are identified early on (Cockburn & Williams, 2001).

Inattentional blindness occurs when the programmer is so focused on the task of coding that er-
rors are missed that would otherwise have been caught. Reduction or elimination of inattentional
blindness was a benefit in one study (Wray, 2010). The navigator catches these errors, thus reduc-
ing inattentional blindness and improving program quality. An identified disadvantage, however,
is the risk of pair fatigue when programmers work together closely for an extended period of
time. Eventually, the pair starts to miss the same things, therefore losing the benefit of two sets of
eyes (Wray, 2010). In his own experience with pair programming, developer Stuart Wray (2010)
chatted with his partners, and they reminded each other of things to be done. Another study
showed that most students in an introductory programming class liked working in pairs, thought it
improved their grade, and helped them work better with each other (Cliburn, 2003). Yet another
study led researchers to believe that pair programming helped prepare to review and build upon
existing code (Goel & Kathuria, 2010).

A similar research study on pair programming explored the retention impacts of this practice
(McDowell et al., 2006). Students who programmed in pairs were more likely to pursue a higher
level programming course and/or eventually to pursue a degree in CS. In the experiment, 554 stu-
dents completed programming assignments. Some students were paired while others programmed
individually. Within a year, 84.9% of the paired students, compared to 66.7% of the non-paired
students, had enrolled in a higher level programming course. The paired students enrolled in the
higher level course were more likely to succeed in their first attempt compared to the non-pairs,
65.5% versus 40%. These findings support pair programming as a strong retention practice.

Pair programming benefits also extend outside the classroom (Cockburn & Williams, 2001; Mul-
ler, 2006). Using interviews and controlled experiments to show improved organizational effec-
tiveness due to collaborative programming, Cockburn and Williams (2001) investigated these
benefits. They found that pair programming increases job satisfaction because people in pairs
have a more pleasant time doing their jobs while working with a partner. Students in this research
study survey gave responses similar to “It was a good exercise, I enjoy working with a partner.”

There are potentially some costs associated with programming in pairs. In an educational envi-
ronment, pair programming raises concerns about the accurate assessment of an individual’s abil-
ity when programming in pairs. Some students in a pair may receive higher scores or undeserved
credit for successfully completing a programming assignment (Hahn, Mentz, & Meyer, 2009).
After noting that students typically achieved significantly higher scores for pair programs com-

Exploring Pair Programming

226

pared to individual programs, researchers Hahn, Mentz, and Meyer (2009) explored different as-
sessment strategies that would provide a more reliable way to evaluate an individual’s program-
ming ability. In a work environment, managers may view pair programming as an inefficient use
of resources with two people doing the work of one. Cockburn and Williams (2001) briefly ex-
plored some of the costs associated with pair programming and noted that expert programmers
preferred to work alone because they thought they could work faster and did not have to accom-
modate another person. Besides being nontraditional, reluctance to share their personal code was
another reason why expert programmers did not support pair programming. In this research study,
the researchers observed and received feedback from some participants that pointed to personal
conflict between pairs causing an unsuccessful pair programming relationship.

Methodology
The researchers developed a lab experiment to answer the research question. This method was
consistent with previous pair programming studies (Mok, 2014; Nagappan et al., 2003; Salleh et
al., 2011; VanDeGrift, 2004). The Salleh meta-analysis found that the most popular research
methodology across 73 studies was formal experiments, used by 59% of the studies. Only 14% of
the studies used surveys alone. The researchers in this study created a survey for participants to
take after completing the experiment to provide them with feedback. Some of the survey ques-
tions were taken from a validated survey provided by the National Center for Women and Infor-
mation Technology (NCWIT, 2009).

Study participants were undergraduate students in a face-to-face section of a required software
design and development course taught by one of the researchers. This course introduces the stu-
dents to programming using Visual Basic.Net. To determine how CS and MIS programs differ,
we searched university websites for these two majors in approximately 50 different universities,
including both private and public schools all over the United States (AACSB International, 2015).
CS and MIS curricula vary in the number of required programming courses, with CS majors typi-
cally taking more than MIS majors. With few exceptions, MIS students were generally required
to take only one software design/programming course, while CS majors were required to take two
or more. These findings indicate that CS majors have more opportunities to perfect their pro-
gramming skills. Although most MIS majors will not pursue careers as programmers, they must
understand enough programming to be successful in their careers. MIS majors are often involved
in analysis, requirements gathering, system design, and/or management of software development
projects, during which they will likely encounter programming issues. Consequently, an MIS ma-
jor must have knowledge of some high-level programming concepts in order to critique and pro-
vide guidance to users.

Analysis of the results of this study was accomplished by grading the resulting programs using a
rubric (see the Appendix). The researcher who taught the course served as the expert and evaluat-
ed the programming code structure and form design. The program grading rubric in the Appendix
was used to analyze the form design. Code content was also analyzed by looking for certain re-
quired coding constructs and how well they were implemented. Code was also graded on the
quality of program execution and the output correctness. Researcher direct observations were
combined with student perceptions extracted from the survey results. This is consistent with the
review of pair programming studies by Salleh et al. (2011), who found that pair programming
effectiveness was generally measured using four categories: technical productivity, pro-
gram/design quality, academic performance, and student satisfaction. Technical productivity was
used by 44% of the studies, and program/design quality by 43%. Students’ perceived satisfaction
was used for subjective analysis (Salleh et al., 2011). The researchers for the present study incor-
porated these categories in their analysis.

 Dongo, T., Reed, A. H., & O’Hara

 227

The researchers conducted a pilot experiment to practice the process. They made several minor
changes after the pilot to improve the actual experiment. After the pilot, they conducted two sepa-
rate experiments with two different classes in two different semesters. Details about the pilot and
subsequent experiments follow.

Pilot Experiment
The pilot experiment occurred during the spring 2014 semester with 11 students. At this point in
the semester, half the textbook had been covered and three individual programs had been com-
pleted. Four randomly selected students picked a partner for their pair. This resulted in four pairs
and three solo programmers to work on the programming experiment. All students were to com-
plete a program from the course textbook that was not revealed until the day of the experiment.
The pilot began with a brief introduction to pair programming (NCWIT, 2009), then students read
the program requirements and determined how to complete them. The assignment required the
use of low-level concepts such as data conversion, simple calculations, and input validation, as
well as high-level concepts such as the use of sub-procedures, combo boxes, nested Ifs, and
splash screens. The goal of the program was to create a Windows application to compute the
yearly cost of commuting to work via two different transportation modes--train or bus (Hoising-
ton, 2014). The instructions were in a format familiar to the students since they were from the
course textbook and they explicitly indicated the purpose, processing steps, and any special con-
siderations. There was no diagram of what the form should look like, however, so students had to
design the look of the form and find a picture to put on the form. The instructor/researcher took a
couple of minutes to clarify the instructions, particularly the elimination of one mode of transpor-
tation specified in the problem. Participants used their own laptops. The experiment lasted 75
minutes including instructions from the researchers. After the pilot, the researchers reviewed the
outcome and changed the experiment format due to issues encountered during the pilot experi-
ment, such as non-working laptops, method of pairing students, and student skill level at the time
of the experiment. To remedy these issues, the researchers decided to provide students with com-
puters to use during the experiment. They also made selection of partners completely random, as
research shows that the random matching of pairs for pair programming was similar to real world
environments where workers are occasionally asked to collaborate on programming projects (Na-
gappan et al. 2003).

Pair Programming Experiment 1 - Fall 2014
The first research programming experiment took place for 75 minutes near the end of fall 2014,
after all concepts in the textbook had been covered, and the students had completed eight Visual
Basic programs individually. A few days prior to the experiment, students read two documents
that briefly explained the concept of pair programming. They also received a one-page document
describing how pair programming was conducted (NCWIT, 2009) and a one-page document (Fun
with Pair Programming) about the “Do’s” and “Don’ts” of performing pair programming (North
Carolina State University, 2008).

Twenty-one undergraduate students participated in the experiment and drew numbers on the day
of the experiment that indicated their pair number or assigned them to work alone. This resulted
in eight pairs and five individuals to work on the experiment. Although students had worked in
teams during the semester to complete a group project, none of the experiment pairs was the same
as those teams. Pairs sat at a workstation that consisted of laptop access, a table, a keyboard, and
a large wall-mounted monitor. The monitor helped observations by the researchers. The experi-
ment was also video-recorded so that researchers could review the experiment later. The solo
programmers were the control group for the experiment. They sat at individual desks in the same
room. All students were allowed to use their textbooks. Students and pairs were referred to by

Exploring Pair Programming

228

number and not name so they could remain anonymous on the video although it would be viewed
only by the researchers.

The experiment began with a two-minute video recorded by one of the researchers to introduce
the experiment, to summarize the details of pair programming, and to inform the participants of
their right to refuse being videotaped. Students then received another copy of the Fun with Pair
Programming document telling them about what to do and what not to do in their pair program-
ming lab (North Carolina State University, 2008). Next, students were given the same written
programming assignment instructions from the textbook that were used in the pilot. The pairing,
assigning workstations, and introductory instructions took approximately five minutes, leaving 70
minutes for the experiment.

After deciding on their own who would assume which role first, students began the first 20-
minute session. Both researchers remained in the classroom during the experiment to answer
questions and to observe. The researchers called time at the end of each 20-minute segment, re-
quiring pairs to switch roles and then begin the next session. In total, three 20-minute sessions
were completed. At the end of the last session, all students submitted their work into Blackboard,
the course management tool. All students completed the survey about the experiment anonymous-
ly after they left the lab. Extra credit points were awarded for completing the survey only, not for
the results of the program.

Pair Programming Experiment 2 – Spring 2015
The second experiment was held at approximately the same point during the spring 2015 semester
as in the previous semester. Students were prepped in the same manner as used in the fall experi-
ment. Nine students participated in the experiment. Students were again paired randomly. This
resulted in three pairs and three individuals to work on the experiment. Students sat at the same
type of workstations as in the fall.

The experiment proceeded in the same manner as the previous one, but the time was increased to
135 minutes, because no individuals and few pairs finished the program in the first experiment.
The pairing, finding a workstation, and researcher instructions took approximately 15 minutes,
leaving 120 minutes for the experiment.

Students began the first 20-minute session, once again with each pair deciding on their own who
would assume which role first. Researchers remained in the classroom, and called time after 20
minutes. When finished, students submitted their programs through Blackboard, and completed
the same survey, receiving extra credit points for completing the survey only.

Results
Demographics
Populations for the first and second research studies were small, with 21 participants and 9 partic-
ipants respectively, which is not uncommon for this type of experiment. Previous studies have
also involved small numbers of participants for pair programming experiments (Muller, 2006).
Table 1 illustrates similarities and differences in the students involved in both experiments. In the
spring experiment, none of the students had any programming experience, while about a fourth of
the students in the fall experiment had experience. The gender mix for both experiments was ap-
proximately one-third female and two-thirds male. Finally, students in the fall group spent a little
more time studying for the course during the semester than the spring group.

 Dongo, T., Reed, A. H., & O’Hara

 229

Table 1. Demographics

 Fall 2014
experiment

Spring 2015
experiment

Prior Programming Experience 0 months 77% 100%
1 - 6 months 18% 0%
7 - 18 months 5% 0%

Students’ expectation of final
course grade

A 64% 11%
B 23% 78%
C 13% 11%

Students’ college level Freshman 4% 0%
Sophomore 0% 0%
Junior 23% 56%
Senior 73% 44%

Gender Male 71% 67%
Female 29% 33%

Students’ Age 20 5% 45%
21 38% 33%
22 48% 11%
24 9% 0%
>24 0% 11%

Average number of hours spent
on homework and lab each
week

Less than 1 hour 5% 0%
1 to 3 hours 30% 56%
4 to 6 hours 55% 22%
6 hours or more 10% 22%

Programming Results
Expert opinion was used to determine the quality of the program design and structure, similar to
19% of the studies identified by Salleh et al. (2011). The instructor/researcher served as the ex-
pert and graded all programs from the experiment using the detailed rubric in the Appendix. The
rubric analyzed the form design as well as code design and functionality. In the grading process, a
program was considered completely successful if it did not crash when run and if it produced cor-
rect output results. The program also needed to be well structured, and include sub-procedures,
input validation, and correct conversion of data to and from both numeric and string data types.
All of these methods were taught during the course. The observations of the expert from the grad-
ing rubrics about the program, code structure, and form design quality were discussed with the
other researchers and are shown in Tables 2 and 3. The researchers made observations about stu-
dent behavior during the experiments and upon reviewing the recordings. The results of the two
experiments were not compared because the time limits were different for each experiment and a
comparison was not beneficial to the purpose of the study. Instead, we compared the pair results
to the individual results of each experiment. In the fall experiment, three programs could not be
graded, two from pairs and one from an individual, due to corrupted or lost programs. This result-
ed in a total of six pairs and four solo programmers. For the spring experiment, all programs were
submitted successfully and all were graded.

Table 2 shows grading results for the fall experiment, including total score and abbreviated com-
ments. In this group, the top two programs were created by Pair 5 and Pair 6. Only Pair 6 created
a program that produced correct results without crashing; however, the validation code had a
flaw, and while the processing for bus and train was correct, it was not placed in separate sub-
procedures as required. The program from Pair 5 ran and produced correct results but eventually

Exploring Pair Programming

230

crashed due to a minor error. All other pairs and individuals created the form correctly, although
there were problems in the coding that prevented the programs from running. Creating a form
correctly was relatively easy, so it was only worth about 20% of the grade; hence, many of the
other grades were low because there were problems in the code. Several of the programs were
incomplete, and most did not use high-level concepts such as sub-procedures and processing of
combo boxes or contained incomplete sub-procedures. Unfortunately, several of the solo pro-
grams also had problems with low-level concepts such as data conversions. This was surprising
since several of the solo programmers were top performers throughout the course, and this basic
concept was covered early in the semester. This may have occurred due to time constraints, or
because some of the top performers the instructor assumed had worked alone had assistance.

All individual scores were the same as or below all pair scores. The average score for pairs was
56.83 and for individuals was lower at 44.25. Also, the only scores above 60 were pair scores.
Although some individuals scored the same as or close to a pair program score, there were no
individuals with a high score.

Table 2. Program Grading Results for Experiment 1 - Fall 2014

ID Grade Experiment 1 – Comments

Pair 1 44

Program produced results, but, did not follow requirements. Option for selecting train or
bus missing. No separate sub-procedures for processing Train vs. Bus. No input valida-
tion.

Pair 2 54 Program structure had “Build” errors & would not run

Pair 3 50 Program structure very good but validation, train and bus sub-procedures missing.

Pair 4 40 Program requirements not followed and extra input was requested. Calculations missing.

Pair 5 75 Good code structure and design. Program worked but crashed on minor error

Pair 6 78
Good code structure and design. Program worked. Missing some validation. No separate
sub-procedures for bus and train. A sub-procedure for validation was used.

Indv. 1 44
Program code was incomplete, sub-procedures labeled but not completed. Program
crashed due to missing code.

Indv. 2 52
Structure of program was good but incomplete. Errors in data conversion. No separate
sub-procedures for bus and train. Program froze and would not run.

Indv. 3 47
Program code was incomplete and incorrect. A sub procedure for train was labeled but
not defined or used. No sub-procedure for bus. Some data conversions were incorrect.

Indv 4 34
Form was good but program was very incomplete. Program crashed. Missing variables,
missing data conversions, no separate sub-procedures for train or bus.

Programs in the spring experiment were graded using the same rubric, and the results are shown
in Table 3. In this experiment, only the program from Pair 4 ran flawlessly without error and pro-
duced correct results. The program from Individual 1 worked, but had similar issues as other low
scoring pair programs as it was very simplistic and did not follow requirements. Additionally,
some individuals had problems with low level concepts such as data conversion, validation, and
splash screens. All pairs and individuals created the form correctly. Overall, the pairs scored
higher than the individuals. The average score for pairs was 73.33 and for individuals was lower
at 52.67. The extra time for this experiment proved useful. Two pairs and two individuals com-
pleted the program at the beginning of the fourth 20-minute session, only slightly more time than
that for the fall experiment. One pair and one individual required the entire two-hour time frame.
All individual scores were the same as or below all pair scores and only the pair scores were over
60. There were no individuals with a high score.

 Dongo, T., Reed, A. H., & O’Hara

 231

Table 3. Program Grading Results for Experiment 2 – Spring 2015

ID Grade Experiment 2 - Comments

Pair 1 69
Program runs and produces results, but is very simplistic, did not use sub-
procedures. Validation process incomplete.

Pair 3 47
Program used NO higher level concepts such as combo box, Nested If or
Splash Screen processing

Pair 4 104

Program was written extremely well, ran and produced correct results. It
worked correctly and included extras not requested. Extra credit given for ex-
tras.

Indv 1 46

Individual didn’t seem to understand requirements at all. Program was coded
in most simplistic way and many low-level coding processes were missing like
data conversion and validation. No Splash Screen.

Indv 2 55
Program was coded in most simplistic way with no sub-procedures. Program
crashed.

Indv 3 57

Individual included outline of correct structure but did not complete all sec-
tions. Some portions of code were good. Program eventually froze. Some sub
procedures were incomplete and some partially functional.

In summary, for both experiments, the programs created by the pairs were structured well and
included advanced concepts such as Nested Ifs and sub-procedures, some of which were started
but not completed. Two individual programs initiated sub-procedure events by labeling them but
did not complete them with code. The problems with not creating proper sub-procedures were
likely due to students who understood the concepts that were needed but could not follow through
to completion due to insufficient knowledge or time constraints in the fall experiment. Overall,
the pairs did a better job than the individuals with the high-level concepts, although several pairs
were still unsuccessful. It was encouraging to see that students had some idea of what was needed
when they labeled the sub-procedures. It was discouraging to see that some of the students had
trouble with some low-level concepts, e.g., using correct data types to define variables and cor-
rectly converting data to and from string data types. This may have occurred because of careless-
ness or time constraint pressure since the students’ knowledge of defining and converting varia-
bles was established early in the course. Another possibility is that students received assistance
when completing programs outside the classroom. Finally, we believe the pairs were able to com-
plete high-level concepts by combining their partial knowledge into a complete execution of
high-level concepts. High-level concepts were not present in all items developed by pair pro-
grammers, but it did not happen at all with any of the solo programmers.

An ANOVA test of all the program scores for both semesters combined compared mean scores
between pairs (M = 62.33, SD =20.85) and individuals (M = 47.86, SD =7.78). However, the re-
sults were not statistically significant, F(1,14) = 6.99, p = .105, partial η2= .177. An ANOVA
test for each of the program constructs in the grading rubric was also conducted, such as combo-
box, splash screen, and textbox validation. Only “Correct Data Conversion” with a possible point
value of 10 was statistically significant, F(1,14) = .156, p = .040, partial η2= .267. Pairs had a
higher mean score (M = 8.00, SD =3.12) than individuals (M = 4.14, SD =3.72). These results are
likely due to the point spread of the grading rubric which was based on expert opinion.

Exploring Pair Programming

232

Researchers’ Observations
A fascinating aspect of the study was the researchers’ observations and how these observations
aligned with the students’ perceptions from their questionnaire responses. The researchers ob-
served the students during each experiment, then met to review the recordings and discuss their
observations. During the fall, the researchers observed two solo students not focusing, instead
looking around at what other students were doing. These two appeared slightly behind in progress
compared to the pairs. Some individuals were working diligently, while others ran into problems
and could not recover. In one instance, a struggling individual disengaged, making conversation
with a nearby individual on unrelated topics.

Some pairs also had problems. First, getting the students to work as pairs was challenging. In the
first 20-minute session, some students were driving and navigating simultaneously. Additionally,
one pair started off badly and was never able to recover; a member of this pair took over the key-
board and began driving without discussion. The navigator in this pair was unhappy about that
action and commented to the researcher. They did not talk to each other throughout the entire ex-
periment, and each worked alone. This disengaged pair never worked as a cohesive unit and did
not turn in a result. One member of this pair when not driving was looking around, using his cell-
phone, and even napping while waiting for his turn. In a different pair, one member dominated
the process and was somewhat condescending to the partner. However, this pair continued to
make progress. All other pairs appeared to be working well.

During the second 20-minute session, things began to improve. Several pairs were being very
communicative and progressing well. One pair seemed to really enjoy the process and were work-
ing together, communicating well, laughing, and having fun. Three of the individuals appeared to
be progressing and were coding, while two were struggling with the assignment. During the final
20-minute session, two pairs completed the program. All remaining pairs were coding and most
were problem-solving together at this point. The disengaged pair continued to take turns working
individually. Overall, it was encouraging to observe the pairs enjoy the experience, become en-
gaged, actively work together, and exchange ideas. This is especially refreshing since the instruc-
tor/researcher had previously observed some of these same students being stressed while trying to
program individually during the semester. Our observations were similar to those identified by
Nagappan et al. (2003) in their research where they also found labs with pair programming were
more vocal and interactive than solo programming labs.

In the spring, all three pairs appeared to work well together. One pair seemed to really enjoy the
process; both students were smiling throughout the experiment. Another pair struggled through-
out the experiment, became very frustrated but continuously communicated with each other, go-
ing back and forth about what was really required. They even commented that they were the
wrong two people to be paired together. Although it took them the entire two-hour session, they
never stopped communicating, and although things were tense at one point, they were respectful
to each other and got through it. The individuals all appeared to struggle, some frantically flip-
ping through the pages of their textbook and appearing to try multiple methods during the coding
of the program. These individuals eventually finished, but their programs overall were not suc-
cessful.

Student Perceptions
In fall 2015 and spring 2016 the pair programming concept was implemented as a part of the
Software Design and Development course curriculum. Of the 8 programs assigned to the stu-
dents, half were individual and half were pair programs. The results of the student surveys from
the two experiments and the two semesters where it was incorporated in the course are listed be-
low. Table 4 shows results of the students’ perceptions about their partners. Although researcher

 Dongo, T., Reed, A. H., & O’Hara

 233

observations are important, student perceptions are also important. Overall, the results are in fa-
vor of pair programming because the students perceived that the results and the experience were
better, which is consistent with results found in studies of CS/SE students (Salleh et al., 2011).

Table 4. Survey Question Results - Student Abilities

Survey Question
Fall 2014
Averages

Spring 2015
Averages

Fall 2015
Averages

Spring 2016
Averages

My partner’s technical competency is
1. Much better than mine
2. Somewhat better than mine
3. About the same as mine
4. Somewhat less than mine
5. Much less than mine

2.95 3.14 3.00 3.09

My partner and I were:
1. Very compatible
2. Somewhat compatible
3. Not at all compatible

1.25 1.17 1.33 1.55

How did having a partner affect the quality
of your programs compared to what you
would have written alone? The programs
were:

1. Lower in quality
2. About the same
3. Higher in quality

2.32 2.57 2.13 2.70

Table 4 shows survey questions designed to evaluate the students’ perception of their program-
ming abilities and the overall quality of a program written by a pair. First, students in both exper-
iments felt their technical abilities and that of their partners were about the same, with an average
around 3. The question about partner compatibility is important since pairs were randomly com-
bined and compatibility could have an effect on the result of the pair programming experience
and the final result. The average for both experiments was very close to 1, indicating pairs were
“very compatible.” The researchers’ observations were similar to the student’s perceptions when
analyzing compatibility. Finally, the students were asked about the quality of their pair program
compared to the quality of their expected result if they had produced the program alone. In this
case, the fall group average was 2.32, while the spring group average of 2.57 indicated that stu-
dents perceived the result was between “about the same” and “higher quality.”

Table 5 shows the results of student perceptions of pair programming from the survey. The first
nine questions in the table are about student perception of the partner experience. The averages of
the fall group overall were lower than those of the spring group; however, most students agreed
that the pair experience was beneficial and helped them program. The main difference between
the groups was on the question: “It was easy for me to get my pair programming partner to an-
swer my questions.” The fall group average response was 3.10, which indicates “agree.” The
spring average response was 3.71, which is closer to “strongly agree.” The researchers did not
have an explanation for this. Some possible explanations are differences in the students them-
selves, a smaller class size in the spring, or more experienced researchers. The majority of partic-
ipants felt the pair programming process was beneficial and made them more confident about
their code, enhanced problem-solving, and clarified unclear concepts. The question about wanting
to change partners produced interesting results. The average score for both groups was very close
(1.75 and 1.86), which indicated overall satisfaction with their partners. This was surprising as
two pairs in the fall were very dysfunctional.

Exploring Pair Programming

234

Table 5. Survey Question Results – Student Perceptions

SURVEY QUESTION
Strongly Disagree = 1; Disagree = 2; Agree = 3;
Strongly Agree = 4

Fall 2014
Averages

Spring 2015
Averages

Fall 2015
Averages

Spring
2016

Averages
Having a partner made it easier to complete as-
signments. 2.90 3.14 2.88 2.91

Having a partner made me feel more confident that
the code was reliable. 2.95 3.14 2.88 2.91

It was helpful to discuss programming problems &
solutions with a partner. 3.10 3.43 3.25 3.27

Having a partner is beneficial for learning to read
another programmer’s code. 3.10 3.29 3.0 3.18

It was easy for me to get my pair programming
partner to answer my questions. 3.10 3.71 2.88 2.91

My partner and I were equally matched in terms of
the pace at which we solved programming assign-
ments.

2.85 3.0 2.63 2.82

I wanted to change to a different pair programming
partner. 1.75 1.86 1.88 1.82

I am comfortable being the “driver” 3.29 3.25 3.5 3.27

I am comfortable being the “navigator” 3.15 3.33 3.38 3.27

Pair programming leads to more success than indi-
vidual programming.

3.15 3.5 2.75 2.82

Pair programming should be part of every class that
requires programming assignments. 3.0 3.63 2.5 2.91

I would recommend pair programming to other
students. 3.2 3.5 2.63 3.09

The last three questions in Table 5 reveal the students feelings about using the pair programming
practice. These questions measured student perception of pair programming as a pedagogical tool
for the course, including whether they would recommend this practice to other students. The av-
erage scores here all ranged between “agree” and “strongly agree.” In fact, the spring group av-
eraged 3.63, which was closer to “strongly agree” when asked if pair programming should be a
part of every programming class. Other research also found students to be positive about working
in pairs in the future after their experiment (Nagappan et al., 2003). This result, as well as other
results, convinced the researchers to incorporate pair programming into the curriculum of the fall
2015 course.

Overall, the average responses were more positive in the two experiments than in the course im-
plementation. In the experiments the average response was 3.0 and higher (3=Agree) when stu-
dents were asked about the success of pair programming for learning programming concepts. In
the course implementations, the results were as low as 2.5 (between disagree and agree) and only
one average was over 3 for the same three questions. The results for the course implementation
are likely different because pair programs included in the course had an impact on the students’
grades where there was no grade impact during the experiments. However, the instructor felt the
results were positive enough to continue to include pair programming in the course.

The instructor observations during the implementation for semesters fall 2015 and spring 2016
were different. During the fall 2015 semester pair programming allowed the instructor to interact
more with the students while they were programming and students asked more questions about
their programs. However, unlike previous classes, the new implementation allowed students to

 Dongo, T., Reed, A. H., & O’Hara

 235

work on programming assignments during in-class labs instead of outside of the classroom. Dur-
ing the spring 2016 semester there were problems with “loafers” in some pairs. The instructor had
to intervene to manage this issue. Although this was disappointing, the pair programming practice
has had enough value in the course to continue using it in future semesters.

There were some open-ended questions in the survey to capture student perceptions in their own
words. Some of those perceptions were:

“I thought it was a good exercise, I enjoy working with a partner.”

“I wish I had more time to use this method. Possibly during guided development or cer-
tain chapter programs.”

“I liked the process overall, I just wish that I took it more seriously in the beginning.”

Finally, when asked what they would change, one student indicated the following, which was en-
couraging: “working on a program that was more difficult.”

Discussion
The significance of the findings in this study with MIS majors is their similarity to results for CS
majors. While the similarity of the findings for the two types of majors may not seem remarkable,
it is in fact very important. The results point to an area in the MIS curriculum that can be im-
proved to produce more confident students who are prepared to work as collaborating member of
a pair in the workplace.

As an instructor of a MIS introductory software design course for many years, the lead researcher
has on several occasions encountered students who, although they excel in their other courses, are
stumped by programming. The resulting anxiety for these students causes them to contemplate
changing majors, which directly impacts retention. If a CS major cannot program it can be diffi-
cult for them to find a job in their field or even to graduate in their major. However, the majority
of careers for MIS majors will not require highly technical tasks such as advanced programming.
Instead, they will need to understand enough about software development to act as a liaison be-
tween the customer and the technical staff. In other words, it is likely a MIS major can survive
even if programming is difficult for them. Therefore, it would be wise to structure a software de-
sign and development course in a way that allows MIS majors to learn and use the concepts while
collaborating with a partner since that is more likely to produce positive results. Survey results
indicated that the majority of participants in these experiments felt the pair programming process
was beneficial and made them more confident about their code, enhanced problem-solving, and
clarified unclear concepts. One of the researchers has observed several MIS students who strug-
gled to pass the programming course eventually land good jobs and go on to have very successful
MIS careers. Although this is not statistically documented in our findings, it is important to the
usefulness of our results.

Future research should further explore pair programming in the MIS curriculum to determine if
this technique can improve retention of MIS majors or reveal other specific benefits. As noted,
the researchers continued this research by altering the software design course in the fall 2015 and
spring 2016 semesters to include pair programming, and those results were shared in the Student
Perceptions section. The intention is to continue using pair programming in future semesters.

Conclusion
The researchers concluded that the benefits of pair programming with their MIS students were
very similar to those found in CS/SE studies. Students in pairs appeared to enjoy the process of
creating the program much more than those who programmed individually. This was consistent

Exploring Pair Programming

236

with research that hypothesized that students in paired labs would have a positive attitude towards
working in collaborative software development environments. The same research also found pair
programming to be beneficial for non-CS majors (this could include MIS), but not necessarily for
CS majors (Nagappan et al., 2003).

The researchers concluded, from their observations and student survey responses, that students in
pairs shared ideas that helped them learn from each other. Sharing ideas and learning from a part-
ner have previously been identified as benefits of pair programming (Muller, 2006; Salleh et al.,
2011). The goal of our study was to determine if pair programming would allow MIS students to
become more proficient after completing one software course in four broad categories: technical
productivity, program/design quality, academic performance, and perceived satisfaction. Our re-
sults indicate academic performance in pairs was better; overall the pairs in both experiments per-
formed better than the individuals even though some of the individuals were “A” students in the
course. Technical productivity and program/design quality was generally better with the pairs.
Only pairs in these experiments were able to complete the assignment successfully using high-
level concepts such as sub-procedures and producing correct results without crashing the pro-
gram. In both experiments we observed students who had not worked together previously but col-
laborated well during the experiment. We even had some pairs in both experiments that were
laughing and enjoying themselves while they worked. We hope this type of pair programming
experience will prepare the students for working collaboratively in the workplace where pair pro-
gramming is being used as a part of extreme programming practices (Muller, 2006). Our results
for MIS majors were consistent with results from the study with CS and non-CS majors by Na-
gappan et al. (2003) where their results showed “paired and solo programmers have comparable
scores in the projects though in some cases paired programmers have marginally higher scores
than the solo students.”

There were some limitations to this study. First was the time constraint of 75 minutes; this ap-
peared to hinder completion of more high level concepts like sub-procedures. After grading the
programs from the fall experiment and noting that more than half the students indicated that the
time limit was too short (Table 3), in the spring the time was extended to 120 minutes. In spring,
two of the groups and two of the individuals finished between 70 and 82 minutes, with one group
and one individual requiring the entire 120 minutes. It appears although the 75 minute time frame
was perceived as a limitation, in fact several students were able to finish within that time limit
when given more time. Thus, it remains uncertain what the optimal time limit would be. Another
limitation common to surveys was the self-reporting of students on their own behavior. The small
sample size, although common in pair programming experiments, may make it difficult to gener-
alize these results.

References
AACSB International. (2015, April). Retrieved from AACSB International website: www.aacsb.edu

Andres, H. P., & Shipps, B. P. (2010). Team learning in technology-mediated distributed teams. Journal of
Information Systems Education, 21(2), 213-221.

Cliburn, D. C. (2003, October). Experiences with pair programming at a small college. Journal of
Computing Sciences in Colleges, 19(1), 20-29.

Cockburn, A., & Williams, L. (2001). The cost and benefits of pair programming. In G. Succi & M. Mar-
chesi (Eds.), Extreme programming examined (pp. 223-243). Boston: Addison-Wesley Longman Pub-
lishing Co.

Goel, S., & Kathuria, V. (2010). A novel approach for collaborative pair programming. Journal of
Information Technology Education, 9, 183-196. Retrieved from
https://www.informingscience.org/Publications/1290

http://www.aacsb.edu/

 Dongo, T., Reed, A. H., & O’Hara

 237

Hahn, H. J., Mentz, E., & Meyer, L. (2009). Assessment strategies for pair programming. Journal of
Information Technology Education, 8, 273-284. Retrieved from
https://www.informingscience.org/Publications/694

Hoisington C. (2014). Microsoft Visual Basic 2012 for Windows, Web, Office, and Database Applications:
Comprehensive. Stamford, CT: Course Technology, Cengage Learning.

McDowell, C., Werner, L., Bullock, H. E & Fernald, J. (2006). Pair programming improves student reten-
tion, confidence, and program quality. Communications of the ACM, 49(8), 90-95.

Mok, H. (2014). The flipped classroom. Journal of Information Systems Education, 25(1), 7-11.

Muller, M. (2006). A preliminary study on the impact of a pair design phase on pair programming and solo
programming. Information and Software Technology, 48, 335-344.

Nagappan, N., Williams, L., Ferzli, M., Wiebe, E., Yang, K., Miller, C., & Balik, S. (2003). Improving the
CS1 experience with pair programming. Proceedings of the 34th SIGCSE: Technical Symposium on
Computer Science Education. 359-362. Reno, NV: ACM Special Interest Group on Computer Science
Education.

NCWIT. (2009). Pair programming-in-a-box: The power of collaborative learning. Retrieved November
2013, from National Center for Women & Information Technology: www.ncwit.org/pairprogramming

North Carolina State University. (2008). Fun with pair programming! Retrieved November 2013 from
http://www.realsearchgroup.org/pairlearning/worksheet.pdf

Salleh, N., Mendes, E., & Grundy, J. (2011). Empirical studies of pair programming for CS/SE teaching in
higher education: A systematic literature review. IEEE Transactions on Software Engineering, 37(4),
509-525.

Slavin, R. E. (1999). Comprehensive approaches to cooperative learning. Theory into Practice, 38(2), 74-
79.

Taneja, A. (2014). Enhancing student engagement: A group case study approach. Journal of Information
Systems Education, 25(3), 181-187.

Topi, H., Valarich, J. S., Wright, R. T., Kaiser, K. M., Nunamaker Jr., J. F., Siplor, J. C., & de Vreede, G. J.
(2010). IS 2010: Curriculum guidelines for undergraduate degree programs in information systems.
Communications of the Association for Information Systems, 26(1), 18, 359-428.

VanDeGrift, T. (2004). Coupling pair programming and writing: learning about students’ perceptions and
processes. Proceedings of the 35th SIGCSE: Technical symposium on Computer science education, 2-
6. Norfolk, VA: ACM SIGCSE - Special Interest Group on Computer Science Education.

Williams, L. A., & Kessler, R. R. (2000). The effects of ‘pair-pressure’ and ‘pair-learning’ on software
engineering education. Proceedings of the 13th Conference on Software Engineering Education &
Training, Austin, TX, 59-65.

Woszczynski, A. B., Guthrie, T. C., & Shade, S. (2005). Personality and programming. Journal of Infor-
mation Systems Education, 16(3), 293-299.

Wray, S. (2010). How pair programming really works. IEEE Software, January/February, 50-55.

https://www.informingscience.org/Publications/694
http://www.ncwit.org/pairprogramming
http://www.realsearchgroup.org/pairlearning/worksheet.pdf

Exploring Pair Programming

238

Appendix
Pair Programming Exercise Grading Rubric

Semester:
Group/Individual:

 Chapter 7 - Calculate Your
Commute (no Car) Exer-
cise

FORM DESIGN Possible
Points

Points De-
duction

Comments

Splash Screen (extra credit) 0 0
Title 2 0
Picture selected from Web 2 0
Combobox to select mode 5 0
Objects labeled correctly 2 0
Round Trip fare labeled textbox 2 0
Days worked/month labeled textbox 2 0
Calculate button 2 0
Clear button (not specifically required but needed) 2 0

PROGRAMMING CODE
CBO_SelectedIndex Event - Objects appear after
mode selected

10 0

Intro Comments & Program Comments 3 0
Load Event - Splash Screen timing (extra credit) 0 0
Textbox Validation Events - positive number 10 0
Train Processing - used sub procedures (10) 10 0
Bus Processing - used sub procedures (10) 10 0
Correct data types 5 0
Correct Conversion 10 0
Program runs 15 0
Calculation is correct 8 0
 100 100
OVERALL COMMENTS

 Dongo, T., Reed, A. H., & O’Hara

 239

Biographies
Tendai A. Dongo was an instructor in the MIS department in the Col-
lege of Business at East Carolina University. Upon completion of her
MBA at ECU, she joined the Graduate Programs team in the college as
an Assistant Director. She has published research in the AMCIS pro-
ceedings. Her interests include pedagogical research in management
information systems, leadership and organizational behavior.

April H. Reed is an Associate Professor in the College of Business,
MIS department at East Carolina University. She conducts research in
the area of IS/IT project management and pair programming. She is a
PMI certified Project Management Professional (PMP) and has held
several industry positions including Systems Analyst and Project Man-
ager. She has published several papers on the topic of risk and virtual
software development project teams in IS journals such as International
Journal of Information Technology Project Management, Journal of
Computer Information Systems, International Journal of Project Man-
agement, Informing Sciences and Journal of Information Technology
Management. She holds a PhD in Computer Science/Information Sys-
tems from DePaul University.

Margaret (Maggie) O’Hara has been teaching Management Infor-
mation Systems (MIS) since 1992. She received her PhD from the
University of Georgia. At East Carolina University from 1999 – 2012,
she taught a variety of graduate and undergraduate MIS subjects, in
both face-to-face and online formats. From 2012 – 2015 O’Hara served
as Director of Online Learning for the University of North Carolina
system. In 2014, she received the United States Distance Learning As-
sociation Award for Outstanding Leadership in Distance Education. In
spring 2015, O’Hara resumed her position as a full-time faculty mem-
ber at ECU. She currently teaches MIS and a Leadership and Profes-
sional Development. She has published research in both MIS and Edu-
cation journals and has consulted internationally on technology-
enhanced teaching and learning.

	Exploring Pair Programming Benefits for MIS Majors
	Tendai Dongo, April H. Reed, and Margaret O’Hara East Carolina University, College of Business, Greenville, NC 27858
	TendaiDongo@alumni.ecu.edu; reeda@ecu.edu; oharam@ecu.edu

	Abstract
	Introduction
	Literature Review
	Methodology
	Pilot Experiment
	Pair Programming Experiment 1 - Fall 2014
	Pair Programming Experiment 2 – Spring 2015

	Results
	Demographics
	Programming Results
	Researchers’ Observations
	Student Perceptions

	Discussion
	Conclusion
	References
	Appendix
	Biographies

