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ABSTRACT 
Aim/Purpose This paper aims to explore whether having state Computer Science standards in 

place will increase young children’s exposure to coding and powerful ideas from 
computer science in the early years. 

Background Computer science education in the K-2 educational segment is receiving a 
growing amount of  attention as national and state educational frameworks are 
emerging. By focusing on the app ScratchJr, the most popular free introductory 
block-based programming language for early childhood, this paper explores if  
there is a relationship between the presence of  state frameworks and ScratchJr’s 
frequency of  use. 

Methodology This paper analyzes quantitative non-identifying data from Google Analytics on 
users of  the ScratchJr programming app. Google Analytics is a free tool that 
allows access to user activity as it happens in real time on the app, as well as au-
dience demographics and behavior. An analysis of  trends by state, time of  year, 
type of  in-app activities completed, and more are analyzed with a specific focus 
on comparing states with K-12 Computer Science in place versus those without. 

Contribution Results demonstrate the importance of  having state standards in place to in-
crease young children’s exposure to coding and powerful ideas from computer 
science in the early years. Moreover, we see preliminary evidence that states with 
Computer Science standards in place support skills like perseverance and de-
bugging through ScratchJr. 

Findings Findings show that in the case of  ScratchJr, app usage decreases during the 
summer months and on weekends, which may indicate that coding with 
ScratchJr is more often happening in school than at home. Results also show 
that states with Computer Science standards have more ScratchJr users on aver-
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age and have more total sessions with the app on average. Results also show 
preliminary evidence that states with Computer Science standards in place have 
longer average session duration as well as a higher average number of  users re-
turning to edit an existing project. 

Recommendations  
for Practitioners 

Successful early childhood computer science education programs must teach 
powerful ideas from the discipline of  computer science in a developmentally 
appropriate way, provide means for self-expression, prompt debugging and 
problem solving, and offer a low-floor/high-ceiling interface for both novices 
and experts. Practitioners should be aware in drops in computer science learn-
ing during the summer months when school is not in session.   

Recommendation  
for Researchers  

Researchers should consider the impact of  state and national frameworks on 
computer science learning and skills mastered during the early childhood years.  
Researchers should look for ways to continue engaging students in computer 
science education during times when school is not in session.  

Impact on Society Results demonstrate the importance of  having state CS standards in place to 
increase young children’s exposure to coding and powerful ideas from computer 
science in the early years. Moreover, we see preliminary evidence that states with 
Computer Science standards in place support skills like perseverance and de-
bugging through ScratchJr. 

Future Research Future research should continue collecting Google Analytics from the ScratchJr 
app and track changes in usage. Future research should also collect analytics 
from a wide range of  programming applications for young children to see if  the 
trends identified here are consistent across different apps.  

Keywords early childhood, computer science, coding, STEM, policies, frameworks 

INTRODUCTION  
Each month, there is an estimated 500,000 openings for computing jobs nationwide, and a lack of  
adequately trained people to fill these positions (Code.Org, 2018). According to the Bureau of  Labor 
Statistics, computer related occupations are projected to yield over 1 million job openings from 2014 
to 2024 (Fayer, Lacey, & Watson, 2017). In less than ten years from now, it is estimated that the Unit-
ed States will need 1.7 million more engineers and computing professionals (Corbett & Hill, 2015).  

In order to meet the growing needs of  our nation’s technical fields, there has been an increase in new 
educational policies and frameworks at the federal and state level to prepare K-12 students for com-
puter science related professions. However, while most of  the implementation is happening at the 
late elementary, middle school and high school levels, the frameworks mandate to start in kindergar-
ten.  

There are both economic and developmental reasons for the choice to start early. Research shows 
that educational interventions that begin in early childhood are associated with lower costs and more 
durable effects than interventions that begin later on (e.g., Cunha & Heckman, 2007; Heckman & 
Masterov, 2007). Two National Research Council reports—Eager to Learn (Bowman, Donovan, & 
Burns, 2001) and From Neurons to Neighborhoods (Shonkoff  & Phillips 2000) detail the importance of  
early experiences for later school achievement. Furthermore, research explores how children who are 
exposed to STEM curriculum and programming at an early age demonstrate fewer gender-based ste-
reotypes regarding STEM careers, an increased interest in engineering (Metz, 2007; Steele, 1997; Sul-
livan & Bers, 2018) and fewer obstacles entering these fields later in life (Madill et al., 2007; Markert, 
1996). Furthermore, research suggests that for addressing the under-representation of  women in 
Computer Science is critical to improve early education experiences in this area (Sullivan, 2019; Sulli-
van & Bers, 2018; Varma, 2010).  
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State and national frameworks are slowly beginning to catch up with research on the importance of  
early computer science education.  At the state level, at the writing of  this paper, 25 US states have 
K-12 computer science standards in place and an additional 10 have them in progress. This means 
that nearly half  (49%) of  all U.S. states have or will have standards in place, while 25% still have no 
standards nor a plan to put them in place at this time. But how successful are these standards at actu-
ally increasing the amount and quality of  computer science education in the early years? The purpose 
of  this study is to explore whether having state Computer Science standards in place will increase 
young children’s exposure to coding and powerful ideas from computer science in the early elemen-
tary years. With the rapid growth in K-12 computer science frameworks in recent years, this paper 
fills a necessary gap in the literature by looking at the relationship between policy and practice: stand-
ards and children’s experiences with ScratchJr. As of  yet, no other researchers have begun to explore 
the impact of  state CS standards on students’ usage of  different programming applications.  

It is important to note, however, that for computer science education to start effectively in the early 
years, when children are just starting to develop literacy and numeracy skills as well as learn “school-
ing”, there is a need not just for frameworks but for both pedagogical approaches and technologies 
that are developmentally appropriate for young children (Bers, 2018b). In the Literature Review in 
the following section, current approaches to early childhood computer science education are catego-
rized into four groups: unplugged computer science, block-based programming languages, program-
ming games, and introductory robotic systems. An analysis of  each of  these categories shows that 
early childhood computer education must provide opportunities to expose young children to power-
ful ideas from the discipline of  computer science, provide tools that engage them in self-expression, 
prompt debugging and problem solving, and offer a low-floor/high-ceiling interface. By focusing on 
the case of  ScratchJr, the most popular free introductory block-based programming language for 
early childhood which offers all four dimensions described earlier, the case study presented in this 
paper explores if  there is a relationship between the presence of  state frameworks and ScratchJr’s 
frequency of  use. This allows us to further investigate the complex interplay between policies and 
practices and to discuss implications for state and national policies that take into consideration devel-
opmentally appropriate practice and equitable computer science education in the early years. An anal-
ysis of  trends by state, time of  year, type of  in-app activities completed, and more are analyzed with 
a specific focus on comparing states with K-12 Computer Science in place versus those without will 
be presented. To contextualize this study, the Literature Review in the following section synthesizes 
research on computer science education in early childhood and current data on K-12 computer sci-
ence frameworks in the U.S.  

LITERATURE REVIEW 

EARLY CHILDHOOD COMPUTER SCIENCE EDUCATION 
The push for Computer science education in the United States has grown in conjunction with the 
STEM (Science, Technology, Engineering, Mathematics) education movement (Bers, 2019). STEM 
first came into the American consciousness in the 1950’s during the height of  the Space Race when 
the United States passed the National Defense Education Act, which provided funding and incen-
tives for schools. But it was the creation of  the LOGO computer language by Seymour Papert, Wally 
Feurzeig and colleagues in 1967 that is generally described as the beginning of  Computer Science 
Education in elementary schools in the U.S. (Blikstein, 2018).  

LOGO was the first widely disseminated programming language designed for children (Papert, 
1980b). LOGO allows children to explore programming concepts by giving instructions for moving 
either an onscreen turtle or a small turtle robot on the floor. LOGO prompted students to engage in 
self-reflection and meta-cognition by thinking about their own thinking, expressing themselves 
through their programs, and debugging them when things did not work (Guzdial, 2003; Papert, 
1980b). Although LOGO became popular as a tool for supporting new ways of  thinking about math 
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and creating microworlds for exploring geometry, angles, and functions (Abelson & DiSessa, 1982; 
Clements & Sarama, 1996), that was not Papert’s intent (Bers, 2008). Papert wanted children to learn 
to think in new ways, about math, about computer science, about writing, about any subject and, 
most importantly, about the nature of  thinking. Over time, LOGO grew in popularity all over the 
world, and versions of  LOGO were implemented in more than a dozen languages and on a variety 
of  machines (The Logo Foundation, 2015). For example, LOGO for MSX computers became very 
popular in Europe, South America, and Japan while Atari LOGO and Commodore LOGO were 
popular in North America (The Logo Foundation, 2015).  

Thousands of  teachers started to create community networks and curricula for LOGO, and research 
slowly embarked on understanding its impact. The presence of  computer science in the classroom 
required the adjustment of  the school curriculum to make room for the new computer science disci-
pline. Many of  the studies set to explore how the gains acquired by learning programming could 
transfer to other content and skills. A large-scale study of  children using the Logo programming lan-
guage showed that children in grades K-6 scored significantly higher on tests of  mathematics, reason-
ing, and problem-solving (Clements, Battista, & Sarama, 2001) and children who used LOGO in kin-
dergarten were also found to have sustained attention, self-direction, and took pleasure in discovery 
(Clements, 1987).  

Other studies researched the effects of  LOGO programming on mathematics knowledge (Feurzeig 
& Lukas, 1972; Milner, 1973; Kull, 1985; Clements & Meredith, 1993) as well as cognitive abilities 
and achievement (Clements, 1985; Clements, 1987; Clements & Meredith, 1993). However, not all 
results were positive. Studies found that children exposed to LOGO did not show increased planning 
skills compared to those not exposed to LOGO and that problem-solving skills needed to be taught 
to children directly, rather than emerging spontaneously through LOGO usage (Pea, 1983; Clements 
& Meredith, 1993). Papert himself  did not engage in this research and considered that in order to 
truly understand the impact of  LOGO, or computer science education, the educational system need-
ed to be changed so to accommodate for interdisciplinarity, project-based learning, and for support-
ing children in following their own passion when programming with LOGO.  (Papert, 1987). 

As time went by, research on LOGO started to slow down. However, its active use in classrooms 
continued to exist, particularly amongst a strong group of  believers in Constructionism, the philo-
sophical approach proposed by Papert (Kafai, 2006; Kafai, 2018). In the 90’s, with the growth of  the 
high-tech industry, there was a newfound push for computer science education in K-12 and new 
programming languages for children started to emerge. During this time, researchers began looking 
at whether computational thinking may be transferable to other areas of  thinking. For example, a 
meta-analysis of  65 studies revealed that students who participated in computer programming typi-
cally score higher on various cognitive-ability assessments than children who did not participate (Liao 
& Bright, 1991). While most of  these studies were not solely focused on early childhood, a series of  
pilot studies conducted by the DevTech group at Tufts University with preschoolers and kindergar-
teners, showed that coding can significantly improve young children’s sequencing ability, an important 
pre-math and pre-literacy skill, on a standardized picture sequencing assessment unrelated to pro-
gramming (Kazakoff  & Bers, 2014; Kazakoff, Sullivan, & Bers, 2013).   

Despite of  the lack of  studies with large sample sizes investigating the longitudinal impact of  early 
childhood computer science education, a wealth of  resources, technologies and curriculum, and 
products for young children started to emerge for both formal and informal early childhood educa-
tional settings (Stanton et al., 2017). The next section presents an overview and categorizes these 
programs and approaches into four groups: unplugged computer science, block-based programming 
languages, programming games, and introductory robotic systems.  

Unplugged Computer Science: The push for computational thinking 
Computer Science Unplugged has become a powerful movement in recent years because it allows 
students (and teachers) with little to no technical background to explore computer science concepts 



Bers & Sullivan 

117 

that drive the technologies we use each day, such as thinking recursively, using abstraction when figur-
ing out a complex task, and using heuristic reasoning to discover a solution (Wing, 2006). Unplugged 
approaches to computer science claim to enable the development of  computational thinking, without 
spending time or cognitive resources on syntax and grammar of  programming languages (Bell, Alex-
ander, Freeman, & Grimley, 2009; Bell, Witten, & Fellows, 1998).  

The term “computational thinking” grew out of  Papert’s pioneering research. In his work, it meant 
both the solving problems algorithmically and the development of  technological fluency for personal 
expression (Bers, 2010; Papert, 1980b). A child who could think like a computer, was a child who 
could use the computer to express herself  in a fluent way. In 2006, Jeannette Wing’s influential article 
“Computational Thinking,” (Wing, 2006) caught the attention of  researchers, computer scientists, 
and educators by arguing that computational thinking, a problem-solving skill set rooted in computer 
science, is a universally applicable skill that should be a part of  every child’s analytical ability (Wing, 
2006). Wing defined computational thinking as “solving problems, designing systems, and under-
standing human behavior, by drawing on the concepts fundamental to computer science” (p.33). 
Computational thinking encompasses a broad set of  analytic and problem-solving skills, dispositions, 
habits, and approaches used in computer science (Barr & Stephenson, 2011; I. Lee et al., 2011). This 
definition limits computational thinking to a problem-solving process that complements mathemati-
cal and engineering thinking, hiding the relevance of  personal expression in the act of  programming 
(Bers, 2018b).  

While computational thinking is rooted in computer science, Wing argued that this kind of  thinking 
can serve everyone as “it represents a universally applicable attitude and skill set” (Wing, 2006, p. 33). 
However, since technologies are expensive, an approach that would help people think like computer 
scientists without access to the technology was needed. Low-cost unplugged methods in K-12 make 
it possible the teaching of  ways of  thinking associated with computer science without investing in 
expensive hardware and software that ultimately becomes absolute every few years. However, they 
might also open a gap between those who can think and code, and those who can only think, because 
they do not have access to coding tools 

The original Computer Science Unplugged project was based at Canterbury University and has since 
been widely adopted internationally (translated into 12 languages) and it is also recommended in the 
ACM K-12 curriculum (Bell et al., 2009). CS Unplugged uses activities, games, magic tricks and more 
to introduce children to ways of  thinking about computer science and to engage them in computa-
tional thinking without reliance on learning computer programming. 

The unplugged approach thinks of  computer science as a set of  ideas that can be introduced even 
without using a programming language. Unplugged activities place emphasis on promoting computa-
tional thinking, rather than focusing on learning the syntax of  a particular coding language. For rea-
sons we will later explore, this approach grew particularly appealing for the early childhood educa-
tional segment. For example, an unplugged computer science activity in kindergarten might involve 
creating bead necklaces in binary with beads that represent 1s and 0s or using a grid and symbols to 
put classic fairy tales in a logical order (see: www.csunplugged.org), or making a peanut butter sand-
wich following a set of  instructions or algorithm. 

A new crop of  unplugged games started to be sold commercially. These offered a low-cost way to 
engage children with computational thinking as compared with traditional technologies. For example, 
the Robot Turtles board game teaches coding concepts to children ages three and up (see Figure 1) 
and is the most backed board game in Kickstarter history. Playing the game is easy: you create a maze 
on the board with the turtles in the corners and the jewels in the center. Kids play instruction cards 
(such as, turn right, turn left, move forward, etc.) in order to “program” their turtles to get to their 
jewels.  The board can be set up differently each time and as children get more familiar with the 
cards, more complex instructions can be used. This game engages young children in computational 
thinking by having them create sequences and problem solve. 

http://www.csunplugged.org)/
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Figure 1: Robot Turtles Board Game 

The unplugged computer science approach is particularly appealing to early childhood education not 
only because it is affordable, but also because it promises to expose children to computational think-
ing while limiting screen-time, in accordance with the American Academy of  Pediatrics recommenda-
tions (American Academy of  Pediatrics, 2003).  While computers, tablets, and robots can be quite 
expensive and often have screens that require children to sit down to manipulate them, materials like 
beads, crayons, and string are often already present in early childhood classrooms and assessed as 
developmentally appropriate.  

There is some evidence that unplugged CS activities are effective at teaching computational thinking 
(Rodriguez, Kennicut, Rader, & Camp, 2017). However, although unplugged activities can engage 
children in computational thinking, they do not expose them to learning programming and the ability 
to master a new language (Bers, 2018b). A child playing with a board game, might be able to problem 
solve, but might not understand the possibilities and challenges associated with learning a program-
ming language and using it to create a project to express herself.  Languages, both natural and artifi-
cial, provide the opportunities to create and inhabit worlds and ultimately, meaning-making. Howev-
er, those children who have not been exposed early on, might have a harder time. And thus, the risk 
of  a growing digital divide: those who can think computationally and those who can act computation-
ally (Bers, 2018b). Children in wealthier neighborhoods might go to schools that expose them to cod-
ing through tablets, computers, and robots from an early age, and will learn how to develop their own 
voices and appropriate the tools for creating the artifacts and systems they need; however, those from 
poorer neighborhoods will not be exposed to these tools and might encounter the new illiteracy of  
the XXIst century (Bers, 2018b; Herold, 2017; Hohlfeld, Ritzhaupt, Dawson, & Wilson, 2017).  

In summary, while unplugged computer science is growing in popularity in the early childhood seg-
ment due to its low cost and its affordance to engage children in computational thinking without ex-
posing them to screen-time, this approach might increase the digital divide between those who can 
and those who can’t code, because they never had access to the programming languages. 

Block-based programming languages 
Programming languages that utilize text are not developmentally appropriate in the early childhood 
classroom, an educational segment that includes pre-readers and emergent readers. Thus, if  a pro-
gramming language is to be used, it must make programming visual. In contrast to text-based pro-
gramming languages, block-based programming languages represent instructions as icons or blocks. 
They introduce coding to young children, and to novices of  all ages, by simplifying the syntax of  a 
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programming language and removing (or limiting) text (Kurihara, Sasaki, Wakita, & Hosobe, 2015; 
Mladenović, Boljat, & Žanko, 2018).  

These languages allow users to write code in a similar fashion to connecting puzzle pieces: only piec-
es that are meant to fit together will fit together- which removes possible syntax errors and frees up 
cognitive space for problem solving and creativity. Block-based programming languages are growing 
in early childhood education because they do not require reading and writing. One of  the most popu-
lar block-based programming languages for young children is ScratchJr, explicitly designed for ages 5-
7 (See Figure 2).  

ScratchJr is free and was created as a collaboration between the DevTech Research Group at Tufts 
University, the MIT Lifelong Kindergarten Group, and the Playful Invention Company through gen-
erous funding from the National Science Foundation (DRL-1118664 Award) and the Scratch Foun-
dation (Bers & Resnick, 2015). ScratchJr was inspired by the Scratch programming language devel-
oped by the MIT LifeLong Kindergarten Group for older children ages 8-16 (Resnick et al., 2009). 
Over a decade of  research with Scratch showed that students can successfully learn foundational 
computer science concepts (Meerbaum-Salaunt, Armoni, & Ben-Ari, 2013), however as a block-
based programming language, Scratch is still too complex to be used by young children (Flannery et 
al., 2013).  Thus, the design of  ScratchJr specifically aimed at the developmental needs of  emergent 
young readers (Bers, 2018a, 2018b).    

 

 
Figure 2: Screenshot of  the ScratchJr Interface 

In ScratchJr the programming blocks are simplified and organized into six categories represented by 
different colors: yellow Trigger blocks, blue Motion blocks, purple Looks blocks, green Sound blocks, 
orange Control flow blocks, and red End blocks. The programming blocks span concepts from sim-
ple sequencing of  motion to control structures. When put together as a jigsaw puzzle, these pro-
gramming blocks allow children to control their character’s actions on the screen. The result can be 
as simple or as complex as the user desires, from creating animated collages to complex stories or 
games. As such, it has been categorized as an “Animation/Game Development” computational tool 
by researchers Ching, Hsu, & Baldwin (2018). However, at its core, ScratchJr is an introductory pro-
gramming language. 

The target age for ScratchJr is 5 to 7 years old, a time when children are learning how to read and 
write. In most Western countries, writing happens in a sequence from left to right. Therefore, the 
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ScratchJr programming script also runs as a sequence from left to right instead of  the traditional top-
to-bottom format of  most programming languages, including Scratch (Bers, 2018b).  

As a block-based programming language, ScratchJr supports young children to explore powerful ide-
as of  computer science such as algorithms, debugging, modularization, control structures and the 
design process in a fun and developmentally appropriate way. ScratchJr introduces computational 
concepts such as sequencing, loops, events, and operators (Ching, Hsu, & Baldwin, 2018) and engag-
es them in cognitive processes associated with problem solving (Strawhacker & Bers, 2019). Howev-
er, most importantly, ScratchJr invites children to engage with coding as a literacy of  the 21st century 
and develop the ability to use a symbol system (a language) to comprehend, generate, communicate, 
and express ideas or thoughts by making a sharable product that others can interpret (Bers, 2018b). 
As a literacy, coding invites new ways of  thinking (i.e. computational thinking) and new ways of  pro-
ducing an artefact detached from its creator (i.e. coding). In the process, both problem-solving and 
personal expression emerge (Bers, 2019).  

 In the summer of  2014, ScratchJr was released as a free app. Today the app has over 13 million iOS 
downloads, is available on iPads, Android tablets, Amazon tablets, and Chromebooks and is used in 
every country in the world with the exception of  North Korea. As of  the writing of  this paper, the 
top ten countries of  ScratchJr usage are: United States (makes up 33% of  ScratchJr users worldwide), 
United Kingdom (13% of  ScratchJr users), Australia (9% of  ScratchJr users), Canada (5% of  
ScratchJr users), Sweden (4% of  ScratchJr users), France (3% of  ScratchJr users), Spain (3% of  
ScratchJr users), China (2% of  ScratchJr users), South Korea (2% of  ScratchJr users), and Japan (2% 
of  ScratchJr users). For an in-depth analysis of  ScratchJr usage in Europe, see (Bers, 2018a) 

Weekly usage patterns reveal that the highest usage each year occurs in December during Computer 
Science Education Week, a program dedicated to inspiring students to get involved with Computer 
Science. Furthermore, ScratchJr usage remains lower when school is typically not in session (Leidl, 
Bers, & Mihm, 2017).  

As a classic example of  block-based programming, ScratchJr allows children to drag and drop blocks 
to create a program for each character they select (See Figure 3). Children snap together motion, 
sound, looks, and communication blocks to program their own stories and games. Furthermore, 
children can make their stories with up to four “pages” in each project as to have a beginning, mid-
dle, and end. The ScratchJr blocks were created to look like puzzle pieces with specific syntactic 
goals. Blocks to end a program (e.g. “Repeat Forever”) have a rounded edge on the right side while 
blocks that start a script (e.g. “Start on Green Flag”) have a rounded edge on the left side. The mid-
dle scripts are cut in a way that they can be snapped together to form a complete and syntactically 
correct programming script (Portelance, Strawhacker, & Bers, 2015). 

 
Figure 3: Sample ScratchJr Program 

ScratchJr is described as a technological “playground” for young children (Bers, 2012; Bers, 2018b). 
Like a playground, the environment is open-ended and allows for child-directed exploration and the 
creation of  projects that express the child’s unique interests and individuality. ScratchJr users are en-
couraged to learn by experimenting and by making mistakes, by fixing their bugs and by problem 
solving. 

Like most block-based programming languages, ScratchJr’s blocks have visual properties that corre-
spond to their syntactic properties. This aids with preventing syntax errors and enables young users 
to focus all of  their attention in the project they are working on. At the same time, the richness of  
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ScratchJr as a programming language, although introductory, allows children to both express them-
selves and encounter powerful ideas from computer science. 

Programming games 
There is an emerging category of  computer games and puzzles aimed at young children’s learning of  
computer science concepts and skills, without the need of  exposure to a programming language. 
Most of  these focuses on sequencing and logic as they engage children in progressing through prob-
lem solving levels in a typical game-like fashion. For example, the game Lightbot (see Figure 4) is a 
popular programming puzzle game for young children. The goal is to complete pre-set tasks such as 
making a robot light up all of  the blue tiles on a 3D grid. Children have to program their screen-
based robot with a series of  instructions. There are different versions of  Lightbot for different ages, 
including Lightbot Jr. for young children ages 4-8.  

 
Figure 4: Screenshot of  Lightbot (free browser version) 

Other popular programming games include Kodable (which includes maze-like levels) and Cargo Bot 
(which engages young children in learning programming concepts while using a crane to move boxes 
back and forth between platforms). The website Code.org offers a variety of  coding games for chil-
dren, ranging in age from young children (categorized as “pre-readers”) up through high school, as 
well as Hour of  Code activities including Candy Quest (a multi-level coding quest for candy), Code 
with Anna & Elsa (explore coding with characters from the popular movie Frozen by helping them 
create snowflakes and more), Dragon Blast (embark on a quest for treasure using coding skills), and 
more.  In Code.org’s “Classic Maze game” kids write lines of  code in a setting inspired by the popu-
lar game Angry Birds. In this game, players help Angry Birds get to the Naughty Pigs (see Figure 5). 
Each level becomes increasingly more difficult to navigate to get to the pigs and focuses on different 
coding concepts.  

Programming games appeal to young children who enjoy video game style play (i.e. specific levels to 
beat and tasks to complete). Research on students using Code.org’s “Classic Maze” activity and the 
“Flappy Code” activity found that students showed significant changes in their attitudes towards and 
self-efficacy with computer science after engaging in just one Hour of  Code activity (Phillips & 
Brooks, 2016).  However, it is important to note that these games present a more limited set of  expe-
riences as compared to block-based programming languages. While block-based languages offer an 
open-ended setting to create any project of  choice, while engaging with powerful ideas from com-
puter science, programming games are typically limiting and prompt players to explore and practice a 
particular aspect of  programming such as cause and effect, sequence, logic and problem solving.  
Bers (2018b; 2012) uses the metaphor of  “playgrounds and playpens” to characterize the differences 
between programming languages and programming games. Playgrounds are open-ended and invite 
imagination, creativity, mastering skills and solving conflicts. Programming languages are coding 
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playgrounds. In contrast, playpens convey lack of  freedom to experiment, lack of  autonomy for ex-
ploration, lack of  creative opportunities, and lack of  taking risks. When compared to programming 
languages, coding games are playpens or, in Papert’s language, “microworlds”, “a subset of  reality or 
a constructed reality whose structures matches that of  a given cognitive mechanism… so structured 
as to allow a human learner to exercise particular powerful ideas or intellectual skills” (Papert, 1980a 
p. 204).   

 
Figure 5: Screenshot of  Level 1 of  “Classic Maze Game” on Code.org 

One of  the major differences between programming languages and programming games, is that the 
former provide tools for learners to produce their own open-ended projects, and not just to play with 
already developed games. In this process of  creation, programmers become producers of  personal 
meaning as well as technical problem solvers. 

Introductory robotic systems 
Programmable robotics kits are becoming increasingly popular to teach young children the founda-
tions of  computer science in a hands-on way. Some robotic systems are programmed using tangible 
programming languages (Bers & Horn, 2010; Horn, Crouser, & Bers, 2011) and others with block-
based programming in screens. 

The use of  educational robotics is ideal for early childhood because it facilitates cognitive as well as 
fine motor and social development (Bers, 2008; Clements, 1999; K. T. H. Lee, Sullivan, & Bers, 2013; 
Svensson, 2000). Young children become engineers by playing with motors and sensors as well as 
storytellers by creating and sharing personally meaningful projects that react in response to their en-
vironment (Bers, 2008, 2018b). Thus, the use of  robotic systems in early childhood can expand the 
range of  computer science concepts and skills and include topics related to hardware and software, 
inputs and outputs.  

There are now many examples of  introductory robotic systems for young children, some are more 
similar to playpens and others to playgrounds. For example, Code-a-Pillar (See Figure 6), a robotic 
caterpillar toy created by Fisher Price, prompts preschool aged children to arrange (and rearrange) 
easy-to-connect segments (or pieces of  code) to decide where Code-a-pillar should move.  The 
Beebot robot is also popular with preschool and early childhood students. The original Beebot, de-
signed to look like a welcoming yellow bee, was programmed to move with the directional keys on its 
back. A newer version called “Blue-Bot” (see Figure 7) is transparent, allowing children to see and 
explore the technology inside the robot. Additionally, Blue-Bot is Bluetooth enabled and is compati-
ble with tablets and computers. This allows children to plan algorithms onscreen and send them re-
motely to the Blue-Bot to perform. A small study on Bee-Bot with 5 to 6-year-olds has found that 
interventions with the robot can lead to significant improvement in visual-spatial working memory 
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and inhibition skills (Di Lieto et al., 2017). However, in order to program it, children need to use 
screens as well as receive help from adults to manipulate the interface. 

 
Figure 6: Code-a-Pillar with body segments that serve as programming instructions 

 
Figure 7: Blue-Bot 

The KIBO robotics kit (See Figure 8), developed by the DevTech Research Group at Tufts Universi-
ty and commercially available from KinderLab Robotics, offers young children (4 to 7) an opportuni-
ty to explore building and engineering (through assembling their robot) as well as programming (us-
ing a tangible block language) without the need of  screens or adult assistance. KIBO is a coding 
playground in which children can create open-ended projects of  their choice by engaging in the de-
sign process while they build a mobile robot using wheels, motors, lights, and a variety of  sensors. 
KIBO is programmed using interlocking wooden programming blocks. These wooden blocks con-
tain no embedded electronics and are scanned by the KIBO robot. KIBO’s design builds on exten-
sive research on tangible programming that uses physical objects to represent the various aspects of  
computer programming (Horn & Bers, 2019) 

KIBO’s block programming language is composed of  21 individual wooden programming blocks. 
Some of  these blocks represent simple motions for the robot such as, move Forward, Backward, 
Spin, and Shake. Other blocks represent complex programming concepts such as Repeat Loops and 
Conditional “If ” statements that involve sensor input.  KIBO’s design was based on years of  re-
search in collaboration with researchers, teachers and early childhood experts to meet the learning 
needs of  young children in a developmentally and fun appropriate way (Kazakoff  & Bers, 2014; Sul-
livan & Bers, 2016; Sullivan, Elkin, & Bers, 2015).  

In addition to the tangible programming language, the KIBO robot comes with sensors and actua-
tors (motors and light bulb and microphone/sound recorder), as well as art platforms. These mod-
ules can be interchangeably combined on the robot body. The use of  sensors, such as light, distance 
and sound sensor, is well aligned with most early childhood curriculum that engages children in ex-
ploring both human and animal sensors. Motors are also included with the robot, two can be con-
nected to the opposite sides, for mobility, and one motor can be located on top, for rotation of  an 
attached element such as the art platform. All of  these elements increase the potential of  children to 
create and imagine different projects that can move around and react to the environment. 
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Figure 8: The KIBO Robot and Wooden Programming Blocks 

These four pedagogical approaches and tools for computer science education in the early years (un-
plugged experiences, block-based programming languages, programming games and introductory 
robotics) can be integrated, mixed-and-matched, according to the curricular and logistical needs of  
the schools and the professional development of  the teachers.  However, regardless of  the choice of  
approach, successful early childhood computer science education programs must have four pedagog-
ical dimensions (see Table 1):  

1. Powerful ideas of  computer science taught in a developmentally appropriate way: 
Regardless of  the interface or approach used, one of  the goals of  early computer science 
education is to enable children to encounter, explore and develop “powerful ideas” from the 
discipline in a developmentally appropriate way. Seymour Papert used the term “powerful 
idea” to mean a central concept or skill within a disciplinary domain that is personally mean-
ingful and useful as well as epistemologically valid (Papert, 2000). Building on this work, Bers 
describes seven powerful ideas from computer science that every young child can and should 
learn, and that are developmentally appropriate: algorithms, modularity, control structures, 
representation, hardware/software, the design process, and debugging (Bers, 2018b). These 
powerful ideas connect to many curricular areas or experiential domains beyond computer 
science. As this paper will later show, these powerful ideas are consistent with the content 
proposed by most national and state computer science frameworks. 

2. Children’s expressiveness by creating meaningful projects: With a focus on concepts 
and skills, it is often easy to overlook computer science as an expressive medium. However, 
coding can be a means of  self-expression, akin to writing, speaking, and the arts (Resnick & 
Siegel, 2015). Early childhood computer science initiatives must provide children with op-
portunities to use computer science in personally meaningful, creative, and expressive ways. 
This is consistent with understanding programming languages as one more of  the “hundred 
languages of  children” described by the popular Reggio Emilia’s early childhood pedagogical 
approach (Bers, 2008; Edwards, Gandini, & Forman, 1998) 

3. Low-floor/high-ceiling activities for both novices and experts: The Low-Floor/High-
Ceiling approach in computer science education means offering activities that are easy for 
novices to get started on (low floor) but also challenging for experts who need increasingly 
complex projects (high ceiling). Teaching materials or curriculum for young children must 
offer both. In early childhood, there is great variability in cognitive abilities and literacy skills. 
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Thus, in a same grade, we might find both pre-readers and fluent readers with different cog-
nitive abilities. All of  these children need to be engaged and challenged to learn. 

4. Opportunities for debugging and problem solving: Debugging, both identifying errors 
and completing steps to fix these errors is one of  the most important skills to emphasize in 
computer science education (McCauley et al., 2008). However, when working with young 
children, debugging also involves learning how to manage frustrations, develop perseverance 
and team-work skills. Thus, when teachers provide opportunities for debugging, they must 
plan for supporting both cognitive growth and socio-emotional development. 

Table 1:  Four Dimensions of  Computer Science Education in Early Childhood 

I. Powerful Ideas 

CS initiatives support young children to 
learn powerful ideas and concepts from 
computer science in developmentally ap-

propriate ways.  

II. Expressiveness 

Beyond learning problem-solving strategies 
and technical content, CS provides young chil-
dren with a new means of  self-expression, just 

like language and the arts, by programming 
digital artifacts.  

III. Low -Floor/ High Ceiling 

CS initiatives are easy for novices to get 
started (low floor) but also allow experts 
to work on increasingly complex tasks 

(high ceiling).  

IV. Debugging 

CS initiatives prompt children to practice prob-
lem-solving skills while engaging in socio emo-

tional development. 

 

As next section will show, these four dimensions of  early childhood computer science education can 
be found in most state and national computer science frameworks. However, they are approached 
with different levels of  depth and sophistication.  

COMPUTER SCIENCE FRAMEWORKS IN EARLY CHILDHOOD 
Despite the growing popularity of  coding, educational policies and frameworks were slow to emerge 
to advocate for elevating Computer Science to a core subject area in K–12 education. Beginning in 
the mid-1980s, the Association for Computing Machinery (ACM) established a K–12 “task force” to 
propose a model curriculum and frameworks. While the U.S. National Council of  Teachers of  Math-
ematics (NCTM) was founded in 1920 and the National Science Teachers Association (NSTA) was 
formed in 1944, the Computer Science Teacher’s Association (CSTA) was not launched until 2004 
along with the non-partisan computing in the core coalition (a precursor of  the current Code.org 
Advocacy Coalition).  

In 2016, the Association for Computing Machinery, Code.org, the Computer Science Teachers Asso-
ciation, the Cyber Innovation Center, and the National Math and Science Initiative collaborated with 
states, districts, and the computer science education community to develop the K-12 Computer Sci-
ence Framework (K-12 Computer Science Framework, 2016).  

This national framework provides conceptual guidelines for computer science education at each level 
of  the education system and includes both practices and concepts that should be mastered with a scope 
and sequence. For example, by the time children finish second grade, the framework recommends 
they should know introductory concepts or powerful ideas about hardware, software, and algorithms 
and skills such as debugging, (K-12 Computer Science Framework, 2016).  

More specifically, between grades K-2, the framework asks that students are exposed to the following 
content areas: Computing Systems (i.e. learning about digital devices, hardware, software, and trou-
bleshooting),  Networks & the Internet (i.e. learning that computer networks can be used to connect 
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people to other people), Data & Analysis (i.e. learning that everyday digital devices collect and display 
data over time and data can be stored and accessed later), Algorithms & Programming (i.e. learning 
programming concepts of  algorithms, variables, control, and modularity), and the Impacts of  Com-
puting (i.e. learning about the ways people use computing technology and its positive and negative 
societal impact) (K-12 Computer Science Framework, 2016).  The framework exemplifies how these 
concepts and skills could be brought to life in the early childhood classroom by using the four differ-
ent pedagogical approaches and tools described earlier: unplugged activities, block-based program-
ming languages, programming games, and introductory robotic kits.  

At the state level, despite the push for STEM education, at the writing of  this paper, 25 US states 
have K-12 computer science standards in place and an additional 10 have them in progress (see Table 
2). This means that nearly half  (49%) of  all U.S. states have or will have standards in place, while 
25% still have no standards nor a plan to put them in place at this time (see Table 2). This infor-
mation is provided by Code.org’s and regularly updated (see: http://bit.ly/9policies).  

Table 2: States with Computer Science Standards in Progress and In Place (as of  Oct 2018) 

25 States with K-12 Standards in Place 10 States with K-12 Standards in 
Progress  

AL, AR, AZ, CA, CT, DE, FL, HI, IA, ID, 
MA, MD, MS, NH, NJ, NV, OK, PA, RI, SC, 
UT, VA, WA, WI, WV 

AK, GA, KS, KY, MI, MO, MT, ND, 
OH, WY 

Most of  the states with computer science standards at the early childhood level (K-2) only address 
three of  the four dimensions identified earlier: 1) explicit references to powerful ideas of  computer 
science that need to be taught in a developmentally appropriate way; 2) a “low-floor/high-ceiling” 
approach with a scope and sequence that starts with basic familiarity with technology to engage be-
ginners, and continues with more complex coding activities and 3) opportunities to engage children 
in debugging and problem solving. With some exceptions, the expressiveness dimension (using pro-
gramming as a means to create personally meaningful computational projects) is mostly lacking.  

Examples of  those exceptions are the Virginia CS standards that make explicit that “the process of  
developing computational artifacts embraces both creative expression and the exploration of  ideas to 
create prototypes and solve computational problems” (Board of  Education Commonwealth of  Vir-
ginia, 2017, p. 6), the Massachusetts Digital Literacy and Computer Science Framework, that de-
scribes students engaging in “evaluating various digital tools for best expression of  a particular idea 
or set of  information” and “Selecting and using digital media and tools to communicate effectively 
(Massachusetts Department of  Elementary and Secondary Education, 2016, p. 12) and the Nevada 
CS Standards that list personal expression as a practice that should be fostered through CS, stating 
that students should be able to “Create a computational artifact for practical intent, personal expres-
sion, or to address a societal issue.” (Nevada Department of  Education, 2018, p.12).  

While an analysis of  the differences and similarities between each of  the state standards is beyond 
the scope of  this paper, the next section explores the question whether states with computer science 
standards are more likely than others to see an increase in the teaching of  computer science. This 
question is explored through the lens of  a case study on ScratchJr’s usage, the most popular introduc-
tory programming language explicitly designed for early childhood education. 

THE CASE OF SCRATCHJR 
This section explores whether the presence of  computer science state frameworks results in stronger 
usage of  ScratchJr. The choice of  ScratchJr, for building this case study, is due to three different fac-
tors. First, it is the most popular programming language for early childhood education. Second, it is 

http://bit.ly/9policies
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free. Third, it encompasses all four dimensions previously described: exposes children to powerful 
ideas from computer science in developmentally appropriate ways (e.g. it was specifically designed for 
children ages 5-7), provides a means for self-expression (e.g. allows children to create stories and pro-
jects in an open-ended way), prompts debugging and problem solving (e.g. prompts problem-solving 
with complex concepts such as loops and control flow), and offers a low-floor/high-ceiling interface 
(e.g. children can get started easily just making one character move and go on to create complex mul-
ti-character, multi-page projects) . This makes ScratchJr an ideal candidate for a case study. 

Since 2015, the ScratchJr team has been collecting non-identifying data from Google Analytics to 
examine patterns of  ScratchJr usage. Google Analytics is a free tool that allows access to user activity 
as it happens in real time on the app, as well as audience demographics and behavior.  

As of  September 2018, 25 million ScratchJr projects have been created with over 200,000 active users 
each week. Over 950,000 ScratchJr projects have been shared with others via email or Apple Air-
Drop. To research the impact of  state standards on children’s ScratchJr usage, we examined state lev-
el computer science policies in conjunction with ScratchJr Google Analytics data. Figure 9 provides 
an overview of  ScratchJr users per state. As shown, states with large populations (i.e. California and 
Texas) have the largest number of  users.  

Figure 9: ScratchJr Users by State 

 
Figure 10: ScratchJr Usage by Month 
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However, when considering percent of  state population (rather than just raw number of  users), we 
see that the states with the largest percent of  their population using the app are Washington DC, 
Minnesota, and Vermont.  Looking at ScratchJr usage by month (Figure 10) and by day (Figure 11) 
data from analytics suggest that children are using ScratchJr more frequently at school than at home. 
Data also shows that usage of  the app decreases in summer months when school is not in session 
and that ScratchJr is used more on weekdays than on weekends. Combined, these data points to the 
fact that ScratchJr is used in formal school settings more than in informal ones. These formal set-
tings, schools, are guided in their choice of  introducing CS by the state frameworks. 

 
Figure 11: ScratchJr Usage by Day of  the Week from October 2018 

In order to gain insight on the typical ScratchJr experience, analytics were examined to find the most 
popular events to occur within the ScratchJr application (see Table 3) and the most popular blocks 
used (see Table 4). The two most popular events within the app were adding new characters and add-
ing new programming blocks to a project. This was more popular than, for example, using the Paint 
Editor. This indicates that ScratchJr is most often used for its intended purpose (i.e. coding and 
computer science education) and that the artistic features like the Paint Editor are used in support of  
coding. 

When it came the most popular programming blocks used, we can see that basic motion blocks (i.e. 
forward, up, etc.) were most commonly used. The “Start of  Flag” trigger block was also commonly 
used. This indicates that children are experimenting with creating complete lines of  code that include 
a trigger block, rather than just dragging in motion blocks and tapping them to see characters move. 
The use of  simple blocks supports the low-floor idea so that children can easily get started with 
ScratchJr. More complicated blocks, such as the repeat loops, were still used but not as commonly, 
supporting the “high ceiling” design principle. This makes sense, since most users of  ScratchJr are 
novices, not experts. 

Table 3: Five Most Common ScratchJr Events 

Event Number of  Times Occurred   
New Block Added 179,066,278 
New Character Added 44,091,507 
Paint Editor Opened 34,106,661 
Existing Project Edited 11,843,159 
New Project Created 9,998,054 
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Table 4: Most Commonly Used ScratchJr Programming Blocks 

Programming Block Number of  Times Used 
Forward 18,220,868 
Start on Flag 10,095,428 
Up 7,351,636 
Back 6,291,630 

COMPARING ANALYTICS FROM STATES WITH VS. WITHOUT CS STANDARDS 
When comparing states with and without Computer Science standards, analytics show that states 
with standards in place have a higher average number of  ScratchJr users compared to those without 
standards or with standards still in progress (See Figure 12). States with Computer Science standards 
also have a higher average number of  total ScratchJr sessions to date (Figure 13). A session is defined 
as the period time a user is actively engaged with the app.  Although this data doesn’t show causality, 
it provides preliminary evidence that states with Computer Science Standards have more ScratchJr 
users and more active ScratchJr sessions.  

 
Figure 12: Average Number of  ScratchJr Users in States with vs. without K-12 Computer Sci-

ence Standards 

Analytics were also examined to find preliminary evidence of  debugging within the ScratchJr app in 
states with and without CS standards. While it is not possible to directly ascertain whether children 
are engaging in debugging, we can look at two elements that may hint at debugging: length of  time 
spent on a project and number of  times users edit an existing project (rather than simply creating a 
new project). Figure 14 shows the average number of  times ScratchJr projects were edited since 2015 
in states with versus without CS standards. Here we see that states with standards have users editing 
projects an average of  4,605 times more than in states without standards. Looking at session duration 
(Figure 15) we also see that states with CS standards show a slightly longer session duration than 
those without standards (almost a minute longer). Taken together, these two findings provide prelim-
inary evidence that states with CS standards may promote children’s debugging in ScratchJr and sup-
port their perseverance to continue returning to and improving existing projects.  
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Figure 13: Average Number of  ScratchJr Sessions in States with vs. without K-12 Computer 

Science Standards 

 

Figure 14: Average Time Projects Were Edited in States with versus without CS Standards 
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Figure 15: Average Session Duration in States with versus without CS Standards 

Analytics were also collected on how children used the Paint Editor function in the ScratchJr app. 
Here we see that states with CS standards in place use the Paint Editor more often on average than 
those without (see Figure 16). Use of  the Paint Editor may be related to using the application for 
creative and expressive purposes, as it allows children to personalize characters and backgrounds (or 
create their own). Therefore, this finding may indicate that states with CS standards are more actively 
supporting students’ expressiveness through coding.  On the flipside, the Paint Editor is an entertain-
ing part of  the ScratchJr app that supports a user’s programming project but does not require any pro-
gramming in and of  itself. Therefore, use of  the Paint Editor may also indicate an avoidance of  pro-
gramming. Follow up studies need to be conducted to understand what is the case. 

 

Figure 16: Average Paint Editor Usage in States with and without CS Standards 
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DISCUSSION & CONCLUSION 
This paper explores the emergent field of  early childhood computer science education by first cate-
gorizing what is currently available into four different pedagogical approaches and tools: unplugged 
activities, block-based programming languages, programming games, and introductory robotic kits. 
Each of  these addresses a particular need and provides a unique learning experience, thus they can be 
integrated, mixed-and-matched, according to the curricular and logistical needs of  the schools and 
the professional development of  the teachers.  However, regardless of  the choice of  approach, suc-
cessful early childhood computer science education programs must teach powerful ideas from the 
discipline of  computer science in a developmentally appropriate way, provide means for self-
expression, prompt debugging and problem solving, and offer a low-floor/high-ceiling interface for 
both novices and experts.  

By using ScratchJr, the most popular block programming language explicitly designed for young chil-
dren, the paper explored whether the presence of  computer science state frameworks results in 
stronger usage patterns. Results from these analytics demonstrate the importance of  having state 
standards in place to increase young children’s exposure to coding and powerful ideas from computer 
science in the early years. In the case of  ScratchJr, analytics show that app usage decreases during the 
summer months and on weekends, which indicates that coding with ScratchJr is more often happen-
ing in school than at home. Results also show that states with CS standards have more ScratchJr users 
on average and also have more total sessions with the app on average. Additionally, the results show 
that states with CS standards in place use the Paint Editor more often than those without, which may 
indicate that states with CS standards are more actively supporting students’ expressiveness or artistic 
exploration along with coding. Finally, the results also show that states with CS standards have users 
editing projects more often more than in states without standards and that states with CS standards 
show a slightly longer average session duration than those without standards (almost a minute long-
er). Taken together, these two findings provide preliminary evidence that CS standards may promote 
children’s debugging and perseverance with coding applications like ScratchJr. Overall, the findings 
from this study provide initial evidence of  the possible positive impact of  state standards on coding 
in early childhood 

LIMITATIONS AND FUTURE RESEARCH  
This case-study of  ScratchJr provides a preliminary look at the impact of  state computer science 
frameworks on supporting young children’s exploration of  computational thinking and the develop-
ment of  computer science skills. As a pilot case study, this paper relies on descriptive statistics to de-
scribe trends, and it is important to note that no statistical significance claims are made. Furthermore, 
this study was limited by the data that could be collected through Google Analytics, while maintain-
ing users’ anonymity and privacy. Therefore, deeper analyses making comparisons by gender, age of  
users, etc. was not feasible to collect within the confines of  this study. For example, although 
ScratchJr is designed for children ages 5-7, there is no way of  knowing from this data whether the 
users in this study were actually young children or not. Future research should pair Google Analytics 
with surveys, classroom assessments, and/or observational studies in order to learn more about the 
impact of  state standards on students’ mastery of  concepts and interest in coding, as well as the im-
pact of  different demographic characteristics.  

Additionally, this study focused on analyzing different design approaches to teaching computer sci-
ence and computational thinking in early childhood. However, it was beyond the scope of  this study 
to look at the role of  the instructor in states with (or without) computer science standards in place. 
While technologies are important, the role of  the educator and the curriculum is also an important 
piece to effectively teaching computer science in the early years. K-12 teachers and researchers have 
not clearly identified best practices for teaching computational thinking as of  yet (Hsu, Chang, & 
Hung, 2018). Future research should examine the role of  the teacher in states with and without com-
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puter science standards and determine how to better support them as new frameworks are being put 
into place.  

Finally, the case-study nature of  this paper meant it was focused explicitly on one technology: 
ScratchJr. Future research should look at the relationship between state standards on children’s usage 
of  other computational tools and technologies in order to more fully understand the impact of  the 
standards.  

CONCLUSION  
This study demonstrates preliminary evidence that states with Computer Science standards in place 
support skills like perseverance and debugging through ScratchJr. The analytics show that states with 
Computer Science standards have longer average session duration as well as a higher average number 
of  users returning to edit an existing project. Finally, the analytics also demonstrate that usage of  the 
ScratchJr Paint Editor is more often used in states with Computer Science standards than those 
without. This may suggest that these states support expression and creativity through coding projects 
more than those without standards. However, this cannot be stated as a fact and more research needs 
to be done. As the US, amongst other nations, is moving forward with policy decisions regarding 
how to introduce computer science in the early childhood curriculum, this paper can inform the 
many different choices available.  
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