

Volume 16, 2017

Accepted by Editor Benson Soong │Received: March 14, 2017│ Revised: May 29, June 15, July 5, 2017 │
Accepted: July 26, 2017.
Cite as: Malik, S. I., & Coldwell-Neilson, J. (2017). Comparison of traditional and ADRI based teaching ap-
proaches in an introductory programming course. Journal of Information Technology Education: Research, 16, 267-283.
Retrieved from http://www.informingscience.org/Publications/3793

(CC BY-NC 4.0) This article is licensed it to you under a Creative Commons Attribution-NonCommercial 4.0 International
License. When you copy and redistribute this paper in full or in part, you need to provide proper attribution to it to ensure
that others can later locate this work (and to ensure that others do not accuse you of plagiarism). You may (and we encour-
age you to) adapt, remix, transform, and build upon the material for any non-commercial purposes. This license does not

permit you to use this material for commercial purposes.

COMPARISON OF TRADITIONAL AND ADRI BASED

TEACHING APPROACHES IN AN INTRODUCTORY

PROGRAMMING COURSE

Sohail Iqbal Malik * Buraimi University College,
Al-Buraimi, Oman

sohail@buc.edu.om

Jo Coldwell-Neilson Deakin University, Geelong, Australia jo.neilson@deakin.edu.au

* Corresponding author

ABSTRACT

Aim/Purpose This study introduced a new teaching and learning approach based on an ADRI
(Approach, Deployment, Result, Improvement) model in an introductory pro-
gramming (IP) course. The effectiveness of the new teaching and learning pro-
cess was determined by collecting feedback from the IP instructors and by
analyzing the final exam grades of the course.

Background Learning to program is considered a difficult and challenging task for a consid-
erable number of novice programmers. As a result, high failure and dropout
rates are often reported in IP courses. Different studies have been conducted to
investigate the issue. One of the reasons for this challenge is the multiple skills
that students have to master in order to be able to build programs. These skills
include programming knowledge and problem-solving strategies and being able
to pay equal attention to these required skills in the IP course.

Methodology A focus group was conducted to obtain feedback from the IP instructors about
the ADRI approach. The performance of the students who had completed the
IP course before ADRI was compared with those who used the ADRI ap-
proach by undertaking a comparative analysis of their final exam grades.

Contribution The study demonstrates that the new teaching and learning approach based on
the ADRI model encourages students to pay equal attention to programming
knowledge and problem-solving strategies, discouraging programming shortcuts
and reducing high attrition rates (failure and dropout) in the IP course.

Findings The results of the focus group show that the instructors preferred the ADRI
approach compared to the traditional approach. The final exam grades show
that the students performed better in semesters which offered the ADRI ap-
proach as compared to those semesters without this approach.

http://www.informingscience.org/Publications/3793
https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/
mailto:sohail@buc.edu.om
mailto:jo.neilson@deakin.edu.au

Comparison of Traditional and ADRI Based Teaching Approaches

268

Future Research Future research will explore the ADRI approach in other fields of computer
science studies, such as database and data structure, to determine if its impact
has a wider application than just teaching introductory programming.

Keywords introductory programming course, ADRI approach, teaching approach, stu-
dents learning outcomes, failure and dropout rates

INTRODUCTION

The introductory programming (IP) course is one of the first courses novices take in the computer
science discipline (Matthiasdottir 2006). Novices have to take it to progress through their study plan.
Many face difficulties, particularly in the first few weeks of their programming course. They are often
unsuccessful when attempting to write computer code that meets the stated objectives (Carbone,
Hurst, Mitchell, & Gunstone, 2009). The whole situation de-motivates them and causes frustration
which leads to disengagement with the curriculum. As a consequence, high failure and dropout rates
are reported (Watson & Li, 2014; Zingaro, 2015). Papp-Varga, Szlávi, and Zsakó (2008) argue that
ICT teaching is a comparatively new ‘problem domain’ compared to other already established sub-
jects like physics or mathematics. So its teaching methodology is not well established or formulated
and, as a consequence, different teachers are using their own ‘blend of methods’ (p. 163).

Buraimi University College, Oman was the context of learning for this study. The IP course is a core
course offered at level 1 for all students in the IT department. Most of the students do not have any
prior experience in programming and, to add to the difficulties, English, the language of instruction
at Buraimi, is the second language for them. A teacher-centred pedagogy (referred to here as ‘the tra-
ditional approach’) is used in teaching the introductory programming course. Lecturers deliver the
classes and conduct lab sessions. The programming exercises and examples presented during the
classes and lab sessions promote programming shortcuts, as described by Dale and Weems (2010),
where students attempt to convert a problem statement directly into a computer code.

Problem Statement Code

This study introduced a new teaching and learning approach, based on the ADRI model, in the intro-
ductory programming course specifically to discourage programming shortcuts. Further, the new
teaching and learning approach supported novices to pay equal attention to both programming
knowledge (syntax and semantics) and problem-solving skills. The new approach was compared with
the traditional approach used previously in the course to determine its effectiveness in the teaching
and learning process.

This paper is organised into a number of sections. It starts with a review of relevant literature, fol-
lowed by an introduction to the ADRI model. The methodology used in this study is then described
and results are reported and discussed. The paper concludes with a summary of the study outcomes
and suggestions for further work.

BACKGROUND

PROGRAMMING TEACHING METHODS

A teaching method involves the methods and principles used to instruct students in achieving the de-
sired learning as it is implemented by teachers. An overview of some of the existing programming
teaching methods is as follows:

Problem-based learning

Nuutila, Törmä, and Malmi (2005) explained that problem-based learning (PBL) engaged students in
problem-solving. In PBL, the students face real world problems which help them to enhance their
“disciplinary knowledge, higher order thinking and practical skills” (Mohorovicic & Strcic, 2011; p.
49).

Malik & Coldwell-Neilson

269

Seven steps are involved in the implementation of PBL (Nuutila et al., 2005) where students work in
groups. They analyze the problem and determine what they already know about it. They sketch an
initial model for the problem to identify important concepts and relations. They determine what they
need to learn to solve the problem fully. After that, the students work independently to gain the re-
quired knowledge. The students then convene and discuss what they have learned in order to solve
the problem. Finally, they elaborate on their solutions.

Researchers concluded that PBL enhances the retention time of students’ knowledge up to several
years and students’ performance in follow-up courses is better than those who attended traditional IP
courses. It also helps to enhance students’ creative thinking and motivation (Nuutila et al., 2005).

Puzzle-based learning

The main aim of puzzle-based learning (PZBL) is to teach students problem-solving and critical
thinking techniques in a fun way (Merrick, 2010). In programming courses, PZBL is used to encour-
age students to think about framing and solving unstructured problems. The problem solution is di-
vided into a number of puzzle pieces which students use to reconstruct the program by putting the
puzzle pieces in the correct order (Yoneyama et al., 2008).

A research study conducted by Merrick (2010) showed that PZBL increased students’ interest and
active participation in the programming course.

Pair Programming

In pair programming, two programmers work on the same program (code) side by side at the same
computer. Both programmers are involved in planning, designing, and testing the program. Each
programmer has a different role in pair programming. One programmer works as a driver and other
as a navigator. The driver is typing actual code and while the navigator is observing his/her work for
errors, offering suggestions and alternative solutions. The role of the driver and navigator is swapped
at regular intervals to ensure that both students are equally and actively engaged in the development
process.

Researchers suggested that pair programming motivated both programmers. They devised solutions
in less time and with fewer errors than more traditional approaches to coding, and they approached
collaboration in a positive way (Zacharis, 2011). However, some studies revealed that pair program-
ming could be exhausting and irritating. So appropriate care should be taken when organizing the
pairs as different skill levels between pair programmers also affects collaboration (Chaparro, Yuksel,
Romero, & Bryant, 2005).

Huet, Pacheco, Tavares, and Weir (2004) discussed that some lecturers feel that pair programming is
less efficient than individual work for introductory programming courses. They observed that one
student actually programs while the other student becomes an observer. On the other hand, some
lecturers like pair programming because it promotes learning, and one of the students can serve as a
tutor for the other.

Game-themed Programming

Game-themed Programming (GTP) is a teaching approach in which abstract programming concepts
are taught to the students by exploring small game applications. The main aim of GTP is not to teach
game programming to the students, but help them to understand programming concepts through
simple game assignments (Sung et al., 2011).

A study revealed that success rates in GTP classes were higher than other traditional classes. Students
were engaged in devising solutions for game assignments which increased their motivation and en-
thusiasm (Sung et al., 2011).

Comparison of Traditional and ADRI Based Teaching Approaches

270

Miljanovic (2015) used game based learning in teaching debugging to novices. He prepared and intro-
duced a game, ROboBUG, to novices. He discussed that debugging is a critical skill that novices
should acquire early in their programming career otherwise they spend hours attempting to fix errors
in their programs. The results showed a positive impact on the learning process of novices.

The above discussion on some existing programming methods shows that most of them focus on
either problem-solving skills or programming knowledge (syntax and semantics). On the other hand,
novices need to focus equally on problem-solving skills and programming knowledge. The current
study, which introduced the ADRI approach, encourages students to focus equally on both sets of
skills (problem-solving and programming knowledge).

RESEARCH QUESTIONS

It is evident from the previous discussion that IP courses have a long history of interventions to
improve students’ learning outcomes but high failure and dropout rates from them are consistently
reported in different studies (Guzdial & Soloway, 2002; Lahtinen, Ala-Mutka, & Järvinen, 2005;
Sykes, 2007; Watson & Li, 2014; Yadin, 2011; Zingaro, 2015). Therefore, it is important to address
the issues of high failure and dropout rates because it affects the retention and recruitment of the stu-
dents in the computer science discipline. This research project proposes the ADRI approach in the
teaching and learning process of the IP course to address the issues of high failure and dropout rates.
Moreover, this research proposes a number of research questions to determine the impact of the
ADRI approach compared to the traditional approach, two of which are the focus of the study being
reported here.

The two research questions being addressed in this research study are:

RQ1. What are the perceptions of introductory programming instructors regarding the ADRI ap-
proach in their teaching process?

RQ2. What is the impact of the ADRI approach compared to the traditional approach on the stu-
dents’ performance in the introductory programming course?

INTRODUCTION TO THE ADRI MODEL

The ADRI (Approach, Deployment, Result, and Improvement) model is a well-known quality assur-
ance model. It is used extensively in the education and business sectors (Razvi, Trevor-Roper, Good-
liffe, Al-Habsi, & Al-Rawahi, 2012). Australian and New Zealand universities used it for quality audit
processes. Moreover, the Australian Business Excellence Framework and New Zealand Business Ex-
cellence Foundation used it to evaluate quality in Business Excellence Awards (Carroll & Razvi,
2006). It is based on the Plan-Do-Check-Act (PDCA) model developed by Walter Shewhart (Moen
& Norman, 2010).

Malik and Coldwell-Neilson (2016) proposed the four stages of the ADRI approach to enhance stu-
dents learning outcomes in the IP course. They explained that the first stage (Approach) covers
problem solving skills (pseudocode and flowchart), the second stage (Deployment) emphasizes
programming knowledge (syntax and semantics), the third stage (Result) explains input, output, and
process used to solve a problem statement, and the fourth stage (Improvement) emphasizes different
programming constructs. Figure 1 shows the four stages of the ADRI approach.

Malik & Coldwell-Neilson

271

Figure 1: Four stages of the ADRI model
(Iqbal & Harsh, 2013; Malik & Coldwell-Neilson, 2016)

RESEARCH METHODOLOGY AND DESIGN

The first research question was investigated by conducting a focus group with the instructors of the
IP course offered with the ADRI approach. The second research question was explored by compar-
ing the final grades of students enrolled in four semesters of the offering of the IP course from 2013
to 2015, both before and after the ADRI approach was implemented.

ETHICAL CONSIDERATIONS

In this study, the IP students and instructors were involved for data collection. So it was important to
take care of their privacy, consent, and confidentiality. The IP students’ grades for semesters 1 and 2,
2013-14 and semesters 1 and 2, 2014-15 were accessed and analyzed. A focus group session was
conducted with the instructors after introducing the ADRI approach in the IP course. This focus
group was conducted at the end of the semester 1, 2014-15, with the instructors who offered the IP
course with the ADRI approach as participants in the focus group.

To address the ethical issues in this study, approval has been granted by Buraimi University College
to collect the data. Data relating to students’ grades was de-identified by an independent party (Regis-
tration Department at Buraimi University College) to maintain anonymity. During the focus group,
notes were taken by the facilitators and participants’ responses were collected anonymously.

INTRODUCTORY PROGRAMMING COURSE MATERIALS BASED ON THE ADRI

APPROACH

Learning resources used in the IP course were redesigned based on the four stages of the ADRI ap-
proach. All the programming examples used in lectures and the programming problems set as labora-
tory exercises were prepared based on the four stages of the ADRI approach. An ADRI based editor
was developed to support the ADRI approach and to assist students in the preparation of program-
ming solutions using the ADRI approach.

All the programming examples and problems based on the ADRI approach have five parts as shown
in Table 1. The first part contains a problem statement. The second part (Approach) deals with
problem-solving strategies such as pseudocode and flowchart diagrams. The third part (Deployment)

• Programming
knowledge (syntax
and semantics)• Input, process, output

• Problem solving
strategies (pseudo-
code & flowchart)

•Different
programming
constructs & feedback

Improvement Approach

Deployment
Result

Comparison of Traditional and ADRI Based Teaching Approaches

272

covers the syntax and semantics of the programming language. The fourth part (Result) deals with
the program inputs, the process used to solve a problem statement, expected outputs and examples
of common syntax and semantic errors. The fifth part (Improvement) provides more practice with
different programming language constructs (Malik & Coldwell-Neilson, 2017).

Table 1. Programming example based on four stages of ADRI approach

Write a program that will read the radius of a circle then calculate the area and circumference of the
circle and print area and circumference.

 Area = PI * Radius * Radius

 Circumference = 2 * PI * Radius

Step 1: Approach – Problem-solving strate-
gies

Pseudo-code
1. Start
2. Read radius R
3. PI = 3.14
4. Calculate area (AR) = PI * R * R
5. Calculate circumference (CR) = 2 * PI *

R
6. Print AR, CR
7. Stop

 Flowchart

Step 2: Programming Knowledge

#include<iostream>

using namespace std;

int main()

{

float R, AR, CR;

const float PI = 3.14;

cout<<“Enter Radius: “; cin >> R;

AR = PI * R * R;

CR = 2 * PI * R;

cout<<“Area=“<<AR<<endl<<“Circumference=“ <<CR;

return 0;

}

First Part

Second Part

Third Part

 start

Read R

PI=3.14

Print AR, CR

 Stop
Stop

 AR=PI * R * R

 CR=2 * PI * R

Malik & Coldwell-Neilson

273

Step 3: Result

Expected output: Enter Radius: 5

 Area = 78.5

 Circumference= 31.4

Process: AR = 3.14 * 5 * 5

 CR = 2 * 3.14 * 5

Achieved output:

Goals: Achieved: Not Achieved:

Syntax Error: Incompatible data types / Initializa-
tion

Example:

3 int num = “Hello World”;

Reason: integer value is expected in variable num on line 3.
The string value (Hello World) is assigned to an integer vari-
able (num).

Step 4: Improvement

Update above program so that it also calculates and prints diameter of the circle.

 Diameter = 2 * Radius

 Expected Output: Enter Radius: 4

 Diameter = 8

The ADRI based editor was designed and developed to specifically emphasize the four stages of the
ADRI approach with separate interfaces for each stage. Figure 2 shows one of the user interfaces of
the ADRI editor. It consists of six menus (File, Edit, ADRI, Question, Topic and Execute) and each
menu has further sub-menus which provide additional functionality.

Figure 2. Interface of ADRI based Editor (Malik, 2016)

FOCUS GROUP WITH INTRODUCTORY PROGRAMMING

INSTRUCTORS

In this section, we address the first research question which is:

RQ1. What are the perceptions of introductory programming instructors regarding the ADRI approach
in their teaching process?

A focus group was conducted with the IP course instructors to seek in-depth feedback on the af-
fordances and barriers of the ADRI approach for students. The focus group consists of five partici-
pants including the moderator and assistant moderator. The focus group lasted for 90 minutes and

Fourth Part

Fifth Part

Comparison of Traditional and ADRI Based Teaching Approaches

274

was not audio-recorded. The moderator and assistant moderator took notes, anonymously and inde-
pendently, of the discussion during the session. They compared their notes after the session and pro-
duced a joint session report. This report was sent to the participants to comment on the accuracy of
the reporting. Since participants’ responses were noted anonymously, it was not possible for partici-
pants to withdraw their statements after the focus group had finished although they could suggest
amendments to the record of the focus group in the report.

FOCUS GROUP OBJECTIVES

This research was based on the didactic triangle and instructors were one of the three entities in it.
They taught the curriculum to the students who were the other two entities in the didactic triangle
(curriculum and student). In our context, instructors had a close interaction with the ADRI approach
and the students. So it was beneficial to obtain their feedback on the affordances and barriers of the
approach for students to improve the whole learning process. This determined the objectives of the
focus group. Specifically, the objectives were to explore instructors’ perceptions of:

1. Students’ experiences with the ADRI approach in the introductory programming course;
2. The impact of the ADRI approach on students learning in introductory programming

course;

and to explore:

3. instructors’ views on the strengths and weaknesses of the ADRI approach compared to
traditional teaching approaches;

and to suggest:

4. any further enhancements to the ADRI approach in the context of the introductory pro-
gramming courses.

CONDUCTING THE FOCUS GROUP

The moderator and assistant moderator welcomed the participants. At the beginning of the session,
the moderator reminded participants of the purpose of the focus group and set the ground rules for
participant conduct during the session, including respecting the ideas and opinions of others,
listening and responding to positive and negative remarks, and reminding participants that
discussions during the session should remain confidential. The moderator started by asking the par-
ticipants for their feedback on students’ experiences using the ADRI approach in the classroom and
then for their views on the approach. The moderator encouraged all participants to participate
actively and ensured that each had a chance to speak. During the session, the moderator promoted
debate by asking open-ended questions. The moderator and assistant moderator took notes inde-
pendently of the discussions which took place during the session. At the end of the focus group ses-
sion, the moderator thanked all the participants. The moderator and assistant moderator compared
their notes after the session and produced a session report. The report was sent to the participants
for their feedback and approval.

Experience in teaching introductory programming course

All the participants have a significant amount of teaching experience in introductory programming
ranging from 3 to 14 years. They also have considerable teaching experience at Buraimi University
College (the site of the study) of between 3 to 8 years. The participants have used C++, Java, and
Visual basic languages to teach IP courses during their academic careers. Currently, the curriculum
requires them to teach C++ in the IP course. They have agreed that introductory programming is a
challenging course for novices in their first semester of study. They pointed out that course material,
teaching styles, English language barriers, and transitioning from school to university all contribute to
the challenge of learning programming and are the main factors for the high failure rates experienced

Malik & Coldwell-Neilson

275

in such courses at Buraimi University College. Traditional teaching methods are not successful in
overcoming the barriers for students studying introductory programming.

First impression about ADRI based approach

The participants’ first impression of learning to code was relatively unanimous. They agreed that pro-
gramming appears very weird for the naïve students. It is always harder for an instructor to teach
programming to students who are completely unaware of the programming world.

The focus group participants indicated that the students found it difficult to digest the overload of
the ADRI approach. The participants used different methods to make students aware of the ADRI.
For example, some of them first discussed the importance of all four phases of ADRI approach to
the students; this method was successful to a large extent.

The participants found ADRI a more sophisticated way of injecting the programming knowledge
into the students understanding. At first, it looked complex for the participants, and the implementa-
tion was perceived as a challenging task for them. Accepting the implementation challenges, the par-
ticipants found it very interesting, comprehensive, and a professional methodology for teaching.

Overall the feedback from the participants concluded that, as instructors, the ADRI approach looked
challenging, but later on it appeared to be one of the best teaching methodologies. However, from
the students’ perspective, the instructors thought it was relatively difficult to get past the initial stages,
but once the students fully understood it, they kept going very smoothly.

Strengths of the ADRI approach

The participants compared the ADRI approach with the traditional approach to summarize the
strengths of ADRI approach.

The participants all agreed that ADRI is a better teaching approach than the traditional approach.
The traditional approaches focus on all the phases separately, while ADRI integrates all the phases to
make it easier for the students to understand the different aspects of problem, solution, testing, and
improvement together. It is easier for a student to study all the phases collectively. The student un-
derstands the problem first with the help of pseudocode and flowcharts. Once the students under-
stands the problem, they can move toward the solution of the problem in the form of developing
program code. The participants agreed that the last two phases of the ADRI approach further en-
hance the students’ level of logic understanding. The student provides the stated input to the pro-
gram and then observes the output. Furthermore, it shows the process involved in solving the prob-
lem statement. It improves the student’s understanding, realizing, in reality, the reasons behind writ-
ing the program. The improvement phase helps to increase students’ understanding of the solved
problem. It helps them in developing the logic and, in fact, helps students to understand the exact
meaning and purpose of logic.

Further, regarding the structure of ADRI, the participants discussed and agreed that the ADRI ap-
proach diverts students’ intellect toward program testing. The participants observed that the students
tested their programs with values other than those provided in the ADRI exercises. The participants,
in such cases, drew their attention to test special values in their program and then see the results. As
an example, the students were asked to test the result of a program which divides an integer by an-
other by keeping one integer value to zero. The students found themselves involved in testing, and it
made it easy for the instructor to explain to them the program testing process.

The participants debated and agreed that the students stopped taking shortcuts (problem statement

coding) in programming when the ADRI was introduced to them. In the majority of cases, the stu-
dents wrote one program and then modified it to solve further related problems. The participants
had a mixed response as to whether the shortcut problem had indeed been solved with the ADRI ap-
proach.

Comparison of Traditional and ADRI Based Teaching Approaches

276

Overall, the participants agreed that the ADRI approach provided a number of strong aspects and is
helpful for both the students and the instructors.

ADRI approach weakness

The focus group participants pointed out some of the major weakness of the ADRI approach. The
participants also agreed that these weaknesses are just time based and evaporate gradually with the
passage of time and increased understanding of the students.

The participants agreed that it was relatively difficult for the students to start with the ADRI ap-
proach. The students have the nature of being bored quickly if they are asked to solve long exercises.
The same problem appeared in the adaptation of ADRI; the students felt bored when they were
studying the four phases as one. However, the participants agreed that they educated the students
about the relationship between the four phases. The majority of the participants agreed upon the fact
that students gradually adopted the ADRI approach fully.

Similarly, the participants also observed that their students were initially struggling to handle the
complexity of ADRI. Here the complexity reduced as students completed more exercises and devel-
oped familiarity with the model.

Impact of ADRI approach on student learning

The overall impact of the ADRI approach on the students’ learning appears positive. The students
accepted the notion of implementing the ADRI approach in the programming course which fol-
lowed the introductory IP course.

The participants discussed the impact of ADRI over different categories of students. In the program-
ming classes, the participants had two cohorts of students: the new students who were studying the
subject for the first time; and the students who had failed it earlier and were now repeating the
course. Once fully understood and adopted by all the students, the fresh students felt very comforta-
ble and impressed with the ADRI approach. Feedback was collected from the students who were re-
peating the course. The participants agreed that these students felt comfortable with the new ap-
proach too and appreciated the new approach.

Similarly, the student’s behavior towards doing the exercises and assignments was also improved in
the most recent semester. They were comfortable and interested in carrying on with their
assignments and exercises. This is because they had a better understanding of the problem solution
and were more confident with following the ADRI approach.

The participants all agreed that they had gained the impression that the students obtained relatively
higher grades with the ADRI approach as compared to the previous semester results. This percep-
tion was later supported when the student results were analyzed.

Summarizing the general views of the participants, it was concluded that ADRI approach had a posi-
tive impact on the students learning and the course learning objectives were better achieved as
compared to the previous semester. The students’ problem-solving strategies, understanding power,
and making logic capabilities were all improved. They were comfortable with solving a programming
problem using the ADRI approach phases.

Comparison of ADRI approach with traditional teaching approaches

The participants agreed that the traditional approach for teaching programming courses had some
deficiencies. One of the major drawbacks of the traditional approach was the problem of integrating
all the tools together. The students were taught pseudocode, flowcharts, and then programming in a
sequential manner. In such cases, the students had to revise the previous work before going into cod-
ing. ADRI has made it simple and easy for students to transition from one phase to the next. The
students can go through all the steps on a single page.

Malik & Coldwell-Neilson

277

It was also a part of the debate among the participants that, unlike the traditional approach, the
ADRI approach put together all the problem-solving methodologies. In other words, the ADRI ap-
proach provides a broader view of programming as compared to the traditional approach.

Most of the participants also pointed out that it was simpler to convey the improvement phase
knowledge to students. They used to consider it as an extra burden. However, the smoothness in the
ADRI approach has made it simpler and easier for the students.

Suggestions for further improvement in ADRI approach

The focus group participants had a long discussion over possible improvements to the ADRI ap-
proach. The suggestions can be put into three categories: the first category includes possible im-
provements to the ADRI documentation, the second category speaks about syllabus changes in the
institution, and the last category explains the addition of extra functionalities in the ADRI approach.

The participants discussed and then agreed that the ADRI document must be updated and an extra
section of glossary should be added at the end. This glossary should explain all the terms used in the
various stages, particularly around pseudo code. The glossary should be written and compiled accord-
ing to the year level of the students in the institution. It should be written in plain English and be in
an easy to understand format.

Some participants addressed the problem of credit hours allotted to the basic programming course. It
was discussed and agreed that the credit hours must be increased so that students have more time to
understand the basics of the programming language.

In the result category, the participants suggested that an extra section related to error handling should
be included. The students consider programming code like normal English text. It takes a long time
for them to realize that the text of programming code is extremely sensitive and the removal of a sin-
gle semicolon can lead to many errors in the program for example. A teacher spends extra time in
every class explaining the common errors such as missing semicolons, case sensitivity, spelling mis-
takes, and the impact of such errors on the overall program. The participants suggested that it would
be a good idea to add an extra section in the ADRI model that addresses the common errors made
by the students. Participants suggested that there should be an extra section for error-handling activi-
ties. The activity will ask the students to make a mistake, for example, “remove semi-colon at the end
of line#8” or “change the word main to Main” and then record its impact on the program. The in-
structor’s responsibility is then to explain the impact of the error, the technique of finding and fixing
the error, and to make students aware of taking care to avoid similar mistakes in the future.

Other remarks and feedback

The participants appreciated the ADRI-based editor and agreed that this has a positive impact on the
students’ learning. The editor provides all the necessary design features (pseudocode, flowchart) and
programming tools in a single application. The students can easily navigate from phase to phase. It is
easy to use, and the students do not need a lot of training or tutorials. It is also interesting to use, and
the students enjoy when they are working in the editor. The menus are self-explanatory and easy to
use and navigate. In the presence of this editor, the students’ attitude towards programming and
problem solving is more professional and practical.

One of the major properties of the editor is that it is platform-independent and can be used in any
system and any operating system. It does not need complex installation guides, and the students can
easily install and run it.

Focus group participants suggested a number of improvements to the editor that would assist stu-
dents. The steps how to save and open a program should be included in the Help menu, facilitating
users to work and interact with the editor. It will also support new users of the editor.

Comparison of Traditional and ADRI Based Teaching Approaches

278

It was also suggested to add more supporting features in the editor, and a number of bugs were
identified. For example, the Next and Previous sub-menus were not working properly under some
circumstances. If you first use the Next sub-menu, then the Previous sub-menu did not work and
vice versa.

Overall the participants’ overview about the ADRI approach was positive, and they suggested it for
further programming courses. Similarly, the instructors suggested that the students felt comfortable
and satisfied with the approach and the feedback from their classes indicated that its use should be
continued in future.

IMPACT OF THE ADRI APPROACH COMPARED TO THE

TRADITIONAL APPROACH ON THE STUDENTS’ PERFORMANCE

In this section, we describe the second research question which is:

RQ2: What is the impact of the ADRI approach compared to the traditional approach on the stu-
dents’ performance in the introductory programming course?

The ultimate goal of this study is to enhance the students’ learning outcomes in the IP course by ap-
plying the ADRI approach. Therefore, the final grades of the course over four semesters were
compared against failure and dropout rates. This criterion was used in previous studies (Guzdial &
Soloway, 2002; Lahtinen et al., 2005; Sykes, 2007; Yadin, 2011; Watson & Li, 2014; Zingaro, 2015) to
report the students’ performance. Figure 3 shows the failure rate for the last four semesters. The se-
mesters with the ADRI approach show better results compared to the traditional approach. The fail-
ure rates in those semesters offered with the ADRI approach were less compared to those semesters
offered with the traditional approach. This trend shows the students progression in the course. The
ADRI approach helps the students to gain a better understanding of the programming domain.

Figure 3. Failure rates in the IP course

Figure 4 depicts the dropout rates for the last four semesters. The ADRI approach impacted signifi-
cantly compared to the traditional approach. The dropout rates in the semesters offered with the
ADRI approach were very less compared to the traditional approach. This outcome has an impact on
the students’ engagement and enrolment in computer science discipline more generally.

0.0%

5.0%

10.0%

15.0%

20.0%

Semester 1, 2013-14 Semester 2, 2013-14 Semester 1, 2014-15 Semester 2, 2014-15

Failure Rate
Semester 1, 2013-14 Semester 2, 2013-14

Semester 1, 2014-15 Semester 2, 2014-15

Traditional approach

ADRI approach

Malik & Coldwell-Neilson

279

Figure 4. Dropout rates in the introductory programming course

Figure 5 illustrates the attrition rate (failure + dropout) for the last four semesters of the course. The
ADRI approach shows better results compared to the traditional approach. It reduces the attrition
rate to almost half compared to the traditional approach. The overall trend shows that the ADRI ap-
proach impacts significantly on the students learning. They feel more comfortable with the new ap-
proach which helps them in achieving their objectives. This result is consistent with previous findings
of Yadin (2011) and Barak, Harward, Kocur, and Lerman (2007). Yadin (2011) carried out an action
research for four semesters to address the high failure rate in an IP course. Barak et al. (2007) intro-
duced ‘Studio 1.00’ that integrates lectures with in-class demonstrations, active learning sessions, and
on-task feedback, through the use of wireless laptop computers’ in an IP course to enhance students
learning outcomes and reduced failure rates.

Figure 5. Overall impact of failure and dropout rates
 on the introductory programming course

It is evident from the above discussion that the ADRI approach impacts positively on the students’
learning in the course. The students’ grades in the semesters offered with the ADRI approach were
better compared to the traditional approach.

0

5

10

15

20

25

Semester 1, 2013-14 Semester 2, 2013-14 Semester 1, 2014-15 Semester 2, 2014-15

Dropout Rate
Semester 1, 2013-14 Semester 2, 2013-14

Semester 1, 2014-15 Semester 2, 2014-15

Traditional approach

ADRI approach

0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

30.0%

Semester 1, 2013-14 Semester 2, 2013-14 Semester 1, 2014-15 Semester 2, 2014-15

Sum of failure and dropout rates
Traditional approach

ADRI approach

Comparison of Traditional and ADRI Based Teaching Approaches

280

DISCUSSION

This study suggests that incorporating the ADRI approach in the teaching and learning process of
the IP course is beneficial as the four stages of the ADRI approach provide all the basic skills (prob-
lem solving strategies and programming knowledge) required by the novices in comprehending the
programming concepts. On the other hand, the traditional approach covers all these skills at different
stages of their learning process separately. Consequently, it is difficult for the novices to utilize these
skills together in a programming context. The ADRI approach is compatible with that suggested by
Ala-Mutka (2004) that learning to program consists of several activities including “learning the lan-
guage features, program design and program comprehension” (p. 3).

The instructors of the IP course pointed out that students have the nature of being bored quickly if
they are asked to solve long exercises. The same problem appeared in the adaptation of ADRI; the
students lost interest when they were studying the four phases as one. The graded lab sheets can be
introduced to develop the students’ interest and motivation for completing the longer exercises.
Moreover, the contact hours per week for the IP course can be increased from 3 to 5 which will help
the novices in completing the more challenging exercises. This finding is consistent with that sug-
gested by Malik, Mathew, Chowdhury, and Coldwell-Neilson (2014).

The instructors also agreed that, in the traditional approach, it is difficult and confusing for the stu-
dents to understand the connection between pseudocode, flowchart, and coding because in most of
the cases it is discussed separately or chronologically. In contrast, the four stages of the ADRI ap-
proach develop a clear connection between these steps of the programming domain.

The instructors of the IP course appreciated the ADRI editor because it is simple to use, ADRI ori-
ented, and easy to run. The students can easily access all the exercises’ topics and phases. The editor
encourages students to follow an appropriate programming process:

Problem Statement Problem-solving strategiesProgramming knowledge

instead of taking coding shortcuts:

Problem Statement Codes

This programming process is consistent with that suggested by Dale & Weems (2010).

The ADRI approach promotes deep learning of the programming domain to the students by intro-

ducing the three-step approach (Problem StatementSolution PlansCodes) which develops pro-
gram design, language features, and program comprehension skills. It was also reflected in their as-
signments and exercises in that semester. The students understood the different ways (pseudocode,
flowchart, and program) to articulate the solution for the assignments and exercises questions. The
programming process offered by the ADRI approach in promoting deep learning is consistent with
that suggested by Jenkins (2001).

 CONCLUSIONS

A teaching approach plays an important role in the learning process of an IP course. In this study, we
introduced the ADRI approach in the IP course. The teaching materials were prepared based on the
four stages of the ADRI approach. The editor was developed to facilitate the learning process. The
ADRI approach was compared with the traditional approach used in the IP course.

The focus group was conducted with the IP instructors to get an in-depth feedback on the ADRI ap-
proach. All the participants agreed that the ADRI approach is better than the traditional approach,
suggesting that the ADRI approach four stages provides all the basic skills (problems solving strate-
gies and programming knowledge) required by the novices in comprehending the programming con-
cepts. They also appreciated that the ADRI approach discourages students taking programming
shortcuts (problem statement →coding). They agreed that the ADRI approach encourages students

Malik & Coldwell-Neilson

281

to undertake (or think about) program testing. They discussed that overall the students were satisfied
with the ADRI approach. They gave some suggestions to improve the ADRI approach further.

The final grades for the students who were offered the IP course with the traditional and ADRI ap-
proaches were compared. The comparison shows that the ADRI approach gives a positive impact on
the learning process. The students who finished the course offered with the ADRI approach per-
formed better compared to the students who finished the course offered with the traditional ap-
proach.

We plan to introduce the ADRI approach in other fields of computer science studies, such as
database and data structure, to determine if its impact has a wider application than just teaching in-
troductory programming. Investigating whether using the approach impacts on higher-level program-
ming courses is also worthy of investigation.

REFERENCES

Ala-Mutka, K. (2004). Problems in learning and teaching programming – A literature study for developing visualizations in the
Codewitz-Minerva project. Codewitz needs analysis. Retrieved 20 Dec, 2013 from
http://www.cs.tut.fi/~edge/literature_study.pdf

Barak, M., Harward, J., Kocur, G., & Lerman S. (2007) Transforming an introductory programming course:
From Lectures to Active Learning via Wireless Laptops. Journal of Science Education and Technology, 16(4), 325-336.
doi: 10.1007/s10956-007-9055-5

Carbone, A., Hurst, J., Mitchell, I., & Gunstone, D. (2009). An exploration of internal factors influencing stu-
dent learning of programming. Proceedings of the Eleventh Australasian Conference on Computing Education ACE
‘09, Australian Computer Society, Australia, 25-34.

Carroll, M., & Razvi, S. (2006). ADRI: A quality assurance model for self-reviews and external-reviews. MOHE and
OAC, Workshop handout, Traning Module 01 v6. Retrieved from http://www.oaaa.gov.om/Quali-
tyTraining/Handout/01v6_handout.pdf

Chaparro, E.A., Yuksel, A., Romero, P., & Bryant, S. (2005). Factors affecting the perceived effectiveness of
pair programming in higher education. Proceedings of 17th Workshop of the psychology of programming interest group,
Sussex University, UK, 5-18.

Dale, N., & Weems, C. (2010). Programming and problem solving with C++. (5th ed.). USA: Jones & Bartlett Pub-
lishers.

Guzdial, M., & Soloway, E. (2002) Log on education: Teaching the Nintendo generation to program. Communi-
cations of the ACM, 45(4), 17-21.

Huet, I., Pacheco, O.R., Tavares, J., & Weir, G. (2004). New challenges in teaching introductory programming
courses: A case study. Proceedings of 34th ASEE/IEEE Frontiers in Education Conference, IEEE, Savannah, GA.

Iqbal, S., & Harsh, O.K. (2013). A self-review and external review model for teaching and assessing novice pro-
grammers. International Journal of Information and Education Technology, 3(2), 120-123.

Jenkins, T. (2001). Teaching programming – A journey from teacher to motivator. Proceedings of 2nd Annual
LTSN-ICS Conference, London, 65-71.

Lahtinen, E., Ala-Mutka, K., & Järvinen, H. M. (2005). A study of the difficulties of novice programmers.
ACM SIGCSE Bulletin, 37(3), 14-18.

Malik, I. S. (2016). Enhancing practice and achievement in an introductory programming course using an
ADRI editor. Proceedings of the IEEE International Conference on Teaching, Assessment and Learning for Engineering,
IEEE, Thailand, 7-9 December, pp. 32-39. doi: 10.1109/TALE.2016.7851766

Malik, I. S., & Coldwell-Neilson, J. (2016). A model for teaching an introductory programming course using
ADRI. Education and Information Technologies. doi: 10.1007/s10639-016-9474-0

Malik, I. S., & Coldwell-Neilson, J. (2017). Impact of a new teaching and learning approach in an introductory
programming course. Journal of Educational Computing Research. SAGE. doi: 10.1177/0735633116685852

http://www.cs.tut.fi/~edge/literature_study.pdf
http://www.oaaa.gov.om/QualityTraining/Handout/01v6_handout.pdf
http://www.oaaa.gov.om/QualityTraining/Handout/01v6_handout.pdf
https://doi.org/10.1109/TALE.2016.7851766
https://doi.org/10.1177/0735633116685852

Comparison of Traditional and ADRI Based Teaching Approaches

282

Malik, I. S., Mathew, R., Chowdhury, M. U., & Coldwell-Neilson, J. (2014). Impact of assurance of learning
(AOL) in programming course for novices. Proceedings of the 2nd BCS International IT Conference, UAE.
doi: 10.14236/ewic/bcsme2014.17

Matthiasdottir, A. (2006). How to teach programming languages to novice students? Lecturing or not? Proceed-
ings of International Conference on Computer Systems and Technologies – CompSysTech’06, University of Veliko Tar-
novo, Bulgaria, 13-1 –13-7

Merrick, K. E. (2010). An empirical evaluation of puzzle-based learning as an interest approach for teaching
introductory computer science. IEEE Transactions on Education, 53(4), 677-680.

Miljanovic, M. A. (2015). RoboBUG: A game based approach to learning debugging techniques. Master thesis,
accessed on October, 07, 2015, from https://ir.library.dc-uoit.ca/handle/10155/536

Moen, R., & Norman, C. (2010) Evolution of the PDCA Cycle. Retrieved 05 July, 2013 from
http://www.uoc.cw/financesite/images/stories/NA01_Moen_Norman_fullpaper.pdf

Mohorovicic, S., & Strcic, V. (2011). An overview of computer programming teaching methods. Proceedings of
Central European Conference on Information and Intelligent Systems, CECIIS, Croatia, 47-52

Nuutila, E., Törmä, S., &Malmi, L. (2005). PBL and computer programming — The seven steps method with
adaptations. Computer Science Education, 15(2), 123-142.

Papp-Varga, Z., Szlávi, P., & Zsakó, L. (2008). ICT teaching methods – Programming languages. Annales Mathe-
maticae et Informaticae, 35, 163–172.

Razvi, S., Trevor-Roper, S., Goodliffe, T., Al-Habsi, F., & Al-Rawahi, A. (2012). Evolution of OAAA strategic
planning: Using ADRI as an analytical tool to review its activities and strategic planning. Proceedings of Sev-
enth Annual International Conference on Strategic Planning for Quality Assurance and Accreditation of Universities and
Educational Arab Institutions, Cairo, Egypt.

Sung, K., Hillyard, C., Angotti, R. L., Panitz, M. W., Goldstein, D. S., & Nordlinger, J. (2011). Game-themed
programming assignment modules: A pathway for gradual integration of gaming context into existing in-
troductory programming courses. IEEE Transactions on Education, 54(3), 416-427.

Sykes, E. R. (2007). Determining the effectiveness of the 3D Alice programming environment at the computer
science I level. Journal of Educational Computing Research, 36(2), 223-244.

Watson, C., & Li, F. W. B. (2014). Failure rates in introductory programming revisited. Proceedings of ITiCSE,
ACM, Uppsala, Sweden

Yadin, A. (2011). Reducing the dropout rates in an introductory programming course. ACM Inroads, 2(4), 71-
76.

Yoneyama, Y., Matsushitab, K., Mackinb, K. J., Ohshirob, M., Yamasakib, K., & Nunohiro, E. (2008). Puzzle
based programming learning support system with learning history management. Proceedings of the 16th Inter-
national Conference on Computer in Education, Taipei, Taiwan, 623-627.

Zacharis, N. Z. (2011). Measuring the effects of virtual pair programming in an introductory programming Java
course. IEEE Transaction on Education, 54(1), 168-170

Zingaro, D. (2015). Examing interest and grades in computer science 1: A study of pedagogy and achievement
goals. ACM Transactions of Computer Education, 15(3), Article 14.

http://dx.doi.org/10.14236/ewic/bcsme2014.17
https://ir.library.dc-uoit.ca/handle/10155/536
http://www.uoc.cw/financesite/images/stories/NA01_Moen_Norman_fullpaper.pdf

Malik & Coldwell-Neilson

283

BIOGRAPHIES

Sohail Iqbal Malik obtained his Ph.D. in Computer Science from Dea-
kin University, Australia in 2016. He has been working as an Assistant
Professor at Information Technology Department, Buraimi University
College, Oman (Academic collaboration with California State Univer-
sity, Northridge, USA) since February 2007. His research interest
includes Computer Education, Technology in Education, Knowledge
Management and Mobile Learning.

After 13 years in the ICT industry, Jo Coldwell-Neilson has been and
academic for over 30 years. Jo has built a strong research and teaching
profile engaging students in and with technology. She has been involved
in many projects implementing educational technologies in her teaching
and the learning and teaching activities at Faculty and University level.
Her current research reflects interests, including investigations into gen-
der issues in IT, digital technology uptake in schools and higher educa-
tion, and preparing students for careers in a digital environment. Jo is a
current Australian Learning and Teaching Fellow.

