

Volume 19, 2020

Accepting Editor Justin Filippou │ Received: May 10, 2020│ Revised: June 22, July 2, July 15, 2020 │ Ac-
cepted: July 20, 2020.
Cite as: Rashkovits, R., & Lavy, I. (2020). Novice programmers’ coping with multi-threaded software design.
Journal of Information Technology Education: Innovations in Practice, 19, 75-89. https://doi.org/10.28945/4609

(CC BY-NC 4.0) This article is licensed to you under a Creative Commons Attribution-NonCommercial 4.0 International
License. When you copy and redistribute this paper in full or in part, you need to provide proper attribution to it to ensure
that others can later locate this work (and to ensure that others do not accuse you of plagiarism). You may (and we encour-
age you to) adapt, remix, transform, and build upon the material for any non-commercial purposes. This license does not
permit you to use this material for commercial purposes.

NOVICE PROGRAMMERS’ COPING WITH
MULTI-THREADED SOFTWARE DESIGN

Rami Rashkovits* Peres Academic Center, Rehovot, Israel ramir@pac.ac.il

Ilana Lavy Yezreel Valley College, Afula, Israel ilanal@yvc.ac.il

* Corresponding author

ABSTRACT
Aim/Purpose Multi-threaded software design is considered to be difficult, especially to novice

programmers. In this study, we explored how students cope with a task that its
solution requires a multi-threaded architecture to achieve optimal runtime.

Background An efficient exploit of multicore processors architecture requires computer pro-
grams that use parallel programming techniques. However, parallel program-
ming is difficult to understand and apply by novice programmers.

Methodology The students had to address a two-stage problem: (1) design an optimal runtime
solution to a given problem with no additional instructions; and (2) provide an
optimal runtime multi-threaded design to the same problem. Interviews were
conducted with a representative group of students to understand the underlying
causes of their provided designs. We used qualitative research methods to gain
refined insights regarding the students’ decision making during the design pro-
cess. To analyze the gained data, we used content analysis tools.

Contribution The case study presented in this paper will help the teacher to stress the merits
and limitations of various parallel architectures and confront students with the
consequences of their solutions via performances’ benchmark.

Findings Analysis of the student’s solutions to the first stage revealed that the majority of
them did not provide a multi-threaded solution ignoring the optimal runtime re-
quirement. At the second stage, seven various architectures were provided dif-
fering in the number of involved threads, the data structures used, and the syn-
chronization mechanism employed. The majority of the solutions were sub-op-
timal and only a few students provided an optimal one.

Recommendations
for Practitioners

We recommend conducting class discussions that will follow a task similar to
the one used in this study.

https://doi.org/10.28945/4609
https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/
mailto:ramir@pac.ac.il
mailto:ilanal@yvc.ac.il

Novice and Multi-threaded Software

76

Recommendations
for Researchers

To be able to generalize the received results this research should be repeated
with larger study participant groups from various academic institutions.

Impact on Society Understanding the difficulties of novice programmers may lead to quality soft-
ware systems.

Future Research To be able to generalize the received results this research should be repeated
with larger study participant groups from various academic institutions.

Keywords multi-threading, parallel programing, novice programmers, thread-synchroniza-
tion

INTRODUCTION
Multicore processors entered the computer industry rapidly and became the standard architecture of
computing hardware (Creeger, 2005). An efficient exploit of multicore processors architecture re-
quires computer programs that use parallel programming techniques (Lee, 2006). The curriculum of
computer science programs has always included a capstone course on operating systems, in which
issues related to parallel computing was addressed (Sahami et al., 2013). With the development of
multi-processors and multicore technologies the importance of parallel programming increased. Any
software built nowadays, such as application servers, e-commerce infrastructures, or ERP systems
utilizes the advantages of parallel architecture to yield better performances.

The concepts involved in parallel programming are introduced in mandatory and elective courses (Sa-
hami, 2013). The main issues discussed in these courses refer to mechanisms in which a program is
divided into subprograms (i.e. threads) running in parallel each handling an independent task. Effi-
cient parallel programming addresses two main issues: (1) the number of concurrent subprograms;
(2) the coordination among subprograms to avoid collisions. Each subprogram requires computing
resources such as allocated stack, operating system scheduling, dynamic memory, and so forth. The
number of concurrent subprograms may affect the performances of the program. On the one hand,
too little may not optimally utilize the available computational power but, on the other hand, too
many may lead to an overload of computational resources and hence harm performances (Khot,
2018). Subprograms running concurrently sometimes need to coordinate activities. Moreover, they
often use common data structures and need to coordinate access to them to avoid collisions. To
achieve this coordination, a variety of synchronization mechanisms was developed (e.g., semaphore,
mutex, a monitor) (Khot, 2018). Proper use of these mechanisms is essential for accomplishing con-
sistent results. However, using coordination mechanisms in a way that harms concurrency unneces-
sarily will result in performance degradation.

The issue of parallel programming is difficult to understand and apply by novice programmers (Sut-
ter & Larus, 2005), especially to students (Benaya & Zur, 2007). Benava and Zur (2007) found that
students encounter difficulties in understanding the synchronization mechanism embedded in
threads implementation. For instance, when designing a multi-threaded solution, one has to identify
possible conflicting code segments and design proper synchronization between them to avoid colli-
sions that may lead to faulty execution. However, one must consider the impact of the chosen solu-
tion on concurrency and avoid redundant synchronization that will cause unnecessary performance
reduction. Designing a proper solution that will be best organized, consistent, and efficient necessi-
tates high order thinking abilities. To cope with such a design task, which amalgamates knowledge of
data structures, algorithms, programming, hardware (i.e., memory, multicore, stack), operating sys-
tems (i.e. process scheduling, memory management) and software engineering (i. e. modularity, clas-
ses, and method design), one has to be able to analyze, synthesize, and evaluate all of the above into
one coherent solution. Such capabilities were ranked as high order thinking abilities in Bloom’s tax-
onomy (Krathwohl, 2002). Awareness of the complexity involved in designing proper and efficient

Rashkovits & Lavy

77

solutions as described above yielded the development of assisting tools to help students visualize and
internalize multi-threaded programs (Adams et al., 2018; Wakatani & Maeda, 2018). Yet, the use of
such tools during academic studies is not widely spread.

The current study aims to explore novice programmers’ understanding and applying multi-threading.
For that matter we: (1) explore the level of knowledge and understanding of novice programmers re-
garding parallel programming; (2) characterize novice programmers’ difficulties in designing solutions
to problems that require parallel programming; and (3) recommend suggestions for the instruction of
parallel programming subjected to findings. We conducted a study in which students were provided
with a design task where a parallel design was required. We classified the students’ solution strategies
and difficulties regarding the threading-architecture they chose and the synchronization mechanisms
they implemented.

BACKGROUND
A thread of execution is a sequence of programmed instructions that can be managed independently
by the operating system (Butenhof, 1997). Threads were developed to enable parallel executions of
sub-processes within a single process. For instance, when a web server accepts concurrent requests, it
uses threads to address each request in parallel. The threads share computing resources such as CPU
and memory. If more than one processor is available, the threads are executed concurrently. Other-
wise, they switch the CPU according to their priorities. If the priorities of several threads are the
same, the operating system will flip the CPU among them, providing each time slot for execution. A
thread of execution may need several time slots. Since threads may also share common memory, they
might harm each other’s consistency. Hence, conflicting code sections (i.e., critical sections) using
shared memory must synchronize access to these data structures to avoid collisions. Many program-
ing mechanisms are available for this purpose, among them monitors and semaphores (Andrews,
1991; González, 2017). A monitor is a synchronization construct that allows threads to have both
mutual exclusion and the ability to wait in a blocking state for a certain condition to become false.
Monitors also have a mechanism for signaling other threads that their condition has been met. They
use a lock object in a way that to execute a critical section of code a thread must lock the object. This
can be achieved only if the lock object is not locked by a conflicting thread. If the lock object is not
available, a thread gets into a waiting list, and cannot continue. When a thread finishes its critical sec-
tion, the lock object is freed and one of the waiting threads is signaled and dequeued, enabling it to
catch the lock object and continue to execute its critical section. Semaphores use similar constructs;
however, they allow multiple threads to use simultaneously shared resources (González, 2017). How-
ever, it is the responsibility of the designer and programmer to detect the conflicting sections and
synchronize their access.

When using multi-threading, one should decide whether to use a multi-threaded or thread-pool archi-
tecture. While the first refers to the creation of dedicated thread to each subtask, as many as they are,
the second refers to a pool of N threads handling all the subtasks that are in a queue, one at the time.
An overflow of threads might occur when using the first architecture, which may lead to an overload
of computing resources and hence harm execution. The use of the second architecture necessitates
the setting of N, which is a fixed number of threads that are responsible to execute the subtasks. Set-
ting an appropriate value for N might maximize concurrency (performances) without overloading the
system capabilities. However, inaccurate value for N may lead to either over or underuse of computa-
tional resources. An appropriate value may be set according to trial and error tests or via a sophisti-
cated algorithm based on the environment where the solution is deployed.

In some solutions, additional problems related to multi-threading may arise. A thread may starve if it
is endlessly waiting to execute due to low priority or biased assignment of computing resources. A
cycle of threads may be formed if each thread is waiting for computing resources (e.g. shared
memory) occupied by other threads causing a deadlock in which all threads are in hold. These two

Novice and Multi-threaded Software

78

phenomena require sophisticated algorithmic treatments such as dynamic priorities and cycle detec-
tion algorithms.

Teaching multi-threaded related issues to novice programmers is considered to be a difficult task.
The students have to get used to parallel thinking, which is far more complex than single-threaded
thinking, and develop parallel computing skills. The teachers have to find effective ways to teach
complex issues such as concurrent execution and synchronization mechanism among threads for co-
ordination. Shene and Carr (1998) discuss the problems and difficulties teachers encountered when
teaching multi-threading programming and present a set of comprehensive and flexible course mate-
rials. They also suggest pedagogical tools for visualization and experiment with various multi-
threaded concepts. Many approaches for teaching multi-threaded programming were suggested in the
literature, including the use of analogies and visual demonstrations such as house building and
demonstration of the building process using single vs multi-threading techniques (Giacaman, 2012).
Yet another example of such an analogy is the modified version of the virtual world game Minecraft
that was used to teach multi-threading (Förster et al., 2016). The students implemented multi-
threaded agent software.

Since concurrent activities are difficult to follow, many researchers suggested visual tools to facilitate
students’ understanding of threads’ behaviors. Bi and Beidler (2007) provide a visual tool that dis-
plays the execution of threads and the synchronization among them in a graphical manner. Thread-
Mentor is another pedagogical tool used to facilitate students’ understanding of C++ multi-threading
concepts (Carr et al., 2003) and visual debugging and testing tools for multi-threading environments
were suggested in Larson and Pating (2013).

Students can use these tools to track threads’ states and follow synchronization operations. JThread-
Spy is another supportive tool that collects execution traces of threads and displays them using UML
sequence diagram (Malnati et al., 2008), enabling students to follow complex states such as deadlock
situations, and understand their causes.
In this paper, we do not focus on teaching approaches. Instead, we test the perception of multi-
threading concepts by novice programmers. We provide them with a problem in which parallelism
would certainly contribute to the solution efficiency. However, novice architects must understand the
consequences of the parallelism mechanism they chose and select proper synchronization mecha-
nisms to support parallelism. If these mechanisms would not be chosen very carefully, efficiency may
be harmed dramatically.

THE STUDY
In this section, we provide information about the research tools, the study participants, the data re-
search, and analysis tools.

THE PROBLEM
In this section, we describe the design problem that was handed to the study participants. The prob-
lem was designed in a way that an efficient solution would make use of parallel programming. To
avoid redundant complexities, we chose a rather simple problem that can be easily perceived by the
problem study participants, enabling them to focus their efforts on the solution design rather than
the understanding of the problem. Based on the students’ prior knowledge in Java programming in
general, and multi-threading Java architectures in particular, we conducted a pilot study with ten stu-
dents and handed them the first version of the problem (part A) in which no specific requirements
regarding threading architecture of any kind were specified. After reviewing the students’ solutions,
realizing that many of them did not use multi-threading architecture, we added the second version of
the problem (part B) in which specific instruction concerning the use of multi-threaded architecture
was provided. The two-stage problem was then handed to the thirty study participants, while part B
was handed upon completion of part A.

Rashkovits & Lavy

79

Part A
Design a Java program that calculates the number of occurrences of all alphabetic letters ‘a-z’ (case-
insensitive) in a given folder of text files. Assume that the number of files in the folder and their
length is unknown. Also, assume that there already exists a mechanism that uploads a chunk of text
into a queue. Also, there is no prior knowledge concerning the computer on which the program will
run on, namely the hardware and operating system. Provide an algorithm and data structures that
solve the above problem. The proposed algorithm will focus on minimizing runtime.

Part B
Design a parallel multi-threaded solution to the former problem, aiming to minimize runtime. In
your detailed design refer to the following: (1) threads and their pseudo-code; (2) data structures used
by the threads; (3) synchronization between threads - if relevant.

SOLUTION DESIGN
The algorithm suits counting letters are the counting sort procedure, which is built on an array of
buckets, each counts a certain letter’s occurrences. Figure 1 presents a schematic description of the
data structure’s constituents. It also includes synchronization mechanisms (keys representing moni-
tors) required for solutions that use multi-thread architecture in which several threads need to access
simultaneously to the same buckets inside the array.

Figure 1: Array of 26 buckets (one for each letter)

In the process of the problem design and its solution, we came up with three available architectures
based on the number of used threads: (1) a single thread architecture in which all text processing is
done by one thread, each text chunk at a time; (2) a multi-threaded architecture in which an unlimited
number of threads are processing text chunks each by a dedicated thread; (3) a thread-pool architec-
ture in which a predefined number of threads, N, process all text chunks that are waiting in a queue.

Table 1. Solutions architectures

No. No. of threads Data structures Synchronization
1 1 An array of 26 “buckets”

2 Unlimited – one
per block

Global Array of 26 “buckets”

Access to array

3 Access to an array index

4 Local arrays of 26 “buckets” No synchronization. Buckets are
collected after all threads are
done

5 A pool of N
threads

Global Array of 26 “buckets”

Access to array

6 Access to an array index

7 Local arrays of 26 “buckets” None

‘a’ ‘b’ ‘c’

Novice and Multi-threaded Software

80

In addition to the above classification, one should decide whether threads will share the array of
buckets or each will occupy its array. If a common array of buckets is chosen, one should decide how
the threads will access the buckets simultaneously without damaging consistency.

Based on the observations described above, we came up with seven architecture variations shown in
Table 1. In what follows, we provide a brief description of the architectures shown in Table 1 and
discuss their advantages and shortcomings.

Single-Threaded Architecture
Architecture 1. This architecture is the simplest. It requires only one array of “buckets”, one for
each alphabetic letter. Then, the single thread scans the queue until the queue is empty, each text
chunk is removed from the queue and scanned. The buckets are updated accordingly without any
need to synchronize access with other threads. The advantage of this architecture is its simplicity.
However, this architecture lacks the utilization of multi-processors (if exist) for concurrent analysis of
text chunks, which lead to a long runtime.

Multi-Thread Architecture
In this architecture, the text chunks that are uploaded to a queue are each processed by a dedicated
thread. That is, each text chunk is removed from the queue and a new thread is created to process it,
in parallel to others. The following architectures are variations of the above architecture, each uses
different data-structures and synchronization mechanism.

Architecture 2. All the threads access a global array of buckets (shared memory) simultaneously,
hence they should synchronize with other threads upon accessing the global array (see Figure 1 –
blue key). The advantage of this architecture is the utilization of multiprocessors (if exist) for concur-
rent analysis of text chunks. This concurrency can improve performance. However, the creation of a
vast number of threads, each takes time to construct, each consumes computing resources may lead
to a decrease in performance. Also, synchronizing the threads over a single array dramatically dam-
ages concurrency. To illustrate the problematics of this solution, consider a thread that needs to up-
date the ‘a’ bucket that must wait until another thread finishes to update ‘b’ bucket. The execution of
the threads becomes sequential due to the synchronization mechanism used.

Architecture 3. The only difference between this architecture and the previous one is that the
threads in this architecture synchronize the access to the buckets rather than to the array which holds
the buckets, so that a thread that wants to update a certain bucket collides only with threads that ac-
cess the same bucket (see Figure 1 – yellow keys) and not with all the other threads as described
above. The advantage of this architecture over the previous one is that the level of concurrency in-
creases dramatically since much fewer collides occur. However, the same amount of threads are con-
structed and activated, consuming many computing resources and thus harming efficiency. Though
fewer collides occur between the threads, many conflicts will still happen between threads that simul-
taneously need to update the same bucket, yet concurrency is still affected, and performances de-
crease.

Architecture 4. In this architecture, similarly to the previous one, each text chunk is processed by a
new thread. However, in this case, each thread manages its array of buckets, and no global array is
used, hence there is no need to synchronize with other threads. After all threads end, all the local
buckets are collected. The advantage of this architecture is that there is no need to synchronize the
threads, and hence concurrency is not damaged. The shortcomings are identical to the ones detailed
in the previous architecture. Also, an overload of memory dedicated to the creation of many local ar-
rays (one per thread) might occur, causing a waste of memory. In the case of very large input, the
program can be aborted due to insufficient memory.

Rashkovits & Lavy

81

Thread-Pool Architecture
In this architecture, instead of creating new threads to handle each text chunk, the program con-
structs a pool of N threads. Each of these threads removes one text chunk from the queue and pro-
cesses it. Upon completion of one chunk, the thread removes another text chunk from the queue and
so on. The number of threads in the pool is determined according to the number of available proces-
sors in the target host to maximize concurrent processing. Similar to the previous architectures, we
distinguished several variations of this pool-based architecture based on data structure and synchro-
nization used.

Architecture 5. Resembling architecture 2, the N threads are using a global array of buckets and syn-
chronize the access to the array. The shortcomings of this architecture remain the same as in Archi-
tecture 2. The only improvement over architecture 2 is that it does not overload the system with too
many threads.

Architecture 6. Resembling architecture 3, the N threads are using a global array of buckets but
synchronize over the array’s buckets rather than the array itself. The only improvement over architec-
ture 3 is that it does not overload the system with too many threads.

Architecture 7. Resembling architecture 4, each one of the N threads creates its local array of buck-
ets, updating the buckets without the need to synchronize with other threads. Upon completion, all
N arrays are collected to yield the result. The only improvement over architecture 4 is that it does not
overload the system with too many threads.

THE STUDY PARTICIPANTS
The data were collected during the academic years 2019. The study participants were third-year Infor-
mation Systems students in a rural academic college. Thirty students participated in the research and
all were graduated from the following programming courses: “Object-oriented Programming” and
“Data Structures and Algorithms”. In these courses, the students were exposed to multi-thread pro-
gramming. They were familiar with the concepts involved in multi-threaded programs including
thread synchronization methods. They also practiced these concepts via relevant programming exam-
ples and assignments.

DATA COLLECTION AND ANALYSIS TOOLS
To address the research aims, a task that includes a problem comprised of two parts was built (see
Problem section). The first part aimed to explore whether the solution chosen by the students in-
cludes multi-threaded architecture. In the second part, we aimed to examine how students implement
the solution using threads. That is, the tasks assigned to each thread, the data structures used, the
identification of conflicting critical sections, and the synchronization between the threads. The first
part of the problem addresses the question of whether the students use threads, and the second ques-
tion refers to how they design a multi-thread solution. The goal of minimum runtime was set to ex-
amine whether students are using synchronization mechanisms efficiently without harming concur-
rency.

We used qualitative research methods to gain refined insights regarding the students’ decision making
during the design process of a solution to a problem that includes the use of multi-threading. The re-
search data were the students’ solutions to the given problems. After scanning the students’ solutions
and classifying them based on the architectures described in Table 1, open interviews were conducted
with a representative group of 12 students to figure out the underlying reasons of their provided so-
lutions. The students were asked to elaborate on their decision making as regards to their provided
solution and to specify the underlying reasons for each step in it. These interviews were transcribed
and were analyzed using content analysis tools (Krippendorff, 2004; Neuendorf, 2016) to identify
typical patterns focusing on multi-threading programming and design. Guba and Lincoln (1981)

Novice and Multi-threaded Software

82

stated that inferences can be derived from content itself since, in their opinion, the process of discov-
ering the characteristics of ideas embedded in the researched content is constructed and based on
what is in the material itself rather than from theoretical assumptions or studies that are supposedly
imposed on the text.

Firstly, we calculated the frequency of one-threaded vs multi-threaded Part-A solutions used. These
frequencies may point to the students’ perceptions as regards to multi-threading mechanism. Sec-
ondly, we summarized the underlying reasons for Part-A solutions according to the use of one-
threaded vs multi-threaded solutions to learn about the consequences of the above perceptions.
Thirdly, after careful studying of the students’ solutions as regards to Part-B of the problem, we tried
to find the best match between each solution and one of the solution architectures presented in Ta-
ble 1. Fourthly, we calculated the frequencies of each solution architecture to learn on the students’
tendencies. Finally, we looked at the interviews’ transcriptions to find justifications for each architec-
ture solution to learn about the students’ difficulties and to come with implications for instruction.

RESULTS
In this section, we present results separated according to the parts of the given problem.

PART-A
As shown in Figure 2, out of the thirty participants, only 43% (13 students) suggested a solution
based on multi-threaded architecture. All the other 57% (17 students) provided a single-threaded so-
lution.

Figure 2. Single vs Multi-threaded solutions

During the interviews conducted with a selective group of the study participants, we asked the stu-
dents who provided a single-thread architecture to justify their solutions. Here are some of their an-
swers:

“I did not see a need for concurrent processing. In my view there is a need to scan the input serially, hence concur-
rent processing was not an option.”

“Single-thread solution is the simplest to implement, and I saw no reason to complicate it.”

“The problem seems to me rather simple, and it did not cross my mind to use multi-thread architecture.”

“I got the impression from the courses I took that multi-thread should be used for very complex programs such as
database or web servers.”

Single
Threaded

57%

Multi
Threaded

43%

Single vs. Multi Threaded

Rashkovits & Lavy

83

From the above quotes, we can imply that these students ignored the “minimize runtime” constraint
and chose the easiest way to cope with the problem. Some attributed their choice to their perceived
impression that a multi-threaded solution requires “overkill efforts” to such a simple problem.

PART-B
Figure 3 presents the frequencies of the students’ solutions according to the architectures in Table 1.

As shown in Figure 3, twelve participants provided a solution like Architecture-2, in which each text
chunk is handled by a newly created thread, which synchronizes the access to a single array of buck-
ets to update the bucket.

Figure 3. Multi-threaded architectures

Here are some of the students’ reflections from the interviews:

“Since we were asked to provide a multi-threaded solution, I found this solution to be appropriate. I assumed that
a single folder of text file does not contain too many input files, thus the threads’ number would not exceed the
maximum allowed. As to the synchronization, I did not notice that accessing the array would cause such a perfor-
mance derogation.”

“I can see the flaws in my solution now. If I had coded the solution rather than just sketch a solution design, I
would probably come up with a better solution.”

From the above quotes, it is obvious that the students did not reflect on their solution upon its com-
pletion and did not validate their solution against the problem constraints. To justify this behavior,
they made up assumptions regarding the input size and the complexity level of the problem in a way
that enables them to provide simple solution ignoring the runtime constraint. The second quote illu-
minates additional problems referring to the design process, which necessitates high order thinking
capabilities. These capabilities are necessary for simultaneously gain an overview of the problem con-
stituents and be able to figure out the practical consequences of each (Malnati et al., 2008). Even
though novice programmers learned when and how to use threads to gain concurrency and improve
performances, yet being inexperienced in such tasks, they need the concrete phase (i.e., coding) to
find flaws in their design.

Four participants provided a solution resembling architecture 3, in which each chunk is handled by a
newly created thread, but the synchronization between the threads is executed over the buckets in-
side the array rather than the array itself, which improves the concurrency level in comparison to the
previous architecture.

0

2

4

6

8

10

12

Arch-2 Arch-3 Arch-4 Arch-5 Arch-6 Arch-7

12

4

2

5
4

3

N
o.

 o
f S

tu
de

nt
s

Muti-Threaded Architectures

Novice and Multi-threaded Software

84

Here are some of the students’ reflections from the interviews:

“I thought a lot how to address the problem’s constraints and I noticed that synchronizing access to the array is a
bad idea since all threads compete with all the others. Hence I suggested a better synchronization mechanism to in-
crease concurrency.”

“After I thought a lot about a proper solution it came to my mind to use Thread-Pool architecture, but I found it
difficult to design. I believe such a solution fits many complex problems.”

From the above quotes, we can learn that these students invested efforts in designing proper syn-
chronization mechanisms, and came up with a “halfway” solution, in which concurrency is improved
but is not yet optimal. The concept of Thread-Pool was considered by some of them but eventually
was not chosen because they found it difficult to conceptualize.

Only two participants provided a solution resembling architecture 4, in which each chunk is handled
by a newly created thread, but unlike architecture 4, the synchronization between the threads is
avoided, since each thread holds its array of buckets. Hence concurrency is increased.

Here are the students’ reflections from the interviews:

“I tried to think of ways to avoid synchronization since I know it harms concurrency. I must admit it took me a
while to get to this idea.”

“Unfortunately, I did not notice that with an unlimited number of threads I waste a lot of ‘space’ to hold their
buckets until they are collected at the end.”

To come up with this solution, one must ‘run’ different solution scenarios in mind to examine the
virtues and shortcomings of each one. However, when focusing on one of the solution’s aspects,
one might neglect other important issues, as occurred in this solution. If not all the design aspects are
considered, it may result in a suboptimal solution.

Five participants provided a solution resembling architecture 5, in which a pool of fixed number of
threads handles the text chunks; however, they are all synchronized over a single array. Hence con-
currency is decreased.

“I used thread-pool architecture since I understood there are many text chunks to process. But I did not pay suffi-
cient attention to the synchronization mechanism and failed to provide an efficient one.”

Resembling the students’ utterances concerning architecture 4, it turns out that when focusing on
one aspect sometimes not enough attention is paid to other ones. As in the previous case, the solu-
tion is suboptimal.

Four participants provided a solution resembling architecture 6, in which a pool of fixed number of
threads handles the text chunks, with synchronization over the buckets rather than the array as in the
previous architecture. Hence concurrency is increased in comparison with architecture 5.

“I think my solution was a pretty good one. If I had thought that synchronization can be completely avoided, I
would have surely definitely used such a solution.”

Though this solution is very good, yet creative thinking was needed to come up with a better one.
Although the synchronization mechanism used in this architecture is the best possible, there is a so-
lution that avoids synchronization completely. However, the latter is far less intuitive than the for-
mer, hence fewer students were able to think of it. Creative thinking is usually developed with expo-
sure to a variety of scenarios gained via professional experience (Cennamo et al., 2011; Treffinger et
al., 2002). Since our participants are students considered as novices, they did not yet develop such
skills.

Three participants provided a solution resembling architecture 7, in which a pool of fixed number of
threads handles the text chunks, each holds its array of buckets. After all processing threads end, the
buckets are collected to calculate the frequencies of the letters. Since no synchronization between the

Rashkovits & Lavy

85

threads is required, the concurrency remains intact and the performance is increased to the maxi-
mum.

Here is one of the students’ reflections from the interviews:

“I love challenges. I understood that to provide the best possible solution I must limit the number of threads in-
volved. I also realized that a key factor in raising performances lies in high concurrency, which is minimum syn-
chronization among the threads.”

The students that provided the optimal architecture succeeded to identify the key factors that lead to
the achievement of the optimal solution. The first factor refers to saving of computer’s resources by
limiting the number of threads, and the second factor refers to the increase of concurrency to the
maximum. The optimal solution was achieved via creative ‘out of the box’ design in which all aspects
of the solution are considered, and an optimal design decision was taken to address each.

DISCUSSION
When we first introduced the problem to the study participants, we did not include any hint as re-
gards to the desired solution architecture. Surprisingly, more than half of them (see Fig. 2) provided a
single-threaded architecture despite the requirement for runtime minimization. The students justified
this selection by uttering that they perceived the problem as one that a sequential solution better fits
than parallel one, and that multi-threading should be used in more complex problems. We may con-
clude from these findings and reflections that multi-threading has not yet become an integral part of
the students’ professional toolbox although they are acquainted with these issues. This might be at-
tributed to the lack of the participants’ experience in solving problems out of a course context and
the absence of high cognitive abilities among many of them. This absence is expressed in their inabil-
ity to break down a problem into smaller ones, inability to understand that parallel processing of the
files reduces runtime, and their inability to integrate a solution that addresses the runtime minimiza-
tion requirement. In Lee (2006), we may find an additional explanation of the obtained results. He
suggested that despite humans’ ability to reason about concurrent physical dynamics, one cannot ex-
tend this ability to concurrent programming because programming environment does not resemble
the physical world’s concurrency. Moreover, the sequential structure of programming languages does
not contribute to the development of parallel design (Banerjee et al., 1993). This is in line with our
findings that many novice programmers do not possess sufficient multi-threading skills.

We mapped the solutions-based architectures according to main dimensions: thread-architecture and
synchronization configuration. As to thread-architecture, the students had to figure out which of the
following meets the problem requirements: single-thread, multi-thread, or thread-pool. As to the Syn-
chronization setup they had to figure out which mechanism will give the best performances to ad-
dress the problem requirements. Figure 4 presents our mapping. Each participant provided one of
the architectures stated above. Her choice points to certain levels of understanding of each of the
above dimensions. Table 2 summarizes the theoretical and practical knowledge required to end with
such decisions.

Architecture

Arch-7 Arch-6 Arch-5 Thread-Pool

Arch-4 Arch-3 Arch-2 Multi-Thread

Arch-1 Single-Thread
None Index Array

 Synchronization

Figure 4. Architectures according to number of threads and synchronization resolution

Novice and Multi-threaded Software

86

Table 2 demonstrates that to end up with the optimal solution (Architecture 7), one should master all
theoretical and practical knowledge on both thread architectures and synchronization mechanisms.
That is, one understands that limiting the number of involved threads is necessary to control the
computing resources. One also understands that synchronization harms concurrency hence avoiding
conflicting sections is even better than solving them efficiently. As a result, one ends up with a crea-
tive solution that uses a pool of threads who process the input files, each holding its buckets avoiding
the need to synchronize with other threads. This solution maximizes parallelism leading to the best
performance. The level of understanding required to provide such a solution is very high, which can
explain the small number of such solutions (see Figure 3).

Table 2. Actions based on theoretical and practical knowledge

Action Practical knowledge Theoretical knowledge

Divide a task into independent sub-tasks Multi-Threading Concurrent Programming

Use Thread-pool architecture to limit the
number of threads

Thread-Pool Vs.
Multi-Threading

Computing Resource Utili-
zation (processors, memory,
etc.)

Use monitors to protect access to the
common array

Synchronization
Mechanism

Conflict of Critical Sections

Use a monitor to protect specific buckets,
not on the entire array

Reduce to minimum
conflicting sections

Synchronization mecha-
nisms harm performances

Use a separate array for each thread
(avoid synchronization completely)

Avoid concurrency
damage by bypassing
synchronization

Synchronization mecha-
nisms harm performances

Students who end-up with architecture 6, also demonstrated a high level of understanding, but they
could not think of a mechanism that completely avoids the synchronization. They chose thread-pool
architecture, and their solution reduces the conflicting sections to a minimum, by allowing threads to
process concurrently unless they conflict on the same letter (e.g., need to update the same bucket in
parallel). As in the previous case, only a few students demonstrated the knowledge required for this
solution which is the second-best. Students who provided architecture 5 as a solution, demonstrated
mastery over the knowledge of the thread-pool architecture; however, as to the synchronization di-
mension, they demonstrated only basic understanding. That is, they understood the need for syn-
chronization between conflicting sections, but they failed to understand the impact of their solution
on performance. They prevented parallel processing of different letters unnecessarily by synchroniz-
ing the threads over the array rather than the buckets.

As to the students who provided solutions based on architectures 2, 3, 4 they all demonstrated partial
understanding regarding thread architecture; namely, they allowed an unlimited number of threads to
operate in parallel. However, these students were differed by their levels of understanding as regards
to the synchronization dimension. Students who provided solutions based on Architecture 4 demon-
strated a high level of understanding regarding the synchronization mechanism by providing a solu-
tion that avoids synchronization, while students who provided solutions based on architecture 2 and
3 demonstrated a low to medium level of understanding regarding synchronization by failing to pro-
vide a bypass solution.

As to the students who provided solutions based on architectures 2, 3, 4, they all demonstrated par-
tial understanding regarding thread architecture. Namely, they allowed an unlimited number of
threads to operate in parallel. However, these students were differed by their levels of understanding
as regards to the synchronization dimension. Students who provided solutions based on Architecture

Rashkovits & Lavy

87

4 demonstrated a high level of understanding regarding the synchronization mechanism by providing
a solution that avoids synchronization, while students who provided solutions based on architecture
2 and 3 demonstrated a low to medium level of understanding regarding synchronization by failing to
provide a bypass solution.

Parallelism calls for thinking that is not intuitive for the human brain (Marowka, 2008). Concurrent
programming refers to many concepts that are not part of humans’ sequential thinking (e.g., dead-
locks, starvations, shared memory, synchronization) and hence makes it most difficult for program-
mers to comprehend (Malnati et al., 2008). Moreover, an increase in program concurrency may cause
a reduction in performance rather than an improvement, if not properly designed (McKenney, 2017).
To be able to properly utilize multi-threading, one has to be proficient in the hardware and software
aspects relating to concurrent programming and be aware of its merits and limitations. Also, parallel
computer programs are difficult to understand and debug (Adams et al., 2018) hence designing such
programs is even more complex. All the above necessitates abstraction abilities and high order think-
ing skills.

CONCLUDING REMARKS AND IMPLICATIONS FOR INSTRUCTION
In this study, we found that many students, who are considered novice programmers, find it difficult
to come up with an optimal design of a solution that includes multi-threading. We found that many
of them avoid multi-threading, although runtime efficiency is required. When they are instructed to
use multi-threading, many of them choose an uncontrolled number of threads and perform unneces-
sary synchronization operations that harm concurrency for no reason.

Hence, we suggest the following recommendations for the instruction of multi-threading:

1. In addition to the instruction of the multi-threading constituents (i.e., work partition, critical
sections, synchronization mechanisms) we recommend conducting class discussions that will
follow a task resembling the one used in this study. The different solutions will be analyzed
and discussed thoroughly stressing the merits and limitations stemming from each solution.

2. As part of the discussion, the students will be asked to implement their solutions. A bench-
mark will be conducted on various inputs to compare the performances of each provided
solution. To emphasize the differences between solutions, the teacher will draw a perfor-
mance graph to enable students to visualize the consequences of their design and internalize
it. This activity is crucial to the development of reflection abilities that are essential to design
tasks.

3. Following the discussion, the students would get another assignment in which they will be
asked to solve a similar problem. This assignment aims to validate that the students internal-
ized the concepts involved in multi-threading.

When difficult and complex concepts are concerned that require analytical thinking skills, we believe
that the above suggestions might facilitate the understanding and internalization of such concepts.
Class discussions and exposing to a variety of solutions and implementations will enable students to
develop reflection abilities that will eventually result in effective learning.

STUDY LIMITATIONS AND FUTURE WORK
This study was conducted in a case study format (Mills et al., 2017) to gain in-depth insights into why
novice programmers choose suboptimal solutions to a problem that necessitates multi-threaded ar-
chitecture.

To be able to generalize the received results, this research should be repeated with larger study partic-
ipant groups from various academic institutions. Also, we intend to elaborate on additional issues re-
lating to multi-threading such as threads’ priorities, threads’ starvation, and threads’ deadlocks. We
aim to explore novice programmers’ understanding and implantation abilities of these issues.

Novice and Multi-threaded Software

88

REFERENCES
Adams, J. C., Crain, P. A., Dilley, C. P., Hazlett, C. D., Koning, E. R., Nelesen, S. M., & Stel, M. B. V. (2018).

TSGL: A tool for visualizing multi-threaded behavior, Journal of Parallel and Distributed Computing, 118, 233-
246. https://doi.org/10.1016/j.jpdc.2018.02.025

Andrews, G. R. (1991). Concurrent programming: principles and practice. Benjamin/Cummings Publishing Company.
Banerjee, U., Eigenmann, R., Nicolau, A., & Padua, D. A. (1993). Automatic program parallelization. Proceedings

of the IEEE, 81(2), 211-243. https://doi.org/10.1109/5.214548

Benaya, T., & Zur, E. (2007). Understanding threads in an advanced Java course. ACM SIGCSE Bulletin, 39(3),
323-323. https://doi.org/10.1145/1269900.1268890

Bi, Y., & Beidler, J. (2007). A visual tool for teaching multi-threading in Java. Journal of Computing Sciences in Col-
leges, 22(6), 156-163.

Butenhof, D. R. (1997). Programming with POSIX threads. Addison-Wesley Professional.
Carr, S., Mayo, J., & Shene, C. K. (2003). ThreadMentor: A pedagogical tool for multi-threaded programming.

Journal on Educational Resources in Computing (JERIC), 3(1), 1-es. https://doi.org/10.1145/958795.958796

Cennamo, K., Douglas, S. A., Vernon, M., Brandt, C., Scott, B., Reimer, Y., & McGrath, M. (2011, March).
Promoting creativity in the computer science design studio. Proceedings of the 42nd ACM Technical Symposium
on Computer Science Education, 649-654. https://doi.org/10.1145/1953163.1953344

Creeger, M. (2005). Multicore CPUs for the masses. ACM Queue, 3(7), 63-64.
https://doi.org/10.1145/1095408.1095423

Förster, K. T., König, M., & Wattenhofer, R. (2016, September). A concept for an introduction to paralleliza-
tion in Java: Multi-threading with programmable robots in Minecraft. Proceedings of the 17th Annual Conference
on Information Technology Education, Boston, MA, 169. https://doi.org/10.1145/2978192.2978243

Giacaman, N. (2012) Teaching by example: Using analogies and live coding demonstrations to teach parallel
computing concepts to undergraduate students. 2012 IEEE 26th International Parallel and Distributed Pro-
cessing Symposium Workshop & PhD Forum, Shanghai, 1295-1298.
https://doi.org/10.1109/IPDPSW.2012.158

González, J. F. (2017). Java 9 concurrency cookbook. Packt Publishing Ltd.

Guba, E. G., & Lincoln, Y. S. (1981). Effective evaluation: Improving the usefulness of evaluation results through responsive
and naturalistic approaches. Jossey-Bass.

Khot, A. S. (2018). Concurrent Patterns and Best Practices: Build scalable apps with patterns in multi-threading, synchroniza-
tion, and functional programming. Packt Publishing Ltd.

Krathwohl, D. R. (2002). A revision of Bloom’s taxonomy: An overview. Theory into Practice, 41(4), 212-218.
https://doi.org/10.1207/s15430421tip4104_2

Krippendorff, K. (2004). Content analysis: An introduction to its methodology. Sage Publications.

Larson, E., & Palting, R. (2013, March). Mdat: A multi-threading debugging and testing tool. Proceeding of the
44th ACM technical symposium on Computer Science Education, Denver, CO, 403-408.
https://doi.org/10.1145/2445196.2445318

Lee, E. A. (2006). The problem with threads. Computer, 39(5), 33-42. https://doi.org/10.1109/MC.2006.180

Malnati, G., Cuva, C. M., & Barberis, C. (2008, December). JThreadSpy: A tool for improving the effectiveness
of concurrent system teaching and learning. International Conference on Computer Science and Software Engineering,
Hubei, 549-552. https://doi.org/10.1109/CSSE.2008.11

Marowka, A. (2008). Think parallel: Teaching parallel programming today. IEEE Distributed Systems Online, 9(8),
1. https://doi.org/10.1109/MDSO.2008.24

McKenney, P. E. (2017). Is parallel programming hard, and, if so, what can you do about it? Linux Technology Center,
IBM Beaverton.

https://doi.org/10.1016/j.jpdc.2018.02.025
https://doi.org/10.1109/5.214548
https://doi.org/10.1145/1269900.1268890
https://doi.org/10.1145/958795.958796
https://doi.org/10.1145/1953163.1953344
https://doi.org/10.1145/1095408.1095423
https://doi.org/10.1145/2978192.2978243
https://doi.org/10.1109/IPDPSW.2012.158
https://doi.org/10.1207/s15430421tip4104_2
https://doi.org/10.1145/2445196.2445318
https://doi.org/10.1109/MC.2006.180
https://doi.org/10.1109/CSSE.2008.11
https://doi.org/10.1109/MDSO.2008.24

Rashkovits & Lavy

89

Mills, J., Harrison, H., Franklin, R., & Birks, M. (2017). Case study research: Foundations and methodological
orientations. Forum Qualitative Sozialforschung/Forum: Qualitative Social Research, 18(1).

Neuendorf, K. A. (2016). The content analysis guidebook. Sage. https://doi.org/10.4135/9781071802878

Sutter, H. & Larus, J. (2005). Software and the concurrency revolution, ACM Queue, 3(7), 54-62.
https://doi.org/10.1145/1095408.1095421

Sahami, M., Roach, S., Cuadros-Vargas, E., & LeBlanc, R. (2013, March). ACM/IEEE-CS computer science
curriculum 2013: Reviewing the Ironman Report, Proceeding of the 44th ACM Technical Symposium on Computer
Science Education, Denver, CO. 13-14. https://doi.org/10.1145/2445196.2445206

Shene, C. K., & Carr, S. (1998). The design of a multi-threaded programming course and its accompanying
software tools. The Journal of Computing in Small Colleges, 14(1), 12-24.

Treffinger, D. J., Young, G. C., Selby, E. C., & Shepardson, C. (2002). Assessing creativity: A guide for educators. Na-
tional Research Center on the Gifted and Talented.

Wakatani, A., & Maeda, T. (2018, March). Web applications for the education of parallel programming. Society
for Information Technology & Teacher Education International Conference, Washington, DC, 262-267.

BIOGRAPHIES
Dr Rami Rashkovits is a senior lecturer at Peres Academic Center,
head of the Department of Management Information Systems. His PhD
dissertation (in the Technion – Israel Institute of Technology) focused
on content management in wide-area networks using profiles concerning
users’ expectations. His research interests are in the fields of distributed
content management as well as computer sciences education. He has
published over thirty papers and research reports.

Professor Ilana Lavy is an associate professor with tenure at the Aca-
demic College of Yezreel Valley. Her PhD dissertation (in the Technion –
Israel Institute of Technology) focused on the understanding of basic
concepts in elementary number theory. After finishing a doctorate, she
was a post-doctoral research fellow at the Education faculty of Haifa Uni-
versity. Her research interests are in the field of pre-service and mathe-
matics teachers’ professional development as well as the acquisition and
understanding of mathematical and computer science concepts. She has
published over a hundred papers and research reports (part of them is in
Hebrew).

https://doi.org/10.4135/9781071802878
https://doi.org/10.1145/1095408.1095421
https://doi.org/10.1145/2445196.2445206

	Novice Programmers’ Coping with Multi-Threaded Software Design
	Abstract
	Introduction
	Background
	The Study
	The Problem
	Part A
	Part B

	Solution Design
	Single-Threaded Architecture
	Multi-Thread Architecture

	The Study Participants
	Data Collection and Analysis Tools

	Results
	Part-A
	Part-B

	Discussion
	Concluding Remarks and Implications for Instruction
	Study Limitations and Future Work
	References
	Biographies

