

Volume 18, 2019

Accepting Editor Anthony Scime │ Received: January 7, 2019│ Revised: March 23, April 12, April 21, 2019 │
Accepted: April 24, 2019.
Cite as: Jegede, P. O., Olajubu, E. A., Ejidokun, A. O., & Elesemoyo, I. O. (2019). Concept–based analysis of
Java programming errors among low, average and high achieving novice programmers. Journal of Information
Technology Education: Innovations in Practice, 18, 49-59. https://doi.org/10.28945/4322

(CC BY-NC 4.0) This article is licensed to you under a Creative Commons Attribution-NonCommercial 4.0 International
License. When you copy and redistribute this paper in full or in part, you need to provide proper attribution to it to ensure
that others can later locate this work (and to ensure that others do not accuse you of plagiarism). You may (and we encour-
age you to) adapt, remix, transform, and build upon the material for any non-commercial purposes. This license does not
permit you to use this material for commercial purposes.

CONCEPT–BASED ANALYSIS OF JAVA PROGRAMMING
ERRORS AMONG LOW, AVERAGE AND HIGH ACHIEVING

NOVICE PROGRAMMERS
Philip Olu Jegede* Institute of Education,

Obafemi Awolowo University,
Ile-Ife, Nigeria

pojegede@gmail.com

Emmanuel Ajayi Olajubu Department of Computer Sci-
ence and Engineering,
Obafemi Awolowo University,
Ile-Ife, Nigeria

emmolajubu@oauife.edu.ng

Adekunle Olugbenga Ejidokun Department of Computer Sci-
ence and Engineering,
Obafemi Awolowo University,
Ile-Ife, Nigeria

gbengskul@gmail.com

Isaac Oluwafemi Elesemoyo Department of Computer Sci-
ence and Engineering,
Obafemi Awolowo University,
Ile-Ife, Nigeria

ielesemoyo@gmail.com

*Corresponding author

ABSTRACT
Aim/Purpose The study examined types of errors made by novice programmers in differ-

ent Java concepts with students of different ability levels in programming as
well as the perceived causes of such errors.

Background To improve code writing and debugging skills, efforts have been made to
taxonomize programming errors and their causes. However, most of the
studies employed omnibus approaches, i.e. without consideration of differ-
ent programing concepts and ability levels of the trainee programmers. Such
concepts and ability specific errors identification and classifications are need-
ed to advance appropriate intervention strategy.

Methodology A sequential exploratory mixed method design was adopted. The sample was
an intact class of 124 Computer Science and Engineering undergraduate stu-
dents grouped into three achievement levels based on first semester perfor-

https://doi.org/10.28945/4322
https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/
mailto:pojegede@gmail.com
mailto:emmolajubu@oauife.edu.ng
mailto:gbengskul@gmail.com
mailto:ielesemoyo@gmail.com

Concept-based Analysis of Java Programming Errors

50

mance in a Java programming course. The submitted codes in the course of
second semester exercises were analyzed for possible errors, categorized and
grouped across achievement level. The resulting data were analyzed using
descriptive statistics as well as Pearson product correlation coefficient. Quali-
tative analyses through interviews and focused group discussion (FGD) were
also employed to identify reasons for the committed errors.

Contribution The study provides a useful concept-based and achievement level specific
error log for the teaching of Java programming for beginners.

Findings The results identified 598 errors with Missing symbols (33%) and Invalid
symbols (12%) constituting the highest and least committed errors respec-
tively. Method and Classes concept houses the highest number of errors
(36%) followed by Other Object Concepts (34%), Decision Making (29%),
and Looping (10%). Similar error types were found across ability levels. A
significant relationship was found between missing symbols and each of In-
valid symbols and Inappropriate Naming. Errors made in Methods and Clas-
ses were also found to significantly predict that of Other Object concepts.

Recommendations
for Practitioners

To promote better classroom practice in the teaching of Java programming,
findings for the study suggests instructions to students should be based on
achievement level. In addition to this, learning Java programming should be
done with an unintelligent editor.

Recommendations
for Researchers

Research could examine logic or semantic errors among novice programmers
as the errors analyzed in this study focus mainly on syntactic ones.

Impact on Society The digital age is code-driven, thus error analysis in programming instruction
will enhance programming ability, which will ultimately transform novice
programmers into experts, particularly in developing countries where most
of the software in use is imported.

Future Research Researchers could look beyond novice or beginner programmers as codes
written by intermediate or even advanced programmers are still not often
completely error free.

Keywords concept, Java, achievement level, error analysis, programming

INTRODUCTION
Studies of taxonomies of novice programming errors have been of interest to many researchers and
educators (Brown, Kooling, McCall, &Utting, 2014; Denny, Luxton-Relly, Tempero, & Hendrickx,
2011; Fitzgerald, Hanks, Lister, McCauley, & Murphy, 2013; Johansen,2015). Causes of such errors
have also been investigated (Bringula, Manabat, Tolentino, & Torres, 2012; Kaczmarcyk, Petrick, East
& Harman, 2010; Shah, Berges & Hubwieser, 2017). The ultimate aim in all of these has been to im-
prove code writing and debugging skills. Such studies have always helped instructors to redefine their
pedagogical approach with a view to addressing such identified errors and misconceptions. In doing
this, teachers may need to create their own errors and chats in order to help the learners achieve
long-term progress in program writing. Conceiving students’ errors as valuable feedbacks drives in-
structors to apply remedial teaching based on the nature of their errors (Al-Saudi, 2013).Results from
error analysis can also inform the design of courses, textbooks and also tools to target the most fre-
quent (or hardest to fix) errors (Altadmri & Brown, 2015). The more educators understand about the
nature of these errors and how students respond to them, the more effective teaching can be (Denny,
Luxton-Reilly, & Tempero, 2012). However, most of the studies bordering on programming errors
and misconception employed omnibus approaches, i.e., analyzing and taxonomizing errors without
consideration of different programming concepts or domains. For example, Mow (2012) conducted

Jegede, Olajubu, Ejidokun, & Elesemoyo

51

an exploratory study that investigated the most common errors students made in Java programming
classes. Java codes written by undergraduates were analyzed for errors but the study did not take into
consideration the topics that contained the majority of error types. Such an approach had often ob-
scured some salient information because errors and misconceptions in one programming concept
may be different from the other, thus the appropriate feedback needed for instructional improvement
may be somewhat deficient. Jackson, Cobb & Carver (2005) checked and gathered syntactic errors of
beginning programmers by an informal survey of current and former faculty members teaching the
course. It was determined that there were discrepancies between the errors that the instructors had
identified and the errors that the students were encountering; thus, it becomes clear that analysis of
the code written by novice programmers themselves is the most reliable method in determining their
errors. It is on this note that the current study seeks to analyze and identify categories of errors and
misconceptions across different programming domains or concepts.

Apart from this, it is necessary to explore specifically how errors that novice programmers make vary
based on their achievement level. High achieving students self-report having the easiest time learning
the introductory programming topics. For example, in a quantitative analysis, high achieving and av-
erage students were more effective at debugging on average than low-achieving students (Rodrigo et
al., 2014). This, however, does not address errors made across achievement level, which is logical to
explore before assessing, debugging, identifying and correcting syntax errors; a challenge all novice
programmers confront.

This focused analysis (i.e. based on concept and achievement level) is expected to provide a sound
understanding of the learning process of each group of learners and their peculiarities across differ-
ent programming concepts. In doing this, Java, one of the most popular programming languages
globally, was used for the study. Java has been the second most popular language since its creation in
the mid-90s (Tiobe Programming Index, 2017). While generating the index of the most popular pro-
gramming languages, Tiobe employed variables such as the number of professional developers
worldwide, training courses and third-party vendors in rating the popularity of the programming lan-
guages. The portability, scalability and large community of users of Java has led to its popularity. Al-
so, Java shares a lot of core programming concepts with Python - another very popular language. It
is believed that much of the syntax and concepts of the two languages are the same. It thus becomes
imperative to conduct a study of this nature with a programming language such as Java knowing that
findings from this study could also be of benefit in teaching Python. Specifically, the study will seek
to identify the errors made by novice programmers in Java based on concepts. It will also determine
the error types made by low achieving, average achieving and high achieving novice programmers in
Java. This is in addition to identifying the errors made in Java programming across concepts based on
the achievement level of the novice programmers. It is also necessary to explore possible misconcep-
tions leading to the identified errors. Examining the relationships between errors in each of the con-
cepts with the other concepts will help in determining whether errors in one concept predict errors
in another concept. Similarly, committing a type of error in Java programming may suggest vulnera-
bility to another particular type of error, thus it is also relevant to examine the relationship between
each of the error types. This is the gap the study attempts to fill.

METHODS
A sequential exploratory mixed-method design was adopted for the study. An intact class of 124 stu-
dents studying 200-level computer science and engineering in a southwestern Nigerian university par-
ticipated in the study. The study spanned one academic session. Introductory concepts in Java were
instructed (with theory and practice) in the first semester after which the students were examined. A
summative assessment based on the semester examination provided the basis for the categorization
of students into “low achieving” (between 0 and 49 percent), “average achieving” (between 50 and
59 percent) and “high achieving” (between 60 and 100 percent) in Java programming. Twenty-six

Concept-based Analysis of Java Programming Errors

52

students fell within the category of low achievers while 33 were in the average category and 65 con-
stituted the high achieving cohort.

In the second semester, students were taken through practical sessions in Java and solutions to cod-
ing exercises were submitted through an online platform. The submissions covered concepts such as
methods and classes, decision making, more object concepts and looping. Methods and classes in-
clude components such as “creating methods with no parameters, a single parameter and multiple
parameters; creating methods that return values; class concept; creating a class; creating instance
methods in a class; declaring objects and their methods; organizing classes.” Decision making in-
cludes components such as “If, If…else, Nested If ”. More object concepts include “this reference,
constructors, parameter sending, inheritance, using static variable, blocks and scopes.” Looping con-
sisted of “Loop structure, while loop, for loop, for-each loop, do … while loop, nested loops, use
constant fields, use automatic imported, pre-written constants and methods”.

Following Bringula et al. (2012), the submitted codes were analyzed for possible errors, using Quanti-
tative Error Analysis. Identified errors were categorized into Invalid Symbols, Mismatched Symbols,
Missing Symbols, Inappropriate Naming and Excessive Symbols. Invalid Symbols, according to
Bringula et al. (2012) consist of errors such as “No period between class name and method name”,
capitalized keywords, Replacing (and) with <and> or [and] in output stream and else without if.
Mismatched Symbols are a result of wrong curly braces, incorrect greater than or equal to sign, when
the symbol cannot be found because of mismatched between the declared and used variable or un-
declared variable. For Missing Symbols, errors include lack of semi-colon at the end of a statement,
no close/open parenthesis on if condition and unclosed literals. Inappropriate Naming consists of
bugs such as wrong casing of method names, inappropriate casing of class names and splitting a
class name by putting a space while Excessive Symbols consist of excessive semi-colon, putting a
period between the keyword, import and java packages and putting a semi-colon after the If-
condition.

Quantitative Analysis was done, using descriptive statistics to determine error distribution based on
concepts and achievements levels of beginner programmers. Pearson Product Correlation Coeffi-
cient was used to determine the relationship between error types. An interview was also conducted to
elicit information on selected students (12 in all) on reasons or misconceptions leading to the errors
made by them. Correlation is significant at the 0.01 level (2-tailed).

RESULTS
In identifying the type of errors made by novice or beginner programmers based on concept, the
code written by novice programmers in the course of laboratory practical were analyzed for errors.
The errors were categorized into Invalid Symbol, Inappropriate Naming, Excessive Symbol, Mis-
matched Symbol and Missing Symbol, as previously described. Concepts and domains where the er-
rors were committed were grouped into Decision Making, Looping, Methods and Classes and Other
Object concepts (Table 1). Findings revealed that out of the 598 errors made, Missing Symbol was
195 (33%), least errors committed were Invalid Symbols (11.9%), Methods and Classes concept
houses the highest number of errors 119 (35.8%) followed by Other Object Concepts (34%), Deci-
sion Making followed after (29.1%), with Looping (10.4%) housing the least number of errors.

In determining the error types based on achievement level, error types were grouped and categorized
based on achievement level of the beginner programmers who committed them (Table 2). Findings
revealed that novice programmers had the highest number of errors of Missing Symbol across all the
achievement levels. Forty percent (40%) of Low Achievers, 28% of Average Achievers and 32% of
High Achievers committed Missing Symbol errors.

To identify errors made across concepts based on achievement level, Table 3 shows that for Low
Achievers, other Object Concepts constitute the most error prone (34%) followed by Methods and

Jegede, Olajubu, Ejidokun, & Elesemoyo

53

Classes (24.4%). While for average and high achieving students, Decision Making (35%), and Method
and Classes (32%) were the most error prone respectively.

In determining the relationships between each of the error types, Pearson product correlation coeffi-
cients were obtained between the error types (Table 4). Significant relationships exist between Miss-
ing Symbol and each of Invalid Symbol and Inappropriate Naming at 0.01 level. A significant rela-
tionship was also found between Missing Symbol and Mismatch Symbol at 0.05 level of significance.
In addition to this, a significant relationship exists between errors made in Looping and each of the
Decision Making and Other Object concepts at 0.05 level of significance. Errors made in Other Ob-
ject concept and those made in Methods and Classes concept were significantly related at 0.01 level
of significance (Table 5).

Table 1. Error categorization and concept
 Invalid

Symbol
Mismatched
Symbol

Missing
Symbol

Inappropriate
Naming

Excessive
Symbol

Total

Decision
Making

25 61 58 4 26 174
(29.1%)

Looping 07 38 10 01 06 62
(10.4%)

Methods and
Classes

16 31 75 53 41 214
(35.8%)

Other Object
Concepts

23 03 52 20 48 146
(34.1%)

Total 71
(11.9%)

133
(22.2%)

195
(32.6%)

78
(13.0%)

121
(20.2%)

598

Table 2. Error types and achievement level
 Invalid

Symbol
Mismatched
Symbol

Missing
Symbol

Inappropriate
Name

Excessive
Symbol

Total

Low
Achieving

11 (8.7%) 33 (26%) 51 (40.2%) 18 (14.1%) 14 (11%) 127
(21.2%)

Average
Achieving

19 (11.1%) 45 (26.3%) 48 (28.1%) 14 (8.2%) 45 (26.3%) 171
(28.6%)

High
Achieving

41 (13.7%) 55 (18.3%) 96 (32%) 46 (15.3%) 62 (20.7%) 300
(50.2%)

 71 133 195 78 121 598

Table 3. Concept-based errors and achievement level
 Decision

Making
Looping Methods and

Classes
Other Object
Concepts

Total

Low Achieving 29 (22.8%) 24 (18.9%) 31 (24.4%) 43 (33.9%) 127

Average
Achieving

59 (34.5%) 17 (9.9%) 55 (32.2%) 40 (23.4%) 171

High Achieving 86 (28.7%) 21 (7%) 130 (43.3%) 63 (21%) 300

 174 62 216 146 598

Concept-based Analysis of Java Programming Errors

54

Table 4. Relationships between error types
 Invalid

Symbol
Mismatch
Symbol

Missing
Symbol

Inappropriate
Name

Excessive
Symbol

Invalid Symbol Pearson Correlation 1

Sig. (2-tailed)

Mismatch
Symbol

Pearson Correlation .218 1

Sig. (2-tailed) .050

Missing Symbol Pearson Correlation .406** .262* 1

Sig. (2-tailed) .000 .018

Inappropriate
Naming

Pearson Correlation .195 .050 .287** 1

Sig. (2-tailed) .081 .656 .010

Excessive

Symbol
Pearson Correlation .117 .206 .043 .052 1

Sig. (2-tailed) .298 .065 .704 .642

 *. Correlation is significant at the 0.05 level (2-tailed).
 **. Correlation is significant at the 0.01 level (2-tailed).

Table 5. Relationships between errors made by concepts
 Decision

Making
Looping Method and Classes Other Object

Concepts
Decision
Making

Pearson Correlation 1

Sig. (2-tailed)

Looping Pearson Correlation .234* 1

Sig. (2-tailed) .035

Method and
Classes

Pearson Correlation .077 -.070 1

Sig. (2-tailed) .494 .535

Other
Object
Concepts

Pearson Correlation .103 .257* .292** 1

Sig. (2-tailed) .360 .020 .008

*. Correlation is significant at the 0.05 level (2-tailed).
**. Correlation is significant at the 0.01 level (2-tailed).

In identifying various misconceptions of novice programmers, twelve students from the intact class
were randomly selected and interviewed on their perceived reasons for the identified errors commit-
ted by them. This was done by recalling their code and spotting the errors made. Participants were
made to explain the reason(s) why they felt they made the spotted mistakes. This was in addition to a
focus group discussion moderated by 3 of the researchers with the 12 selected students. The follow-
ing responses were obtained and the implication of the misconceptions based on their responses
were stated together with the errors that could arise from such misconceptions.

Jegede, Olajubu, Ejidokun, & Elesemoyo

55

Response 1: I give the void return type to both the getter and setter methods instead of void for setter and either int.,
string etc. For getter.”

Implication: Class name can be declared wrongly which might affect the output from the object of
the class.

Susceptible Error(s): Inappropriate naming error

Response 2: We felt convention does not matter so far the code can run.

Implication: The omission of use of conventions sometimes leads to inappropriate naming
 error since there are rules guiding the naming of identifiers, variables and so on.

 Susceptible Error(s): Inappropriate naming error

Response 3… the IDE we used for practicing were smarter, because it gave us hints on what went wrong and how
it should be fixed but the editors we used in exams were not smart, they did not give us any hint on errors.

Implication: The use of smarter IDEs helps to curb the use of extra braces. The use of IDEs that
are not smart allows student to make errors like excessive symbol, missing symbol and mismatched
symbol since a computer with the aid of intelliSense will be able to identify these errors and help
remove them automatically. Novice programmers will continue to commit such errors except when
intelligent editors are used.

Susceptible Error(s): Excessive symbols, Missing symbols and Mismatched errors.

Response 4: Programming is like mathematics with precise formula and steps that must be memorized.

Implication: Students therefore came to the examination practical with memorized code as the solu-
tion to problems that looked like previous ones. Memorizing code without necessarily understanding,
leads to missing symbol, excessive symbols, mismatched symbol, inappropriate naming and invalid
symbol errors. Missing symbol is because some portion of the code might be forgotten, excessive
symbol is because an extra brace or symbol can be added, mismatched symbol can cause undeclared
variable, unmatched curly braces among other problems. Also, it can cause improper naming of
methods and classes.

Susceptible Error(s): All forms of errors: Missing Symbols, Excessive Symbols, Mismatched Sym-
bols, Inappropriate Naming and Invalid Symbols.

Response 5: A student should be a man of one programming language.

Implication: Programming with this mindset would lead to all types of error stated in this article.
This is because students would lack the readiness to learn and adapt with the syntax and conventions
of a new programming language being taught that was different from the previously learnt one. For
example, for a student that had python as the first language, python is dynamically typed, in other
words there is no need to declare a variable as a type before use. A python user will make the mistake
of not declaring a variable in Java thereby leading to missing symbol error. Python uses indentation
to separate code into blocks. However, Java uses curly brace. Indentation makes code readable with
less chance of a missing brace. A python user may make a mistake of missing symbol when coding in
Java. The implication of this is that of cognitive conflict or that disinterestedness in the new lan-
guage leading to all forms of errors.

Susceptible Error(s): All forms of errors.

Concept-based Analysis of Java Programming Errors

56

DISCUSSION
The study determined that the Method and Classes concept is the most error-prone of all the con-
cepts. This is probably because it serves as the gateway to Object-oriented Programming. Many of
the enrollees were having their first Java programming experience, thus, methods and classes being
the first concept in the course, the practical submissions in the concept were expectedly ‘error-
infected’. This is opposed to the findings of Adair and Jaeger (2011) who posited that the topic ob-
ject with methods and classes was not found as being particularly difficult by students. However,
Other Object Concepts which included inheritance and polymorphism were found to be somewhat
difficult. Another reason for the prevalent error in method and classes was that some of the enrollees
had previous (though little) exposure to other object-oriented languages, mainly python, with more
liberal syntax. Java being a more ‘disciplined’ language is often characterized with stringent syntax
thus, cognitive conflicts between the previously learnt language and the current one might have ac-
counted for many of the errors in methods and classes. For example, in Java, every statement ends
with a semicolon whereas this is not the case in Python. Also, due to the fact that Python does auto
variable type assignment from the value stored in the variable, novice programmers might forget that
Java is strict with variable type declaration and therefore omit the type, expecting the compiler to as-
sign the type from the value. This is also the case for return type in Java method declarations.

Another critical issue is the readiness to learn a new language. Having had a bit of exposure to an-
other language, one of the findings during the focus group discussion is that some of the partici-
pants believed that a student should be a man of one programming language. Hence, the non-amenability to
Java syntax by such students.

Looping, however, housed the least number of errors. This is probably because even though Loop-
ing as a concept is of a higher cognitive hierarchy, errors in looping might not manifest in syntax
form but rather as semantic or logic errors, which the error analysis in this study does not capture.
For example, loop code written by a novice programmer can be syntactically correct but vulnerable
to logic or semantic error as it can still run into an infinite loop. In other words, syntactically correct
looping code does not necessarily inform adequate mastery of looping by novice programmers.

Missing symbols accounted for 195 (32.6%) of the errors, and invalid symbols (11.9%) constitute the
least made error. It is also informative to note that missing symbols are errors that are likely commit-
ted at the earliest classes of programming. For example, the missing symbol errors (as shown in Ta-
ble 1) reside largely within methods and classes giving an impression that bugs such as omission of
semi-colons at the end of a statement and unclosed literals, which are beginners errors, are the pre-
ponderant mistakes. This finding is in agreement with that of Jadud (2006) when he reported that,
out of 1926 errors encountered by students, more than half of all errors generated by students while
programming are missing semicolons. Similarly, a study conducted by Mow (2012) summarized the
top 8 errors to include variable not found (49.8%), class not found (5%), method not found (1.6%).
Even though class not found and method not found may not necessarily imply missing symbols, the
fact that variable not found accounted for half of the top 8 errors supported the finding that missing
symbols accounted for the most frequent error types.

From this study, in particular, students were of the opinion that the IDE used by them for practicing
were smarter than those used in the exam, as they did not give any hints on errors. This partly ac-
counted for the increase in missing symbol errors. However, other object concepts such as parameter
sending, inheritance, and constructors were also vulnerable to the error of missing symbols. This was
largely attributed to inattentiveness. Bringula et al. (2012) found that in the field of programming,
inattentiveness of students frequently yielded avoidable and simple errors. It is also relevant to ob-
serve that missing symbol errors cut across achievement levels.

The opinion held by some students that “convention may not matter as long as the code can run” may also be
held across achievement levels. But low achievers committed more errors in Other Object concepts

Jegede, Olajubu, Ejidokun, & Elesemoyo

57

while average achievers made more errors in Decision Making. High achievers made more errors in
Methods and Classes. The explanation for this is that problems of Other Object concept with low
achievers grew from Method and Classes. Other Object concepts and Method and Classes are of
similar content with the former being of higher order cognition. It would seem that average achiev-
ers and high achievers had outgrown their method and classes problem. This is further corroborated
with the fact that Pearson Correlation Coefficient showed that errors in Methods and Classes are
strongly related with Other Object concepts. Errors in Missing Symbols have also been found to
predict errors in each of Invalid Symbols, Inappropriate Naming and Mismatched Symbols. Thus,
Missing Symbols form the kernel of almost all the errors.

A major limitation of the study was that the Array concept that was scheduled to be part of the
course content could not be examined. The feedback from the study was that if the Array concept
were included it would have made the study more robust. Also, the errors analyzed in this study were
mainly syntactic. Studies are needed that would enquire and analyze logic and semantic errors of nov-
ice programmers.

IMPLICATION FOR CLASSROOM PRACTICE
Generally speaking, students come to the beginner programming class with many misconceptions,
which the first lessons should address. For example, early lectures should first address the art of pro-
gramming and correct the erroneous beliefs that code is like mathematical steps that one can memo-
rize. This misconception, as stated earlier, could lead to all types of errors.

To promote better classroom practice in the teaching of java programming, findings for the study
suggests instructions to students should be based on achievement level. This is because errors have
been found to be achievement-based. In most undergraduate computer science curricula, Java starts
with a theoretical course with practical sessions gradually introduced, and later course(s) may be
largely laboratory based. The first Java programming course should assist in categorizing students
into low, average and high achieving cohorts. It should also be used to compile error logs for each
achievement level. Programming instruction in the later courses should target prevalent errors for
each achievement group having regard also to the concepts that have mostly specific types of error.
This will enhance programming teaching effectiveness and better learning outcomes. In a situation
where it becomes impossible to separate into achievement groups continuously, it would be helpful
to at least separate the low achievers at the beginning (during methods and classes practical sessions)
for focused attention. It was observed that it takes low achievers more time to overcome the begin-
ner errors. Their average and high achieving counterparts overcome the typical beginner errors as the
class progresses.

In addition to this, learning Java programming should be done with an unintelligent editor. Intelligent
editors (though easier to learn programming with) will return less bugs and may give a false impres-
sion of coding mastery for beginners. Learning is thus enhanced with an unintelligent editor as learn-
ers are forced to think, reason and spot on their own any bugs in the code. The editor used for labor-
atory sessions should also be used during examination for consistency and assessment validity. This
approach will largely minimize missing symbol errors, which is the most prevalent.

CONCLUSION
This study analyzed error types and patterns in Java programming based on fundamental concepts of
Methods and Classes, Decision Making, Other Object concepts and Looping of beginners pro-
grammers at different achievement level. Missing symbols were found to be the commonest type of
error and invalid symbols constituting the least. The Method and Classes concept had the highest
number of errors with Looping having the least. Error types were also found to be the same across
ability levels. However, expectedly low achieving students had more challenges writing bug free code
in Other Object concepts. Programming assignment instructions in Java should take into considera-

Concept-based Analysis of Java Programming Errors

58

tion the prevalent errors within the achievement cohorts as well as the concepts that are prone to a
specific type of error.

REFERENCES
Adair, D., & Jaeger, M. (2011). Difficulties in teaching and learning the Java programming language. Proceedings

of the 17th International Conference on Engineering Education, Northern Ireland, 21-26.

Al-Saudi. (2013). Error analysis and spelling mistakes of EFL learners at Tafila Technical University: A case
study. Frontiers of Language and Teaching, 4, 99-107.

Altadmri, A. T., & Brown, N. C. C. (2015). 37 million compilations: Investigating novice programming mistakes
in large scale student data. Proceedings of the 46th ACM Technical Symposium in Computer Science Education, Kan-
sas City, Missouri, 522-527. https://doi.org/10.1145/2676723.2677258

Bringula, R., Manabat, G. M., Tolentino, M. A., & Torres, E. (2012). Predictors of errors of novice Java pro-
grammers. World Journal of Education, 2(1), 3-15. https://doi.org/10.5430/wje.v2n1p3

Brown, N. C. C., Kӧlling, M., McCall, D. T., & Utting, J. (2014). Blackbox: A large scale repository of novice
programmers activities. Proceedings of the 45th ACM Technical Symposium on Computer Science Education, Atlanta,
Georgia, USA, 223-228. https://doi.org/10.1145/2538862.2538924

Denny, P., Luxton-Reilly, A., & Tempero, E. (2012). All syntax errors are not equal. Proceedings of the 17th ACM
Annual Conference on Innovation and Technology in Computer Science Education, Haifa, Israel, 75-80.
https://doi.org.10.1145/2325296.2325318

Denny, P., Luxton-Reilly, A., Tempero, E., & Hendrickx, J. (2011). Understanding the syntax barrier for novices.
Proceedings of the 16th Annual Joint Conference on Innovation and Technology in Computer Science Education, 208-212.
https://doi.org/10.1145/1999747.1999807

Fizgerald, S., Hanks, B., Lister, R., McCauley, R., & Murphy, L. (2013). What are we thinking when we grade
programs? Proceeding of the 44th ACM Technical Symposium on Computer Science Education, Denver, Colorado,
USA, 471-476. https://doi.org/10.1145/2445196.2445339

Jackson, J., Cobb, M., & Carver, C. (2005). Identifying top Java errors for novice programmers. Proceedings Fron-
tiers in Education 35th Annual Conference, Indianopolis, IN, USA. https://doi.org/10.1109/FIE.2005.1611967

Jadud, M. (2006). An exploration of novice compilation behaviour in BlueJ. Unpublished Doctoral Dissertation, Uni-
versity of Kent, UK.

Johansen, M. J. (2015). Errors and misunderstandings among novice programmers: Assessing the student not the program.
Unpublished M.Sc Thesis, University of Oslo, Norway.

Kaczmarczyk, L. C., Petrick, E. R., East, J. P., & Herman, G. L. (2010). Identifying students misconceptions of
programming. Proceedings of the 41st technical symposium on computer science education, March 10-13,
2010, Milwaukee, Wisconsin, USA. https://doi.org/10.1145/1734263.1734299

Mow, I. C. (2012). Analysis of student programming errors in Java programming courses. Journal of Emerging
Trends in Computing and Information Sciences, 3(5), 739-749. Retrieved from www.cisjournal.org

Rodrigo, M. M. T., Andallaza, T. C. S., Castro, F. E. V. G., Armenta, M. L. V., Dy, T. T., & Jadud, M. C. (2014).
An analysis of Java programming behaviours, affect, perceptions and syntax errors among low-achieving,
average and high-achieving novice programmers. Journal of Educational Computing Research 49(3), 293-325.
https://doi.org/10.2190/EC.49.3.b

Shah, P., Berges, M., & Hubwieser, P. (2017). Qualitative content analysis of programming errors. Proceedings of
Fifth International Conference on Information and Education Technology, Tokyo, Japan, 161-166.
https://doi.org/10.1145/3029387.3029399

TIOBE Quality Indicator. (2017). Available at http://www.tiobe.com

https://doi.org/10.1145/2676723.2677258
https://doi.org/10.5430/wje.v2n1p3
https://doi.org/10.1145/2538862.2538924
https://doi.org.10.1145/2325296.2325318
https://doi.org/10.1145/1999747.1999807
https://doi.org/10.1145/2445196.2445339
https://doi.org/10.1109/FIE.2005.1611967
https://doi.org/10.1145/1734263.1734299
http://www.cisjournal.org/
https://doi.org/10.2190/EC.49.3.b
https://doi.org/10.1145/3029387.3029399
http://www.tiobe.com/

Jegede, Olajubu, Ejidokun, & Elesemoyo

59

BIOGRAPHIES
Philip Olu Jegede is Professor of Computer Science Education in the
Institute of Education, Obafemi Awolowo University, Ile-Ife, Nigeria, the
chair he has been occupying since the year 2009. He is a holder of B.Sc.
and M.Sc. degrees from University of Lagos, Nigeria. He later obtained
M.Ed. and Ph.D. degrees from Obafemi Awolowo University, Ile-Ife, Ni-
geria. He was Director, Institute of Education of Obafemi Awolowo
University between 2008 and 2010 and Dean, Faculty of Education of
the same university between 2011 and 2016. His research interest has fo-
cused largely on computer studies pedagogy and presently on computer

programming education. Before his university teaching appointment, he had lectured in a College of
Education and a Polytechnic School.

Emmanuel A. Olajubu is a graduate of Computer Science (with Econom-
ics) from the Department of Computer Science & Engineering, Obafemi
Awolowo University, Ile-Ife. He holds research degrees M.Sc. and Ph.D.
in Computer Science from the same Department (2003 and 2008 respec-
tively). He is also a member of Nigerian Computer Society (NCS), Com-
puter Professional Registration Council of Nigeria (CPN) and Interna-
tional Association of Engineers (IAENG). He has over forty-five pub-
lished articles in reputable journals and referred conference proceedings.
Research interest is the area of distributed systems and network security.
He is the current Acting Head, Department of Computer Science & En-

gineering, Obafemi Awolowo University.

Adekunle O. Ejidokun had his Bachelor’s degree (B.Tech) in Computer
Science from Ladoke Akintola University, Ogbomoso, Oyo State and his
Master’s degree in Computer Science from Obafemi Awolowo University,
Ile-Ife, Osun State. He is a member of Nigerian Computer Society (NCS)
and Computer Professional Registration Council of Nigeria (CPN). He is
currently a Ph.D. student of Obafemi Awolowo University, Ile-Ife, Nige-
ria. He is currently working on community detection in real-world social
network for his Ph.D. His research interests are Social Network Analysis

(SNA), Information Storage and Retrieval and Computer Education.

Isaac Oluwafemi Elesemoyo is a doctoral student of the Department
of Computer Science and Engineering, Obafemi Awolowo University,
Ile-Ife, Nigeria. He received his M.Sc. and B.Sc. In Intelligent Systems
Engineering and Computer Engineering respectively from Obafemi
Awolowo University. His research interests are Computational linguistics
and Computer Education. He is currently an Assistant Lecturer at Elizade
University, Ilara-Mokin, Nigeria.

	Concept–based Analysis of Java Programming Errors among Low, Average and High Achieving Novice Programmers
	Abstract
	Introduction
	Methods
	Results
	Table 1. Error categorization and concept
	Table 2. Error types and achievement level
	Table 3. Concept-based errors and achievement level
	Table 4. Relationships between error types
	Table 5. Relationships between errors made by concepts

	Discussion
	Implication for Classroom Practice
	Conclusion
	References
	Biographies

