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ABSTRACT 
Aim/Purpose The aims of  this study were to investigate the feasibility of  automatic assessment 

of  programming tasks and to compare manual assessment with automatic as-
sessment in terms of  the effect of  the different assessment methods on the 
marks of  the students. 

Background Manual assessment of  programs written by students can be tedious. The assis-
tance of  automatic assessment methods might possibly assist in reducing the 
assessment burden, but there may be drawbacks diminishing the benefits of  ap-
plying automatic assessment. The paper reports on the experience of  a lecturer 
trying to introduce automated grading. Students’ solutions to a practical Java pro-
gramming test were assessed both manually and automatically and the lecturer 
tied the experience to the unified theory of  acceptance and use of  technology 
(UTAUT). 

Methodology The participants were 226 first-year students registered for a Java programming 
course. Of  the tests the participants submitted, 214 were assessed both manually 
and automatically. Various statistical methods were used to compare the manual 
assessment of  student’s solutions with the automatic assessment of  the same 
solutions. A detailed investigation of  reasons for differences was also carried out. 
A further data collection method was the lecturer’s reflection on the feasibility of  
automatic assessment of  programming tasks based on the UTAUT. 

Contribution This study enhances the knowledge regarding benefits and drawbacks of  auto-
matic assessment of  students’ programming tasks. The research contributes to 
the UTAUT by applying it in a context where it has hardly been used. Further-
more, the study is a confirmation of  previous work stating that automatic assess-
ment may be less reliable for students with lower marks, but more trustworthy for 
the high achieving students. 
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Findings An automatic assessment tool verifying functional correctness might be feasible 
for assessment of  programs written during practical lab sessions but could be less 
useful for practical tests and exams where functional, conceptual and structural 
correctness should be evaluated. In addition, the researchers found that automatic 
assessment seemed to be more suitable for assessing high achieving students. 

Recommendations  
for Practitioners 

This paper makes it clear that lecturers should know what assessment goals they 
want to achieve. The appropriate method of  assessment should be chosen wisely. 
In addition, practitioners should be aware of  the drawbacks of  automatic assess-
ment before choosing it. 

Recommendation  
for Researchers  

This work serves as an example of  how researchers can apply the UTAUT theory 
when conducting qualitative research in different contexts. 

Impact on Society The study would be of  interest to lecturers considering automated assessment. 
The two assessments used in the study are typical of  the way grading takes place 
in practice and may help lecturers understand what could happen if  they switch 
from manual to automatic assessment. 

Future Research Investigate the feasibility of  automatic assessment of  students’ programming 
tasks in a practical lab environment while accounting for structural, functional 
and conceptual assessment goals. 

Keywords assessment of  programs, automatic assessment, UTAUT, assessment goals 

 
INTRODUCTION 
Lecturers are struggling to keep up with their daily responsibilities because of  an ever increasing 
workload. In South Africa, university enrollment has almost doubled, increasing from 495,356 in 
1994, to 975,837 in 2016 in public universities and universities of  technology (Council on Higher 
Education, 2018). At the North-West University, where this study was conducted, the number of  
first-time undergraduate students enrolled increased by 57.9% from 5,929 in 2009 to 9,359 in 2015 
(Department of  Higher Education and Training, 2017). 

Manual programming assessment is time-consuming (Buyrukoglu, Batmaz, & Lock, 2016). Due to 
increased student numbers, more manpower is needed to deal with the increase in the assessment 
workload. When multiple people are involved, assessment can become inconsistent (Orrell, 2008). 

A possible solution to the above-mentioned problems regarding assessment is to use the assistance 
of  Automatic Programming Assessment (APA) methods. According to Romli, Sulaiman and Zamli 
(2015), APA methods have greatly improved educators’ ability to grade and evaluate student pro-
gramming exercises.  

Automatic assessment of  programming assignments is not new. It has been used for more than 50 
years (Douce, Livingstone, & Orwell, 2005). TRAKLA2 is an example of  a successful automatic 
assessment tool that has been used since 1991 (Korhonen & Malmi, 2000). ArTEMiS (Krusche & 
Seitz, 2018), as well as applying the token pattern approach (Poon et al., 2018; Yu, Tang, & Poon, 
2017) into PASS (Yu, Poon, & Choy, 2006) are recent additions that improve APA. Modern APA 
systems require greater sophistication than the early systems owing to the programming environment 
being more complex. For example, students are required to use integrated development environ-
ments (IDE) to produce programs that use graphical user interfaces (GUI). Automatic assessment in 
this environment is challenging compared to simplistic command-line programming environments.  

The study reported in this paper was conducted in order to decide if  it is feasible to introduce auto-
matic assessment of  the programming assignments of  students at the North-West University in 
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South Africa. The following describes the events and problems that led to this research. Pseudonyms 
Alice and Betty refer to the two researchers who conducted this research.  

Alice lectured a C# class of  almost 300 students and found the assessment of  such a large group 
extremely challenging. Alice learned about the automatic assessment tool that was used at Betty’s 
university and inquired about the possibility to use it at her university to assess assignments. Betty 
responded that it was a possibility, but that their system was at that stage configured to assess only 
C++, C, Java and ASM assignments. Since C# was not already supported, Alice suggested to a col-
league who presented a Java course to approximately 250 students, that they should use the oppor-
tunity. Betty mentioned that the run-up time to assess an assignment was three weeks. This was 
communicated to Alice’s colleague. 

The colleague decided to send her semester test to Betty and expected to receive the marks in three 
weeks’ time. After the semester test was written, the colleague sent the question paper, a model an-
swer, a marking scheme and all the students’ answer files to Betty. Betty immediately responded that 
automatic assessment of  this test could not be done in its current form. The colleague should have 
consulted with Betty prior to the test for the applicable formulation of  the questions and the config-
uration of  the automatic assessment tool in order for the students to upload their answers directly to 
the tool. At that point the colleague realized that she had to assess the test manually. Alice and Betty 
then decided to use this incident to investigate the feasibility of  using Betty’s automatic assessment 
tool to assess programming tasks at Alice’s university.  

The aims of  the study were to: 

• compare manual assessment with automatic assessment in terms of  the effect of  the differ-
ent assessment methods on the marks of  the students; and 

• investigate the feasibility of  automatic assessment of  programming tasks from a lecturer’s 
point of  view based on the unified theory of  acceptance and use of  technology (UTAUT) 
(Venkatesh, Morris, Davis, & Davis, 2003). 
(UTAUT is described in the section on technology acceptance.) 

In the following three sections, a review of  the literature regarding the foundational concepts of  this 
research, namely automatic assessment, assessment goals and technology acceptance, is presented. 

AUTOMATIC ASSESSMENT 
In this section, the context of  the research in relation to the body of  knowledge regarding automatic 
assessment of  programming assignments is provided. 

Douce et al. (2005) categorize the APA systems developed since inception up to 2005 according to 
age. In each of  the three generations they identified, the APA systems adopted more advanced tech-
nologies correlating with the state of  the art technologies used for program development in each 
period. In a review of  APA systems by Ihantola, Ahoniemi, Karavirta and Seppälä (2010), developed 
in the period 2006 to 2010, it was observed that APAs are mainly used in programming contests and 
in introductory programming courses.  

Many benefits of  applying automatic assessment of  programming assignments have been reported. 
Automatic assessment is more likely to be consistent and objective (Arifi, Abdellah, Zahi, & 
Benabbou, 2015; Staubitz, Klement, Teusner, Renz, & Meinel, 2016), enables rapid feedback (Arifi et 
al., 2015; Liu et al., 2016; Nordquist, 2007; Poon et al., 2018), and allows for students to submit mul-
tiple improved versions of  the programs they have written (Del Fatto et al., 2017; English & English, 
2015; Malmi, Korhonen, & Saikkonen, 2002; Pettit, Homer, Gee, Mengel, & Starbuck, 2015; Staubitz 
et al., 2016). Automatic assessment can play a motivational role in engaging students in the educa-
tional process (Šťastná, Juhár, Biňas, & Tomášek, 2015; Staubitz et al., 2016). The most appealing 
benefit seems to be the possibility of  saving time. This comes as no surprise as it has been reported 
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that assessment is one of  the most often mentioned tasks that lecturers find burdensome (Pieterse & 
Sonnekus, 2003). Del Fatto et al. (2017) report how they effectively saved time when using a system 
that can automatically identify correct code, reducing manual assessment to involve only code con-
taining errors.  

The automatic assessment tool used in the investigation applies testing-oriented assessment. It re-
quires that both lecturers and students have expertise in developing test suites. For students, it con-
tributes to their understanding of  the results of  an assessment and their ability to use the results to 
improve their programs. Edwards (2003) points to the benefits of  expecting students to perform 
more testing and eventually to appreciate its value for the development process. For lecturers, the 
development of  test suites is the instrument to provide relevant feedback to the students, which is 
directly related to the code they are writing and to the test case that failed (Combéfis & Paques, 
2015). Bey, Jermann and Dillenbourg (2018) compared two automatic assessors that differed in their 
approach. One assesses algorithmic competencies by looking at the code while the other is testing-
oriented and looks at the output. They found a positive correlation between the marks produced by 
the two automatic assessors.  

Combéfis and Schils (2016) point to the complexity of  being able to provide sensible feedback, as it 
is nearly impossible to anticipate all errors that can occur in novice programs and to have test cases 
to identify each of  the anticipated errors. They propose similarity clustering to improve the accuracy 
of  feedback. Lepp et al. (2016) report that the design of  automatically assessed exercise tests was one 
of  the most difficult challenges they faced when applying Moodle plug-in VPL for the automatic 
assessment of  programming assignments.  

Pieterse and Janse van Vuuren (2015) state that it is important that automatic assessment tools should 
be able to assign partial marks and claim that this can be achieved with careful weighting of  different 
test cases in a test suite in a way that matches the outcomes that are being tested. Birch, Fischer and 
Poppleton (2016) propose the use of  a system that is able to isolate “almost correct” student submis-
sions. In theory, both manual assessment and automatic assessment can be performed at the same 
fine-grained level and covering all the assessment goals intended for each practical programming 
assignment. In practice, however, the granularity as well as the assessment goal of  any programming 
assignment is dependent on the person who specifies the marking schemes (Pieterse & Janse van 
Vuuren, 2015). Ala-Mutka (2005) claims that automatic assessors are capable of  evaluating the func-
tionality of  entities smaller than a complete program, such as single classes, methods, and even 
statements. Staubitz, Klement, Renz, Teusner and Meinel (2015) pointed out that there are automatic 
assessors that can address both dynamic and static assessment of  programming assignments while 
Moreno-León, Román-González, Harteveld and Robles (2017) propose a tool capable of  assessing 
the level of  development of  aspects of  computational thinking. 

Staubitz et al. (2016) describe a number of  challenges associated with applying automatic assessment 
of  programming tasks. An important challenge, often overlooked, is that considerable time and ef-
fort need to be devoted to the implementation of  resources for automated assessment (Ala-Mutka, 
2005;(English & English, 2015; Pieterse, 2013). Another problem is that the development of  new 
exercises often requires considerable technical skills beyond the scope of  the content being assessed 
(Korhonen & Malmi, 2000; Pieterse, 2013). These aspects became apparent in the investigation dis-
cussed in this paper.  

ASSESSMENT GOALS 
In this section, different classifications of  assessment goals from the literature are discussed followed 
by conclusions regarding the proposed classification of  assessment goals of  programming assign-
ments. 

Tew and Guzdial (2010) suggest that there is no agreement on what constitutes valid measures of  
student learning in computing. Researchers speculate that students’ poor performance may be indica-
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tive of  inaccurate measures of  their ability and knowledge (Lister, 2010; Tew & Guzdial, 2010). Of-
ten taxonomies, such as Bloom’s cognitive taxonomy (Committee of  College and University Examin-
ers & Bloom, 1964; Thompson, Luxton-Reilly, Whalley, Hu, & Robbins, 2008) or the Structure of  
the Observed Learning Outcome (SOLO) taxonomy (Biggs & Collis, 1982; Petersen, Craig, & Zinga-
ro, 2011) are used to determine the assessment goals of  questions asked to evaluate the programming 
competence of  students. 

Sheard et al. (2011) developed a classification scheme that can be used to investigate the characteris-
tics of  introductory programming exams. They concluded that the process of  classification is highly 
subjective, and that there is a great variation in the pedagogic intentions and beliefs of  the people 
who set these introductory programming exams. In addition, the classification depends on lecturers’ 
knowledge of  the courses they are teaching, how their students would respond to each specific ques-
tion and it might also be influenced by features of  the culture of  the institutions at which the lectur-
ers are employed (Sheard et al., 2011). Sheard, Carbone, D’Souza and Hamilton (2013) also found 
that the process lecturers follow to develop programming exams is largely based on intuition and 
experience. 

In this paper, the assessment of  programming tasks is classified in three categories according to the 
assessment goals of  the measure of  student skills and understanding of  programming tasks, namely 
structural, functional and conceptual. 

STRUCTURAL  
Structural evaluation may include scrutiny of  syntax, control structures (sequential, selection and 
repetition), program complexity, compliance with coding standards, and so forth. These aspects are 
usually achieved through manual inspection. However, some authors have endeavored to automate 
aspects of  the structural assessment of  programs (Ala-Mutka, Uimonen, & Jarvinen, 2004; Ali, 
Shukur, & Idris, 2007; Waugh, Thomas, & Smith, 2007). Parsons and Haden (2006) developed a drill 
and practice computer game for mastering syntax constructs. The game itself  serves as formative 
assessment of  mastering these constructs and the marks of  students, when playing the game, can be 
used for the summative assessment of  the skills and knowledge of  students regarding structural as-
pects of  programs. 

FUNCTIONAL  
The assessment of  the functional correctness of  a program written by a student can be achieved 
through the execution of  the program using well-designed test cases (Pieterse, 2013). Functional 
correctness may include the evaluation of  aspects, such as efficiency and proper memory manage-
ment, such as avoiding memory leaks (Ala-Mutka, 2005). These may be measured using popular pro-
filing tools, such as Valgrind (2017), Pin (2012) software and Dr. Memory (2016). The automation of  
establishing the functional correctness of  programs is commonplace (Arifi et al., 2015; Ihantola et al., 
2010; Staubitz et al., 2015). 

CONCEPTUAL  
Assessing the programming accomplishments of  students on a conceptual level is probably the most 
difficult of  the assessment goals to achieve. It is common to carry out this assessment using code-
reading questions or questions asking for definitions or explanations in written exams (Petersen et al., 
2011). Algo+ attempts to automatically assess students’ solutions on a conceptual level by decompos-
ing the student’s program and evaluating the recognized underlying program plan (Bey & Bensebaa, 
2011; Bey et al., 2018). Visual programming environments, such as Scratch (Resnick et al., 2009) and 
Alice (Dann, Cooper, & Pausch, 2008) can be used to promote conceptual understanding. The as-
sessment of  conceptual aspects in programs written by students is, however, not easy to automate 
(Posavac, 2015). 
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TECHNOLOGY ACCEPTANCE 
Since the technology acceptance models are used as a lens to evaluate the feasibility of  the automatic 
assessment of  programming tasks, the theories of  technology acceptance are reviewed in this sec-
tion, followed by a discussion of  the determinants of  technology acceptance. 

There have been several theoretical models, primarily developed from theories in sociology and psy-
chology, employed to explain technology acceptance and use. The initial theory was the theory of  
reasoned action (Ajzen & Fishbein, 1980; Fishbein & Ajzen, 1975) and an extension was the theory 
of  planned behavior that stipulates that behavioral intention is influenced by attitudes and subjective 
norms that in turn influence actual behavior (Ajzen, 1991). 

Drawing heavily from the theory of  reasoned action (Ajzen & Fishbein, 1980; Fishbein & Ajzen, 
1975), Davis, Bagozzi and Warsaw (1989), in the technology acceptance model (TAM), identified and 
measured a set of  common beliefs that apply across a range of  IT tools with two primary direct de-
terminants of  intention: usefulness and ease of  use. TAM2, an extension to TAM, added subjective 
norm and voluntariness (Venkatesh & Davis, 2000). TAM/TAM2 is widely used in the IS field for 
clarifying the acceptance of  IT tools. The diffusion of  innovation (DOI) theory of  Rogers (1995) 
declares that decisions to adopt or reject an innovation are based on the beliefs users form about the 
innovation. The DOI theory has been used to study a range of  innovations (e.g., World Wide Web, 
spreadsheets, and teaching methods). 

Venkatesh et al. (2003) reviewed and synthesized eight theories/models of  technology use and for-
mulated a unified model, named the Unified Theory of  Acceptance and Use of  Technology 
(UTAUT). The UTAUT is currently widely used in the literature in various contexts, including educa-
tional contexts (Al-Adwan, Al-Madadha, & Zvirzdinaite, 2018; Liebenberg, Benadé, & Ellis, 2018; 
Nur, Faslih, & Nur, 2017). This study made use of  the UTAUT as this model provides suitable foun-
dations to determine the attitude of  the lecturer towards the use of  an automatic assessor. The 
UTAUT was developed with four core determinants of  intention and three moderators of  key rela-
tionships. The four determinants are performance expectancy, effort expectancy, social influence and 
facilitating conditions. Self-efficacy, anxiety and attitude towards using technology are the three mod-
erators that are not direct determinants of  Behavioral Intention. A discussion of  the determinants 
follows below. 

PERFORMANCE EXPECTANCY 
Performance expectancy is the degree to which an individual believes that using the system will help 
to improve performance and therefore enhance the quality of  work (Venkatesh et al., 2003). Davis et 
al. (1989) state that people form intentions towards behaviors they believe will increase their perfor-
mance and further assert that beliefs influence attitudes that lead to intentions and therefore generate 
behaviors. In this study, performance expectancy refers to the degree to which the lecturer expected 
that using an automatic assessor would improve her quality of  work. 

EFFORT EXPECTANCY 
Effort expectancy is defined as the degree of  ease associated with the use of  the system (Venkatesh 
et al., 2003). Davis et al. (1989) refer to this as perceived ease of  use and claim that it refers to the 
degree to which a person believes that using a particular system would be free of  effort. People will 
more likely use an application that is perceived easier to use than others and is more likely to be ac-
cepted by users. In this study, effort expectancy refers to the degree to which the lecturer regarded an 
automatic assessor as easy to use. 
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SOCIAL INFLUENCE 
Social influence refers to the extent to which a person experiences interpersonal influence to use a 
system from important people within his or her social milieu. In this study, social influence refers to 
the degree to which the lecturer experienced the influence of  peers and students to use an automatic 
assessor. 

FACILITATING CONDITIONS 
Facilitating conditions (Compatibility) is defined as “the degree to which an individual believes that 
an organizational and technical infrastructure exists to support use of  the system” (Venkatesh et al., 
2003). Rogers (1995, p. 224) defined Compatibility as “the degree to which an innovation is perceived 
as being consistent with the existing values, past experiences, and needs of  potential adopters”. In 
this study, Facilitating Conditions refers to the lecturer’s belief  regarding the ease of  installation and 
use of  an automatic assessor and furthermore, the compatibility with the lecturer’s current teaching 
style. 

SELF-EFFICACY 
Psychologist Albert Bandura (1995) has defined self-efficacy as one’s belief  in one’s ability to succeed 
in specific situations or to accomplish a task. Self-efficacy in this study refers to the lecturer’s belief  
in her ability to use the automatic assessor. 

ANXIETY 
Anxiety is a feeling of  worry, nervousness, or unease about something with an uncertain outcome. In 
this study, anxiety refers to the degree of  stress and hesitance the lecturer experienced with the use 
of  the automatic assessor. 

ATTITUDE TOWARDS USING TECHNOLOGY 
Attitude towards using technology is defined as an individual’s overall affective reaction to using a 
system (Venkatesh et al., 2003). In this study, attitude towards using technology refers to the lecturer’s 
positive or negative feelings about using the automatic assessor. 

BEHAVIORAL INTENTION 
Behavioral intention is the dependent variable in this study and refers to a lecturer’s intention to use a 
specified automatic assessor in the future, whether or not he or she used it currently. According to 
Ajzen (1991, p. 181) “Intentions are assumed to capture the motivational factors that influence a 
behavior; they are indications of  how hard people are willing to try, of  how much of  an effort they 
are planning to exert, in order to perform the behavior. As a general rule, the stronger the intention 
to engage in a behavior, the more likely should be its performance”. 

METHODOLOGY 
In this section, the methods used to collect quantitative data through assessment, as well as qualita-
tive data through reflection are described. In addition, the analysis of  two sets of  data is explained. 

DATA COLLECTION THROUGH ASSESSMENT 
The participants were 226 first-year students registered for a Java programming module in the second 
semester at the Potchefstroom Campus of  the North-West University in South Africa. Data was 
collected by assessing student’s programming solutions both automatically and manually.  
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The programming question required the students to write the code for two classes, namely Sum-
DiffQuo and MinMax. The class diagram shown in Figure 1 was provided for the SumDiffQuo class. 
The MinMax class should read five numbers, and calculate the largest and smallest of  the numbers. 
Additionally, the methods of  the SumDiffQuo class should be called using the calculated values. 

SumDiffQuo 
- sum: int 
- dif: int 
- quo: double 
«Constructor» SumDiffQuo(startSmall:int, startLarge:int) 
- setAll(first:int, second:int) 
+ getSum(): int 
+ getDif(): int 
+ getQuo(): double 

Figure 1. Class diagram 

Manual assessment 
The code the students wrote was saved in files that were given to teaching assistants to evaluate. The 
assistants were expected to use the rubric shown in Table 1 and they could assign partial marks at 
their own discretion.  

Table 1. Manual assessment rubric 

CLASS OUTCOME ASSESSMENT 
GOAL 

MAX 
MARK 

TOTAL 

 Program not compiling Structural -5 -5 
SumDiffQuo declare instance variables Structural 1  
 constructor heading Structural 1  
 initialize variables in the constructor Conceptual 2  
 header of  setAll function Structural 2  
 initialize variables in the setAll function Conceptual 3  
 implementation of  get methods Conceptual 1 10 
MinMax import libraries Structural and 

Conceptual  
2  

 main function header Structural 2  
 declare and initialize variables Conceptual 2  
 loop header Structural 1  
 loop increment Conceptual 2  
 if  to replace smallest in loop Conceptual 3  
 if  to replace largest in loop Conceptual 3  
 create object of  class SumDifQuo Structural 2  
 call functions Structural and 

Conceptual 
2  

 display output Structural 1 20 
Total    30 
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This rubric in Table 1 does not correspond to the marking scheme in Table 2 as the assessment 
methods have different assessment goals. The rubric in Table 1 points to two assessment goals, 
namely structural and conceptual. 

Figure 2 is an example of  a program that was manually assessed. 

 
Figure 2. Class diagram 

Automatic assessment 
The code the students wrote to answer the semester test questions was uploaded to the in-house 
system at Betty’s university. The system is called Fitchfork (Pieterse, 2013). To configure Fitchfork to 
assess a specific task, one has to write a marking scheme that specifies a number of  predefined test 
cases; therefore the assessment goal is purely functional. The system allows for the specification of  
marks to be allocated if  a test passes, as well as custom feedback per test case in case it passes and in 
case it fails. In this investigation, the students did not upload their own code and therefore also did 
not see any of  the feedback generated by the system. Nonetheless, the feedback messages were in-
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cluded when the marking scheme was prepared. This was done to improve the readability of  the 
marking scheme. It also allowed the researchers to reuse the marking scheme in future. Figure 3 
shows typical assessment output that would have been produced by Fitchfork had the students used 
it in real time.  

 
Figure 3. Sample output of  Fitchfork 

To test the implementation of  the functions, Fitchfork was configured to compile their implementa-
tion file called SumDiffQuo.java along with a driver program that calls each of  the functions with 
selected test cases. Table 2 shows the test cases that were specified by the researchers. To test their 
driver called MinMax.java, Fitchfork was configured to compile their program with a bogus imple-
mentation file. When calling the functions from their main program, it should then display the values 
returned by the bogus functions instead of  the correct values.  

Table 2. Test cases used for automatic assessment of  the functions 

FUNCTION TEST 
VALUES 

EXPECTED 
OUTPUT 

MARK MESSAGE MAX 
MARK 

TOTAL 

getSum 1, 3 4 2 PASS addition    
4.0 1 FAIL addition: Result should be 

an integer  
  

other 0 FAIL addition 2  
getDiff 1, 3 2 3 PASS subtraction   

2.0 2 FAIL subtraction: Result should 
be an integer 

  

-2 or -2.0 1 FAIL subtraction: Values sub-
tracted in the wrong order 

  

other 0 FAIL subtraction 3  
getQuo 1, 3 and 

7, 22 
3.0 and 
3.1428 

3 PASS division   

3.0 and 3.0 2 PASS division, but answer should 
be a real number 

  

0.33333 and 
0.31818 

2 FAIL: Division in wrong order 
yet functionally correct for real 
answers 

  

other 0 FAIL division 3 8 

smallest 3, 1, 5, 2, 
4 

1 
other 

2 
0 

PASS Smallest (input random) 
Smallest value not identified 
correctly (input random) 

 
2 
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FUNCTION TEST 
VALUES 

EXPECTED 
OUTPUT 

MARK MESSAGE MAX 
MARK 

TOTAL 

1, 2, 3, 4, 
5 

1 
other 

2 
0 

PASS Smallest (input ascending) 
FAIL Smallest value not identi-
fied correctly (input ascending) 

 
2 

 

8, 6, 5, 4, 
3 

3 
 

other 

1 
 
0 

PASS Smallest (input descend-
ing) 
FAIL Smallest value not identi-
fied correctly (input descending) 

 
1 

 

largest 3, 1, 5, 2, 
4 

5 
other 

1 
0 

PASS Largest (input random) 
FAIL Largest value not identified 
correctly (input random) 

 
1 

 

1, 2, 3, 4, 
5 

5 
other 

2 
0 

PASS Largest (input ascending) 
FAIL Largest value not identified 
correctly (input ascending) 

 
2 

 

8, 6, 5, 4, 
3 

8 
other 

2 
0 

PASS Largest (input descending) 
FAIL Largest value not identified 
correctly (input descending) 

 
2 

 
10 

Total      18 

Table 3 shows how the bogus functions were defined and the output of  the students’ driver class 
were assessed. They were awarded 1 mark each for each function call and two marks for formatting 
the result of  the quotient correctly as prescribed with two decimal digits. 

Table 3. Automatic assessment of  function calls 

BOGUS 
FUNCTION 

RETURN 
VALUE 

EXPECTED 
OUTPUT 

MARK MESSAGE MAX 
MARK 

TOTAL 

getSum 777 777 
other 

1 
0 

PASS getSum called correctly 
FAIL getSum not called correctly 

 
1 

 

getDiff 555 555 
other 

2 
0 

PASS getDiff  called correctly 
FAIL getDiff  not called correctly 

 
2 

 

getQuo 66.6 66.60 
66.6 

 
other 

3 
1 
 
0 

PASS getQuo called correctly 
FAIL Incorrect formatting of  
answer of  getQuo 
FAIL getQuo not called correctly 

 
 
 
3 

 
 
 
6 

Total      6 

DATA COLLECTION THROUGH REFLECTION 
The participant was Alice (one of  the authors of  this paper) who was teaching the C# programming 
module in the second semester at the Potchefstroom Campus of  the North-West University in South 
Africa. Data were collected through the lecturer’s reflections on the feasibility of  automatic assess-
ment of  programming tasks based on the unified theory of  acceptance and use of  technology 
(UTAUT). A structured written reflection was prepared based on the following themes (determi-
nants) of  UTAUT: performance expectancy, effort expectancy, social influence, facilitating condi-
tions, self-efficacy, anxiety and attitude towards using technology. 
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ANALYSIS 
To analyze the quantitative data, various statistical methods using SPSS Version 24 were applied. The 
manual assessment marks of  students’ solutions were compared with the automatic assessment 
marks of  the same solutions. Since the assessment goals of  the two assessment methods did not 
correspond, only the final marks from the two methods were analyzed. Differences in marks were 
determined using paired samples T-tests, Pearson correlation analysis and various regression models 
that were applied to determine correlations. 

The qualitative data was obtained in a format that was thematically structured. Further thematic anal-
ysis of  Alice’s reflection could have led to the emergence of  additional themes, for example the de-
gree of  each determinant demonstrated or the absence of  certain elements. Nonetheless, no further 
analysis was considered necessary.  

In the following two sections, the results are discussed and the paper concludes with some recom-
mendations for automatic assessment. 

RESULTS  
In this section, the researchers report on the results regarding failed APA, a comparison of  marks 
obtained using the different assessment methods and conclude with the lecturer’s reflection, based on 
UTAUT. 

FAILING TO AUTOMATICALLY ASSESS  
Twelve of  the 226 students who participated did not submit their electronic documents. Of  the 214 
submitted documents, only 77 could be automatically assessed, since the remaining 137 documents 
contained code that did not compile when uploaded to Fitchfork. The remaining 137 documents 
were further classified based on how the students were penalized for non-compilation during the 
manual assessment. As can be seen in Figure 4, 112 documents did not compile when tested manual-
ly. Sixteen documents that failed to compile automatically were not penalized for non-compilation 
during manual assessment and nine documents were only partially penalized. 

 
Figure 4. Compile outcomes 

The researchers scrutinized the 25 documents that were not penalized for non-compilation during 
manual assessment although they did not compile when tested automatically. Table 4 shows the types 
of  error that caused the code in these documents not to compile. The number of  cases of  each error 
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that was not penalized or only partially penalized during manual assessment is shown. The totals are 
larger than the number of  documents as some students had more than one error in their code. Most 
of  the problems are related to spelling errors in function names or parameter mismatches when 
functions are called. 

When a student program has some of  these errors, it may compile when only the student’s code is 
used. The student may, for example, have the same misspelling of  a function name in both the main 
program and in the file containing the function definitions. In the automatic assessment program, the 
student functions are called using a test harness that will compile only if  all the functions in the stu-
dent’s program are spelled exactly as specified and can be called with the parameter types as specified. 

Table 4. Compile errors tolerated during manual assessment 

ERROR NOT PENALIZED PARTLY PENALIZED TOTAL 

Spelling differences 11 3 14 
Parameter mismatch 6 7 13 
Undeclared variables 0 2 2 
Undefined function 0 1 1 
Scope errors 0 2 2 
Total 17 15 32 

MARKS 
Table 5 shows the descriptive statistics of  the marks of  the 77 scripts that were assessed manually, as 
well as automatically. The mean mark for assessments marked manually are higher than those marked 
automatically. 

Table 5. Descriptive statistics (n = 77) 

 MEAN STD DEV MODE 

Automatic assessment 49.84 38.91 0 
Manual assessment 65.46 24.76 100 

Figure 5 shows the mark distribution for the automatic assessment, as well as the manual assessment 
of  the 77 documents that could be automatically assessed. The large cohort of  students who 
achieved low marks when automatically assessed might be explained by the fact that these students 
were not accustomed to the strict requirements when automatic assessment is applied and may have 
been careless when writing their code. 

The distribution of  the marks students achieved when they were assessed automatically, when com-
pared with the marks they achieved when assessed manually, shows that more students were getting 
high marks, but also that more were failing. A similar observation was reported by Matthíasdóttir and 
Arnalds (2015) when they compared the differences in marks between manually assessed programs 
and automatically assessed programs. Automatic assessment seems not to have the same distinguish-
ing power as that of  manual assessment. The marks achieved with manual assessment were closer to 
normal while those achieved with automatic assessment were closer to binary. Full marks is the mode 
for manual assessment while zero is the mode for automatic assessment. The fact that the mode 
values are the opposite extremes is telling of  the difference between these methods of  assessment. 
Very few students were awarded extremely low marks during manual assessment while the opposite is 
true for automatic assessment. When a program contains errors, the manual marking seems to be 
much more lenient than the automatic marking. 
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Figure 5. Mark distribution per assessment method (n=77) 

Table 6 shows the types of  error that occurred in the 18 cases where the students’ code compiled, 
but were awarded zero marks when automatically assessed. 

Table 6. Run-time errors (n = 18) 

ERROR TOTAL 

Blank output 8 
Use of  uninitialized variables 6 
Endless loop 3 
Division by zero 1 
Total 18 

Figure 6 is a Venn diagram showing the number of  students awarded full marks per assessment 
method. More students (12 documents) were awarded full marks during automatic assessment 
compared to the number of  students who were awarded full marks during manual assessment (9 
documents). Only seven were awarded full marks regardless of  assessment method. 

 
Figure 6. Number of  students awarded full marks 

Close investigation of  the five cases where students got full marks during automatic assessment, but 
not during manual assessment revealed that the manual assessment was faulty. Full marks should 
have been awarded according to the assessment rubric. It was found that in the two cases where doc-
uments were awarded full marks during manual assessment, but not during automatic assessment, 
marks were lost owing to ill-formatting in both cases. 

The difference between the manual and automatic assessment marks was analyzed using a paired 
samples T-test. A medium, practically visible difference was found (d = 0.401, p < 0.001). The differ-
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ence can be explained by the fact that the granularity of  marks for manual assessment in this particu-
lar case was much higher. When comparing the assessment rubric in Table 1 with the test cases in 
Table 2, it is obvious that a higher level of  detail was considered when assessing manually. Test cases 
for automatic assessment are generally not proficient for fine-grained assessment. 

The correlation between the different methods of  assessment was determined using Pearson’s corre-
lation coefficient. This correlation proved to be a high practical significant relationship (r = 0.789, p 
< 0.001). The regression model for the correlation between automatic marking (x) and manual mark-
ing (y) is y = +40.44 + 0.52 ∗ x. At face value, it seems feasible to substitute x in this formula with 
the automatic assessment mark, in order to calculate a value comparable with the manual mark. 
However, R2 = 0.623, thus only 62.3% of  the variance is explained by this model. 

Bland and Altman (1986) point out that the use of  correlations may be misleading and propose that 
the correlation between the mean and difference of  the value pairs be considered. Figure 7 shows the 
application of  their technique using our data. 

Ideally, the regression line of  such a scatter plot should be horizontal. In our case, the formula y = 
41.09 – 0.33 * x defines this line. The line has a visible downslope of  -0.33 that indicates that the 
correlation between automatic assessment and manual assessment is not reliable, which is not sur-
prising since the assessment goals of  the methods were different. However, Bey et al. (2018) did find 
a positive correlation when they compared two automatic assessors with differing assessment goals. 
Although the researchers could not establish a correlation, the gradient of  the regression line in Fig-
ure 7 indicates that automatic assessment may be more reliable for students with higher marks since 
the correlation becomes stronger as the mean of  the marks increases. A possible explanation for this 
is that correct programming solutions are awarded good marks regardless of  assessment goals while 
the marks assigned to partially correct solutions might differ for different assessment goals.  

 
Figure 7. Difference plot (n=77) 

To further investigate the above matter, the students are classified into three categories based on their 
manual assessment marks. The categories are Fail (< 50%), Pass (>= 50% and < 75), and Pass with 
distinction (>= 75). Table 7 shows the results of  the T-test. Since the effect size (d) for the failing 
students (d = 1.303, p < 0.001) is greater than 0.8, the results show a very large, practically significant 
difference, thus supporting the findings in Figure 7 that automatic assessment may be less reliable for 
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students with lower marks. Similarly, for the students who passed, the large effect size (d = 0.747, p < 
0.001) implies that the automatic assessment is not reliable. However, the small effect size (d = 0.151, 
p = 0.409) for the distinction candidates indicates that automatic assessment is likely to be more 
trustworthy for the high achieving students. 

Table 7. Differences per performance categories 

PERFORMANCE        
CATEGORY 

AUTOMATIC MANUAL EFFECT 
SIZE (d) p 

Mean StdDev Mean StdDev 

Fail (n=19) 12.07  14.70 32.64 15.78 1.303 < 0.001 
Pass (n=30) 38.62  32.62 62.99 7.74 0.747 < 0.001 
Pass with distinction (n=28) 87.49  19.02 90.37 9.31 0.151 0.409 

LECTURER WRITTEN REFLECTION 
In this section, Alice’s reflection on her intentions to use the automatic assessment tool used at Bet-
ty’s university is described. This reflection is structured using the UTAUT model and the determi-
nants and moderators discussed in the section on Technology Acceptance. Alice’s reflection is based 
on her subjective feelings engendered by personal observations and experiences towards the feasibil-
ity of  automatic assessment of  programming tasks at her university. 

Performance expectancy 
My initial expectation was that an automatic assessor would increase my performance. I ex-
pected an automatic assessor to be a useful tool in my work as a lecturer and that automatic 
assessment would be more reliable than manual marking by teaching assistants. I expected 
automatic assessment to save me a lot of  time and therefore increase my productivity. How-
ever, the actualization was entirely different from this expectation. In the first place, the use-
fulness of  the tool proved to be a disappointment since I could not use the tool for the C# 
course. The reliability of  the automatic assessment compared to the manual assessment also 
proved to be questionable, since the analysis showed that it might only be reliable for high 
achieving students. Furthermore, Fitchfork turned out to be a cumbersome tool to use even 
for the Java course. The compilation of  the marking scheme proved to be quite complicated 
and very time-consuming and in fact reduced my productivity.  

Effort expectancy 
I expected that the process to apply automatic assessment is clear and understandable and it 
would be easy to learn to use the automatic assessment tool and to apply it in my course. I 
further expected that it would be easy for me to become skillful at using the tool. However, 
the automatic assessment process proved to be anything but effortless. I learned that to set a 
marking scheme for the tool required multiple additional skills, such as competency in XML 
and regular expressions, as well as in the compilation of  effective test cases.  

Social influence 
I was definitely influenced by people in my social environment to start using an automatic 
assessment tool. My colleagues and I increasingly experienced the pressure of  assessing pro-
gramming exams combined with ever increasing student enrollment and this encouraged me 
to investigate alternative methods of  assessment. My colleagues, academic peers and even 
my family supported the idea that some of  my work could be automated and that I should 
use the system. 
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My proposal to implement the automatic assessor in my department was enthusiastically ac-
cepted by the management of  the university and they granted financial support for the initia-
tive. 

Facilitating conditions 
I realize that the current investigation made use of  the resources at Betty’s university, but at 
this stage I believe that my university has the resources necessary to use the tool and the tool 
is compatible with our facilities. I have confidence that Betty’s university will be available for 
assistance with system difficulties.  

Self-efficacy 
I cannot complete an automatic assessment task using the tool if  there is no one around to 
tell me what to do as I go and, furthermore, no help facility for assistance exists. I realize 
that the process is complicated and I still have a lot to learn before I will be skillful to use the 
automatic assessment tool and apply it in my course. 

Anxiety 
Since I am a power user of  technology, I am not anxious to use the automatic assessment 
tool, despite the fact that it is an unfamiliar system. I am positive that it will be more fun to 
rise to the challenge to compile an effective marking scheme for the tool than to wrestle 
through the manual marking of  hundreds of  programs. 

Attitude towards using technology 
Initially, I felt positive about the prospects of  using the APA, but gradually my enthusiasm 
dwindled as my journey through the process of  using the APA progressed. 

Behavioral intention 
I intend to use the automatic assessor in future during practical lab sessions despite the fact 
that very little of  my initial expectations were met.  

DISCUSSION 
Comparative analysis uncovered that the marks do not correlate between the different assessment 
methods; automatic assessment seems to be useful for high achieving students. However, the lecturer 
would not know in advance who the high achievers would be and, in any case, manual marking of  the 
high achievers’ tests is the easiest and takes the least time – it is the low achievers whose programs 
often do not even compile who pose the greatest challenge. The quality of  the marking scheme im-
proves the quality of  assessment for both methods of  assessment; however, the manual method has 
human intelligence for interpretation that the automatic method does not have. The lecturer could 
use a similar system reported by Del Fatto et al. (2017) whereby the system automatically identifies 
correct code and therefore time is saved since only the erroneous programs have to be manually 
assessed. 

An automatic assessment tool verifying functional correctness might be feasible for assessment of  
programs written during practical lab sessions but could be less useful for practical tests and exams 
where both functional and structural correctness should be evaluated. It is feasible to use an auto-
matic assessor in practical lab sessions, since accurate calibration of  the competence of  the students 
is of  secondary importance and the benefits of  rapid feedback outweigh the drawback of  low accu-
racy.  

The creation of  automatically assessable programming assignments, along with the test cases to cover 
the required assessment goals at the desired granularity for these assignments, is considered to be a 
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challenging exercise (Ala-Mutka, 2005; Pieterse, 2013; Staubitz et al., 2015). This reality, experienced 
in this study, plays an important role in the inclination of  instructors to automatically assess student 
submissions at a courser granularity and covering fewer assessment goals as they would when using 
manual assessment of  programming tasks. It can be explained by the fact that instructors may find it 
tedious and difficult to design the required large number of  test cases to satisfy the pedagogical re-
quirements when having to apply automatic assessment of  the tasks (Cerioli & Cinelli, 2008). 

Alice did not expect in terms of  the effort and performance determinants that the use of  the as-
sessment tool would be difficult and time-consuming. In terms of  social influence and facilitating 
conditions, Alice did not experience these as inhibiting factors. Alice’s attitude towards technology is 
the essence of  her behavioral intention. Her initial positive attitude can be linked to the fact that she 
was generally not anxious to use new technologies. However, her misconceptions regarding effort 
expectancy may have caused her positive attitude to wane. 

Alice’s reflection did not mention assessment goals at all. It appears that Alice did not consider as-
sessment goals and consequently did not expect her assessment goals to differ so significantly from 
the assessment goals of  the automatic assessor. She came to the realization that her educational style 
and beliefs regarding assessment of  programming are in sharp contrast to the assessment style and 
principles of  the automatic assessor. This realization corresponds with the findings of  Sheard et al. 
(2011) and Sheard et al. (2013) that there is a great variation in the pedagogical intentions and beliefs 
of  people who set programming exams and the process is based largely on intuition and experience. 

Based on Alice’s testimony on her behavioral intent it seems as if  she no longer believes that the 
automatic assessor is feasible for assessment of  tests and exams, but she intends to use it for assess-
ment of  programming assignments written during practical lab sessions. We envisage that the ad-
vantages of  using the automatic assessor would outweigh the disadvantages in a situation where it is 
of  secondary importance that the assessment should accurately determine the proficiency of  the 
students. 

LIMITATIONS 
The researchers recognized some limitations to the study. The programming assignment was small, it 
had only two classes, and a larger assignment may have produced different results. The students did 
not have experience in being automatically assessed and with more familiarity using this method the 
difference between the two assessment results may be less pronounced. The fact that only 77 of  the 
214 submitted documents could be analyzed presented a small sample; a larger sample would be ben-
eficial. The observations made in the study are dependent on the assessment rubric that was used 
with manual assessment, as well as the test cases that were used in the automatic assessment. The 
researchers are not in the position to claim that either the rubric or the test cases are perfect, and the 
use of  other rubrics and test cases might not present similar results. The qualitative data presented 
the view of  only one lecturer and other lecturers may have a different experience with the automatic 
assessor. Furthermore, this experience is based on one automatic assessor and it is likely that the use 
of  other automatic assessors may be viewed in a more positive light. 

LESSONS LEARNED 
It was discovered that different assessment goals exist, and it is important in the design of  assess-
ment of  programming assignments, tests and exams. In addition, automatic assessment may pose 
numerous challenges not often reported in the literature. The researchers realized that the introduc-
tion of  an automatic assessor is likely to require an adjustment period before the full benefits could 
be realized.   
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CONCLUSION 
In view of  the increasing enrollment of  students and in the light of  the availability of  automatic 
assessment tools, automatic assessment seems feasible for assessments in lab sessions, but may be 
challenging to use for tests and exams where it is important to verify functional, structural and con-
ceptual correctness. In addition, the researchers found that automatic assessment seemed to be more 
suitable for assessing high achieving students. 

This study would be of  interest to lecturers considering automated assessment. The two assessments 
used in the study are typical of  the way grading takes place in practice, and this may help lecturers 
understand what could happen if  they switch from manual to automatic assessment. Although, in 
our study, comparative analysis revealed that the marks do not correlate between the different as-
sessment methods, automatic assessment seems to be useful for high achieving students.  

Being mindful of  assessment goals in marking schemes, test cases and formulation of  questions may 
improve the overall quality of  assessment for both methods of  assessment. 

RECOMMENDATIONS 
It is recommended that lecturers identify the assessment goals they want to achieve and choose the 
appropriate method of  assessment wisely. In addition, lecturers should be aware of  the drawbacks of  
automatic assessment before choosing it.  

FUTURE RESEARCH  
Future research may include an investigation of  the feasibility of  automatic assessment of  student 
programs in a practical lab while accounting for different assessment goals. This can be achieved by 
repeating the study reported in this paper, but with the following differences:  

• Conducting the automatic assessment in a practical lab instead of  after the fact in a practical 
test. In this situation, the students can benefit from real-time feedback. The manual assess-
ment will be conducted after the fact. 

• Aligning the assessment goals between the two assessment methods. This can be achieved by 
synchronizing the manual assessment rubric with the test cases used for automatic assess-
ment. 

• Gathering data from students and the lecturer on the feasibility of  automatic assessment 
based on UTAUT, instead of  the reflection of  one lecturer. 
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