

Volume 19, 2020

Accepting Editor Felix O Quayson │ Received: February 28, 2020│ Revised: April 19, May 29, July 13, August
3, August 14, 2020 │ Accepted: August 14, 2020.
Cite as: Corritore, C., & Love, B. (2020). Redesigning an introductory programming course to facilitate
effective student learning: A case study. Journal of Information Technology Education: Innovations in Practice, 19, 91-
136. https://doi.org/10.28945/4618

(CC BY-NC 4.0) This article is licensed to you under a Creative Commons Attribution-NonCommercial 4.0 International
License. When you copy and redistribute this paper in full or in part, you need to provide proper attribution to it to ensure
that others can later locate this work (and to ensure that others do not accuse you of plagiarism). You may (and we encour-
age you to) adapt, remix, transform, and build upon the material for any non-commercial purposes. This license does not
permit you to use this material for commercial purposes.

REDESIGNING AN INTRODUCTORY PROGRAMMING
COURSE TO FACILITATE EFFECTIVE STUDENT

LEARNING: A CASE STUDY
Cynthia Corritore* Creighton University, Omaha,

NE, USA.
cindycorritore@creighton.edu

Betty Love University of Nebraska, Omaha,
NE, USA

blove@unomaha.edu

* Corresponding author

ABSTRACT
Aim/Purpose This study reports the outcome of how a first pilot semester introductory

programming course was designed to provide tangible evidence in support of
the concept of Student Ownership of Learning (SOL) and how the outcomes
of this programming course facilitate effective student learning.

Background Many instructors want to create or redesign their courses to strengthen the
relationship between teaching and learning; however, the researchers of this
study believe that the concept of Student Ownership of Learning (SOL) con-
nects to student engagement and achievement in the classroom setting. The
researchers redesigned the introductory programming course to include valu-
able teaching methods to increase Student Ownership of Learning and con-
structive approaches such as making students design an authentic mobile app
project as individuals, partners, or within teams. The high quality of students’
projects positioned them as consultants to the university IT department.

Methodology This paper employs a case study design to construct a qualitative research
method as it relates to the phenomenon of the study’s goals and lived experi-
ences of students in the redesigned introductory programming course. The
redesigned course was marketed to students as a new course with detailed de-
scription and elements that were different from the traditional computer sci-
ence introductory programming course requirement. The redesigned intro-
ductory programming course was offered in two sections: one section with
14 registered students and the other section with 15 registered students. One
faculty member instructed both sections of the course. A total of 29 students
signed up for the newly redesigned introductory programming course, more

https://doi.org/10.28945/4618
https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/
mailto:cindycorritore@creighton.edu
mailto:blove@unomaha.edu

Redesigning an Introductory Programming Course

92

than in previous semesters, but two students dropped out within the first two
weeks of the redesigned course making a total of 27 students. The redesigned
coursework was divided into two parts of the semester. The first part of the
semester detailed description and elements of the coursework including a re-
designed approach with preparation for class, a quiz, and doing homework in
class, which gives students control of decisions whenever possible; and work-
ing with each other, either with a partner or in a team. The second part of the
semester focuses on students designing a non-trivial working mobile app and
presenting their developing mobile app at a significant public competition at
the end of the semester. Students developed significantly complex mobile
apps and incorporated more complex functionality in their apps. Both Man-
agement Information System (MIS) major students and Computer Science
major students were in the same course despite the fact that MIS students
had never taken a programming course before; however, the Computer Sci-
ence students had taken at least one course of programming.

Contribution This study provides a practical guide for faculty members in Information
Technology programs and other faculty members in non-Computer Science
programs to create or redesign an introductory course that increases student
engagement and achievement in the classroom based on the concept of Stu-
dent Ownership of Learning (SOL). This study also deepens the discussion
in curriculum and instruction on the value to explore issues that departments
or programs should consider when establishing coursework or academic pro-
grams.

Findings This study found two goals evidently in support to increase Student Owner-
ship of Learning (SOL). The first goal (Increase their ownership of learning
SOL) showed that students found value in the course contents and took con-
trol of their learning; therefore, the faculty no longer had to point out how
important different programming concepts were. The students recognized
their own learning gap and were excited when shown a programming con-
cept that addressed the gap. For example, student comments were met with
“boy, we can really use this in our app” instead of comments about how
complex they were. The coursework produced a desired outcome for stu-
dents as they would get the knowledge needed to make the best app that they
could. The second goal (Develop a positive attitude toward the course)
showed positive results as students developed a more positive attitude to-
wards the course. Student actions in the classroom strongly reflected a posi-
tive attitude. Attendance was almost 100% during the semester even though
no points for attendance were given. Further evidence of Student Ownership
of Learning and self-identity was students’ extensive use of the terminology
and concept of the course when talking to others, especially during the public
competition. Students were also incorporating their learning into their identi-
ties. For example, teams became known by their app such as the Game team,
the Recipe team, and the Parking team. One team even made team t-shirts.
Another exciting reflection of the Student Ownership of Learning which oc-
curred was the learning students did by themselves.

Recommendations
for Practitioners

Practitioners can share best practices with faculty in different departments,
programs, universities, and educational consultants to cultivate the best solu-
tion for Student Ownership of Learning based on student engagement and
achievement in the classroom setting.

Corritore & Love

93

Recommendations
for Researchers

Researchers can explore different perspectives with scholars and practitioners
in various disciplinary fields of study to create or redesign courses and pro-
grams to reflect Student Ownership of Learning (SOL).

Impact on Society Student Ownership of Learning is relevant for faculty and universities to in-
corporate in the creation or redesigning of coursework in academic pro-
grams. Readers can gain an understanding that student engagement and
achievement are two important drivers of Student Ownership of Learning
(SOL) in the classroom setting.

Future Research Practitioners and researchers could follow-up in the future with a study to
provide more understanding and updated research information from differ-
ent research samples and hypotheses on Student Ownership of Learning
(SOL).

Keywords SOL, student engagement, student achievement, introductory programming,
redesigning, computer science

INTRODUCTION
Faced with poor student performance and high major dropout rates in the Management Information
System (MIS) academic program due to a required computer science programming course, faculty
responded by designing and implementing an entirely new course that focus on increasing student
engagement and performance through the application of the concept of Student Ownership of
Learning (SOL). While this is likely an issue in many MIS departments, the problem is not only lim-
ited to MIS or even the U.S. In many countries, students who are required to take programming
courses often respond negatively, even those in related fields like MIS or engineering (Figueiredo &
García-Peñalvo, 2019).

In fact, research studies show that many students commonly have serious difficulties with learning to
program (Robins et al., 2003; Hadjerrouit, 2008; Pacheco et al., 2008) and even computer science ma-
jors sometimes lack sufficient understanding of fundamental concepts to write simple pro-
grams (Eckerdal, 2009). In addition, as required programming courses become more widespread for
students at all levels and in many non-technical fields, this problem is likely to grow.

In the UK alone, programming courses are required for students from age 5 and up (Brown et al.,
2014). Fifteen EU European countries (Austria, Bulgaria, the Czech Republic, Denmark, Estonia,
France, Hungary, Ireland, Lithuania, Malta, Spain, Poland, Portugal, Slovakia, UK ‘England’) are al-
ready offering coding programming in their school curriculum along with plans to develop more
(EURACTIV, 2015). At the primary school level, nine EU European countries (Estonia, France,
Spain, Slovakia, UK ‘England’) have already integrated or (Belgium ‘Flanders’, Finland, Poland, Por-
tugal) are in the process of integrating coding, and at the secondary school level general education,
twelve EU European countries (Austria, Bulgaria, Denmark, Estonia, France, Hungary, Lithuania,
Malta, Poland, Slovakia, Spain, UK ‘England’) have already integrated or are in the process of inte-
grating coding (EURACTIV, 2015).

In the United States, 45% of high schools offer programming courses, while 33 states have passed
new laws and regulations to make computer science a fundamental part of K-12 education for all stu-
dents (Computer Science Teachers Association, 2017). Higher education is also seeing increased re-
quirements of programming for non-computer-science majors. In many cases, the aim of such re-
quirements is not necessarily to produce more programmers, but rather to use programming as a ve-
hicle for teaching computational thinking and problem-solving skills.

The fact that none of the students had taken a programming course or written code meant that they
had no experience with how programming is traditionally taught. This provided the researchers with
an excellent opportunity to incorporate innovative teaching into the design of the new course. To be

Redesigning an Introductory Programming Course

94

clear, this study reports on the design and pilot test of a completely new course and not a redesign of
a non-performing course. The new course was developed by the researchers in the MIS faculty in the
College of Business for MIS majors with no programming experience and was taught by one of the
MIS faculty in-house.

This study’s researchers decided to build the new course around a theory of learning that would in-
crease student performance and encourage students to internalize the concepts and skills of program-
ming, problem-solving, and computational thinking. The researchers sought something that would
facilitate active learning, which has been recommended for teaching programming to MIS students
(Zhang et al., 2019). In this way, the course could provide what the researchers wanted the students
to actually get out of the course: rather than becoming expert programmers, students would learn
cognitive skills and problem solving that would stay with them through later courses in their major,
and ultimately, in their careers in the technology field.

The concept of Student Ownership of Learning provides a means for students to accomplish this
thought. The father of Student Ownership of Learning, John Dewey, stated that SOL gives students
something to do, not something to learn; and that the doing requires thinking, making connections,
and extending knowledge, that result naturally with learning (Dewey, 1916). To the best of this
study’s researchers’ knowledge, Student Ownership of Learning implementation in programming
courses has not been explicitly studied in the context of introductory programming courses in higher
education.

In this study, the researchers report on how they purposefully redesigned a new introductory pro-
gramming course for non-programming Management Information System (MIS) majors entirely
around the precepts of Student Ownership of Learning. The researchers discuss the underlying re-
search that supports their design and present a snapshot of the first pilot of the new course. The re-
searchers share their experiences and conclusions about the new course based on student feedback
and the researcher’s observations.

Finally, the researchers identify avenues for research around this approach. While this is a preliminary
report on the researchers’ efforts, it does provide a roadmap towards how to practically implement
Student Ownership of Learning in a programming course for non-MIS majors and the kinds of out-
comes that might be expected.

LITERATURE REVIEW

PSYCHOLOGICAL OWNERSHIP
The concept of psychological ownership is not a new one. Psychologists describe it as a common
cognitive-affective state that people experience with a variety of objects. While an exhaustive exami-
nation of the body of research is beyond the scope of this study, the researchers described some of
the main elements of psychological ownership that are particularly relevant to education.

Psychological ownership can be defined as “that state where an individual feels as though the target
of ownership or a piece of that target is theirs” (Pierce et al., 2003, p. 5). It develops quickly and can
be felt toward physical entities as well as non-physical entities such as ideas, words, artistic creations,
and other people (Isaacs 1933; Pierce et al., 2003). No matter the target, objects perceived as owned by
a person actually become a part of their extended self (Belk, 1988; Dittmar, 1992). As such, they can
come to play a dominant role in an individual’s identity. Psychological ownership also has an affec-
tive component, thereby, producing a positive uplifting effect (Formanek, 1994). Owned objects are
perceived more favorably than non-owned objects (Beggan, 1992; Nuttin, 1987). Additionally, feel-
ings of increased self-efficacy and competence related to an owned object have been observed
(White, 1959).

Corritore & Love

95

Pierce et al. (2003) postulate that three motives drive people’s use of psychological ownership. The
first two are particularly salient for learning: innate desires for self-efficacy, and effectance motiva-
tion for self-identity. They postulate that psychological ownership helps people satisfy these desires.
Both self-efficacy and effectance motivation (as coined by Robert White in 1959, is the state of hav-
ing a causal effect on objects and events in the environment) refer to people’s ability to produce a de-
sired result. However, self-efficacy refers to one’s competency with the object, while effectance moti-
vation relates more to a feeling of having control over the object. Increased feelings of both self-effi-
cacy and effectance motivation have been associated with having taken ownership of an object
(Furby, 1976).

The second desire driving the use of psychological ownership is self-identity (Pierce et al., 2003). In
fact, the term owned reflects incorporation of the object into one’s self-identity. This feeling of owner-
ship is thought to be developed through experiencing a living relationship with the object (James,
1890). Additionally, it develops when actively interacting or associating with an object (Rochberg-
Halton, 1980) or with repeated application of control over an object (Formanek, 1994). For this rea-
son, the researchers feel that people own their labor and creative efforts. In fact, people feel ownership
of anything in which they invest their time and physical or mental energy. This is especially true with
creative efforts (Durkheim, 1957). In fact, the greater the amounts of control and interaction people
have with an object, the more it will be psychologically experienced as a part of their self, i.e. owned
(Ellwood, 1927; Furby, 1976).

STUDENT OWNERSHIP OF LEARNING (SOL)
Teachers have long sought out ways to increase student achievement. Student Ownership of Learn-
ing appears that it might be a way to accomplish this. The concept is relatively simple: according to
Dewey (1916), the first to propose the model of SOL which refers to incorporating an individual’s
own questions and ideas that comes from their own experiences, interests, or unique understanding.
These are refined and adjusted by the student over time, and eventually lead to new insights. SOL has
also been associated with other desirable student behaviors such as increased concept application,
taking responsibility, finding personal value, and feelings of control.

Essentially, SOL is a model of learning that blends desirable student behaviors to increase student
achievement and level of learning while building on something all students have: their own experi-
ences, knowledge, and view of how the world works. Student Ownership of Learning moves stu-
dents beyond a superficial demonstration of content understanding towards demonstration of the
mastery and true understanding required to apply the content. It requires the student to create goals,
evaluate movement toward them, and apply learning in order to reach the goals.

Like any ownership in general, Student Ownership of Learning is postulated to be driven by innate
desires for competency with an object (self-efficacy), desire for control over an object (effectance
motivation), and ongoing development of self-identify (leading to eventual incorporation of the ob-
ject into one’s identity). The role of these drives is obvious for education. Most teachers would agree
that a goal of all courses is to increase student competency with a topic and student self-efficacy.

Seeing students incorporate content and skills learned in a course into their self-identity is an aspira-
tion goal, but one that is not commonly targeted. Student control over their learning, however, is not
a typical goal of most courses. So purposefully addressing self-identify and control could be effective
ways to increase SOL in a course.

Development of SOL specifically is postulated to require the presence of student (1) control, (2) inti-
mate knowing, and (3) investment of self. Control here refers to a student’s opportunity and responsi-
bility to make decisions about learning tasks and how they will be implemented and completed. An
example would be having students choose their own topics for a project. Milner-Bolotin (2001)
found that a student’s interest in their project topic positively affected feelings of ownership. This
makes sense, as SOL predicts that objects that are more known and over which one has more control

Redesigning an Introductory Programming Course

96

are more likely to be perceived as part of self (Pierce et al., 2003), thus increasing Student Ownership
of Learning.

The second requirement, intimate knowing, refers to the student getting to know the object of owner-
ship from multiple perspectives and in great detail, often better than other students or the teacher.
Finally, investment of self refers to a student’s commitment to devote their time, effort, and energy to
follow a course of action with the object with the expectation of a worthwhile result. It is the respon-
sibility of the teacher promoting SOL to provide a learning environment that supports development
of these three elements in students.

How can such an environment be created? As mentioned above, and supported by research, students
must be given control over objects of ownership, provided ways to develop expertise and confidence
in their abilities with the objects (self-efficacy), and have opportunities for repeated, extended, deep
interaction with the objects in order to incorporate them into their identity. Again, these objects can
be projects, ideas, or important concepts. Not surprisingly, typically SOL has been observed when
students are active learners, agents in their own learning, generate new knowledge, and/or relate their
own experiences to new knowledge (Rainer & Matthews, 2002). Providing these types of experiences
are known to facilitate SOL.

Unfortunately, the researchers of this study were unable to find research studying the application of
SOL to a programming course for students with no programming experience. However, research by
Dounas-Frazer et al. (2019) is promising. They developed a preliminary model of student ownership
of physics projects that they plan to fully develop and report upon in the near future.

As it may be expected, the role of the teacher must also change in order to facilitate increased student
ownership of their learning. Acting as a coach to help students set their own learning goals, apply
course knowledge, evaluate their own learning progress, and take control of their own learning is crit-
ical. A teacher in this role becomes a valued resource for students to use in order to achieve their
goals as well as a source to validate the students’ decisions, choices, content application, observa-
tions, and evaluations (Chan et al., 2014).

CONSTRUCTIVIST MODEL OF LEARNING
Student Ownership of Learning is consistent with the precepts of the Constructivist Model of Learn-
ing (Dudley-Marling & Searle, 1995; Hadjerrouit, 2005; Milner-Bolotin, 2001). Constructivism pro-
poses that knowledge or meaning for an object is not innate, but rather is constructed through one’s
experience with that object in context (Honebein et al., 1993). Understanding is furthered by experi-
ence, for example, it is embedded in the interaction of the student with the object. Therefore, con-
structivism advocates that the teacher should provide experiences involving the object in order to in-
crease SOL. Hadjerrouit (2005), in his pedagogical constructivist model, also recommends the role of
teachers be as guides and facilitators of learning rather than simply transmitters of knowledge.

Honebein’s (1996) list of the pedagogical goals of constructive learning environments illustrates the
overlap of constructivism and SOL. Student ownership is one of the fundamental goals of construc-
tivism-based learning. Constructive learning requires placing responsibility for learning in the stu-
dents’ hands, which ultimately cultivates group and individual autonomy and initiative. All of these
would also facilitate Student Ownership of Learning.

A constructive approach requires both authentic activity and a real-world context for the object of
ownership (Hadjerrouit, 2005; Honebein, 1996; Honebein et al., 1993). Authentic activities are those
that are real or valid in a particular context. They are typically identified as activities that will enhance
students’ ability to interact successfully over an extended time with their object of ownership. Con-
text refers to the complexity or realism in which the learning takes place. Simplifying a project so that
it clearly illustrates one or two important concepts but not realistically complex in context would not
be a constructive approach.

Corritore & Love

97

Providing realistic levels of complexity is necessary. In fact, doing so can actually make the learning
easier as tasks in context cause the application of knowledge to be more intuitive than when applied
in a decontextualized or artificial setting (Harel & Papert, 1990). An authentic project provides stu-
dents with the opportunity to generate and evaluate multiple problem perspectives, recognize when
particular skills and knowledge are needed, and retrieve and apply knowledge and skills needed to
solve a complex real-world problem. In this way, it is clear that a constructive approach promotes
ownership of the object (e.g. project), leading to increased SOL.

THE FLIPPED COURSE
Flipped courses have become a popular way to implement active learning (Freeman et al., 2014). In
fact, they have been shown to cultivate a stronger sense of SOL specifically (Mok, 2014). They have
also been shown to increase the level of learning, per Blooms Taxonomy, as they can focus on the
higher levels: applying, analyzing, evaluating, and creating (Marshall & DeCapua, 2013). In addition,
they appear to improve attitude toward a programming course for MIS students (Loftsson & Matthí-
asdóttir, 2019).

The Flipped Learning Network offers the following definition of flipped (FLIP Learning, 2014):

Flipped learning is a pedagogical approach in which direct instruction moves from
the group learning space to the individual learning space and the resulting group
space is transformed into a dynamic, interactive learning environment where the
educator guides students as they apply concepts and engage creatively in the subject
matter.

Whereas a lecture-based approach has students listening in class and solving problems at home, stu-
dents in a flipped course have their first exposure to new course concepts outside of the classroom,
watching videos or reading. They then use this knowledge during class for engaging in active problem
solving and homework that require application of the concepts under study (Bergmann & Sams,
2012; Lage et al., 2000). Hence, the hardest part of learning is done in the classroom, where they have
access to their teacher and peers for help.

Proponents of the flipped approach cite many advantages, including:

• Students’ control the time and pace of initial learning by consuming basic content knowledge
on their own schedule outside of class. This can be done as frequently as desired and in multi-
ple ways, such as reading course material, listening to related podcasts, or watching appropriate
videos or screen casts.

• Teachers can focus face-to-face classroom time on relevant problems and tasks to increase con-
tent knowledge and application of the knowledge (Gannod et al., 2008).

• Teachers can use class time to check for and ensure student understanding.

Key here is the passing of control to the student, which has been shown to increase SOL. Students
recognize this. Thalluri and Penman (2016) found that while SOL increased in flipped learning, stu-
dents recognized and commented that the flipped approach increased their opportunity for develop-
ing their own ownership of the learning.

Research on the effectiveness of flipped instruction has also identified positive effects. For example,
students found it easier to take notes and understand content when first exposed to it outside of the
classroom via video lectures (Foertsch et al., 2002). Flipped classroom students may also have higher
performance and morale (Papadopoulos & Roman, 2010) as well as deeper understanding (Warter-
Perez & Dong, 2012). Sharp and Sharp (2017) found in a study of teaching C# using four different
modes that Flipped, Blended and Online had greater academic impact than the traditional approach.

Redesigning an Introductory Programming Course

98

They attributed this to the greater degree to which these approaches all fostered greater active learn-
ing, student engagement, and self-regulation, that in turn, appeared to increase student academic per-
formance.

However, other researchers have not found a clear advantage of flipped over traditional teaching ap-
proaches, although it has been frequently shown not to have a negative impact on learning (Hodge et
al., 2014; Johnson & Renner, 2012; Love et al., 2014; Yang, 2017).

RESEARCH METHODOLOGY: THE NEW COURSE

BACKGROUND OF THE PROBLEM
Creighton University is a medium-sized private Jesuit, Catholic institution in Omaha, Nebraska, the
Midwest of the United States. The student populations for the study were MIS majors within the
College of Business. Prior to the development of the new course, MIS major students were required
to take a general programming class offered by the Computer Science Department. They considered
this course to be extremely difficult and not relevant for their major. Computer science and MIS stu-
dents were in the course together and while the MIS students typically had never taken a program-
ming course, most of the Computer Science students had taken at least one. Their perception of the
course as very difficult is not surprising; programming requires an intense, structured, precise method
of thinking and problem-solving, design and creation of actual products, and learning at all of the lev-
els of Bloom’s cognitive learning taxonomy (Bloom et al., 1956; Xu & Rajlich, 2004). What was sur-
prising was that students did not see the importance of the topic for the MIS major. Without any ex-
perience with programming, they couldn’t see that many of the things learned in a programming
class, such as problem solving and computational thinking, went beyond just coding. These are both
central to the MIS major.

Students’ negative attitudes toward the course, along with high failure rate (over 60%), led students
to avoid the course, and therefore, the MIS major altogether. The number of MIS majors signifi-
cantly declined over a two-year period. In a field that nationally has low numbers, this was not sus-
tainable. While it was unlikely that this course was not the only reason for the decline in the MIS ma-
jors, it was one of the early factors the researchers chose to address. The researchers decided to care-
fully design and offer a completely new introductory programming course built around the tenets of
Student Ownership of Learning in order to increase engagement, improve attitudes, and increase stu-
dent achievement in the course.

METHODOLOGY
This paper employs a case study design to construct a qualitative research method as it relates to the
phenomenon of the study’s goals and lived experiences of students in the redesigned introductory
programming course. The redesigned course was marketed to students as a new course with detailed
description and elements that were different from the traditional computer science introductory pro-
gramming course requirement. The redesigned introductory programming course was offered at
Creighton University in two sections; one section with 14 registered students and the other section
with 15 registered students. One faculty member instructed both sections of the course. A total of 29
students signed up for the newly redesigned introductory programming course, more than in previ-
ous semesters, but two students dropped out within the first two weeks of the redesigned course
making a total of 27 students. The redesigned coursework was divided into two parts of the semester.
The first part of the semester detailed description and elements of the coursework including a rede-
signed approach with preparation for class, a quiz, and doing homework in class, which gives stu-
dents control of decisions whenever possible; and working with each other, either with a partner or
in a team. The second part of the semester focuses on students designing a non-trivial working mo-
bile app and presenting their developing mobile app at a significant public competition at the end of
the semester. Students developed significantly complex mobile apps and incorporated more complex

Corritore & Love

99

functionality in their apps. Both Management Information System (MIS) major students and Com-
puter Science major students were in the same course despite the fact that MIS students had never
taken a programming course before; however, the Computer Science students had taken at least one
course of programming.

GOALS FOR THE NEW COURSE
The researchers had two goals for the new course design. Students would:

1. Increase their ownership of learning (SOL).
2. Develop a positive attitude toward the course.

The initial design had to incorporate conditions that increase SOL as well as reduce fear and appre-
hension towards programming. Increasing SOL would likely help improve student learning and
achievement. In this way, the researchers would be helping students to learn not only to program,
but perhaps more importantly, to think computationally and problem-solve logically. These skills are
essential in MIS, and therefore, valuable in later courses. Developing a more positive attitude toward
the course and its content could increase student self-efficacy as well as confidence in the course. It
might also reduce the drain of students from the MIS major due to failure rates and the feeling of not
wanting to take a course that is perceived as irrelevant.

The researchers decided early on to employ a flipped pedagogy and to integrate a significant, working
prototype of a mobile app as the main project and focus of the course in order to address these two
goals. Flipping allowed the researchers to move the most difficult part of the course; actually writing
code and problem-solving in the classroom where teachers and peers would be available to help.
During class, the teacher could help students solve problems, see alternate solutions, and think about
approaches to apply the course concepts to their programs. The role of the instructor would be as a
facilitator, coach and resource, not simply a giver of knowledge.

Increasing SOL
The new course had to be designed in a way that facilitated the development of SOL. This meant
that student control had to be increased; activities that would provide repeated, extended, and deep
interaction with the concepts and products of the course had to be developed. Additionally, this had
to be done in the context of employing a flipped approach that fit within the timeline of a traditional
course.

The researchers’ targeted five conditions that have been associated with increasing SOL (see Table
1). The key driver of all of these was the incorporation of a significant, appropriately complex pro-
gramming project that would give students extended opportunities for creativity, control, and deep,
important interaction with the course materials, content, and ways of thinking. It also would give
them a context in which to apply the course materials that illustrated their usefulness and value in a
concrete way.

The creation of a mobile app as a project also provided a way to give students significant flexibility in
deciding on what they wanted to build, the features they wanted to include, and the design they
wanted to use. This gave them a way to easily infuse creativity into their projects, also increasing
SOL. Additionally, the capacity for adding features and functionality to mobile apps is large, provid-
ing a way to keep the projects complex.

Redesigning an Introductory Programming Course

100

Table 1: Planned course practices to increase SOL

Conditions for SOL Related Course Elements
Control • Students identify their own project idea.

• Teams of two to three students decide what to make,
how to make it, and how feature-rich to make it based
on their desired grade and their team’s desire to win the
competition.

• Students decide on what instructor demonstrations they
want in class related to advance programming elements
they want for their apps.

• Students choose the amount of complexity to include in
their project.

• Students develop goals and plans for each milestone.
Intimate knowing (extended
experience and interaction
with the object of ownership)

• Flipped class structure
• Long-running, complex project limited only by students’

level of skill and ambition
• Students find, build, manipulate, and explore functional-

ity they want to incorporate into their apps, adopting
some, abandoning others

• Positive emotional component - immediate feedback of
emotional joy when programming errors are corrected,
and code runs correctly.

Investment of self (genuine
creative effort)

• Brainstorm project ideas.
• Develop own design.
• Identify desired features.
• Develop the app itself.
• Plan, create, and deliver a presentation and demonstra-

tion to the public.
Complex and authentic work • Mobile apps used as project as students have experience

with them in the real world.
• Project to complete a fully functioning significant mo-

bile app to be presented to campus and business com-
munity.

• Mobile app required to have features that went beyond
basics taught in the course.

• Held to three project milestones for the semester.
• Participated in an all-sections app competition with sig-

nificant prizes open to the public.
Self-identify (incorporation of
object of ownership into stu-
dent identity)

• Project that requires direct and clear application of
course content.

• Work in small teams (2-3) so everyone has to participate.
• Allow creativity and personality to guide project idea

and design.
• Public competition against other teams.
• Provide opportunities and give credit for student-stu-

dent help.
• Immersion in project work for the entire second half of

the semester.

Corritore & Love

101

Developing a more positive attitude toward the course
The researchers believed that having a more positive attitude toward the content and the course
would increase students’ self-efficacy as well as confidence within the course. To provide a familiar
and specific context for the programming that would be done in the course, the researchers thought
to make the course less formidable and intimidating to the non-programming MIS students. Conse-
quently, the researchers designed the course to focus on mobile app development. All of the students
were very familiar with mobile apps, and so this took the unknown aspect of programming off the
table. They had all heard about mobile apps being developed by young teenagers who have had suc-
cessful sales of their app. If young kids could do this, so could they. Picking a specific focus for the
course also removed some of the unknown aspects by giving them an exact idea of what they would
be doing in the course. So, the researchers renamed the course to, “Introduction to Mobile App De-
velopment”, thus focusing on the significant of a complex project around the development of a real-
world problem to solve.

DESIGN OF THE NEW COURSE

Time allocation
The researchers divided the semester course into two parts. The first half would focus on the stu-
dents learning how to program. The second half of the course would focus on mobile app projects.
The new course was designed to be a flipped course, with students watching required video demon-
strations and explanations along with doing readings before class and then doing programming in
class. See the course schedule in Appendix E for details.

During the first half of the course, the students would learn the programming language. Per the
flipped method, students would prepare for class by watching video lectures, video demonstrations,
and reading their textbook. Then all of the time in the classroom would be exclusively spent on cod-
ing and problem solving. The researchers incorporated the use of paired programming for all of the
class coding time. The paired-programming paradigm has been associated with better programming
outcomes in beginning programmers and has also been shown to improve outcomes with females
(Ying et al., 2019). The researchers felt that this approach would encourage students to problem-
solve with their peers as well as the teacher, thereby, recognizing that there isn’t enough time for the
teacher to answer every question.

In the second half of the semester, all class time would be spent on student teams working on their
mobile app. While students would not have class preparation or quizzes to do, they would be work-
ing twice a week in class and outside of class as needed. This would allow students to really develop a
focus on their project and fully immerse themselves in it during class when help is available for the
hard problems to solve.

Course design in detail
In order to provide a realistically complex coding environment, the researchers decided to use a com-
mercial IDE (integrated development environment) that would work on both PCs and Macs. The
researchers chose NSB AppStudio, as the University had a license (there is also a free version), it had
a graphical side to use for the interface design, and a code behind where students wrote code as event
handlers. That way they could focus on coding, not creating interface widgets. The researchers didn’t
have to talk about HTML and CSS. It is available at https://www.nsbasic.com/. The researchers de-
cided to use JavaScript as it is relatively easy to learn, contains most of the programming concepts of
a more serious language, and worked with the IDE (Integrated Development Environment) and
most APIs.

The grading distribution for the course would heavily weight the project, as it was the opportunity
students had to show the degree to which they had mastered the content and skills of the course (see

https://www.nsbasic.com/

Redesigning an Introductory Programming Course

102

Appendix D). Consequently, there was no final exam. The programming concepts that would be cov-
ered included variables, arrays, strings, operators, expressions, Booleans, conditionals, loops, func-
tions and scope, interacting with remote databases, and simple API requests. Some of the widgets
from the interface side of the IDE (Integrated Development Environment) would also be included.
The schedule is available in Appendix E. A midterm would conclude the first half of the semester.

To prepare for class, students would be required to watch 2-4 short (10-20 minute) videos covering
new programming concepts and coding demonstrations as well as to do textbook readings. Students
would be able to view the videos multiple times with the ability to pause and rerun. These flipped
teaching strategies have been shown to increase Student Ownership of Learning as students have
control over how fast and often to consume the content (Mok, 2014; Musib, 2014).

If students did not prepare for class, they would not be able to complete the work in the class and
might be dismissed. To help ensure that they were prepared for class, every class started with a short
(5 minute) knowledge-level quiz over the preparation materials. It would be administered in the
course management system (Canvas) and be a simple multiple choice. Students would then spend the
rest of the class completing an assignment with their assigned paired partner (see Appendix C for ex-
amples of assignments). The decision was to use Code Academy® for the early assignments, as each
unit had many interactive activities and programs that allowed students to apply new programming
knowledge.

Each assignment included Code Academy lessons as well as optional Extra Credit programs that pro-
vided student another way to control their learning. Each paired student would be required to hand
in their own programs in order to extend the exposure of each student to the programming concepts
under study as well as provide practice with typing code and debugging. The assignments would be
designed to give students a structured way in which to apply the concepts as well as practice using
previously learned and new constructs.

The project was where SOL would really come into play. The project would provide extensive op-
portunities for student decisions and control. For example, it would require students to come up with
their own idea and design for their app as well as decide on which coding constructs to use to imple-
ment their design within the requirements of the project, and what advanced features to incorporate
based on the grade they wanted to target. They would also have control over their timelines within
three required Milestones, deciding who is to do what, when, and how within their teams.

The requirements of the project would be straight forward; a working mobile app prototype of ade-
quate complexity with 2-3 advanced features chosen by the team (see Appendix A for the project de-
scription given to students). The app was called a working prototype because it did not have to be
completely, fully functional. The mobile app was not fully functional, but during a demonstration, the
scenario path through the app taken by the student presenters made it seem like it was fully func-
tional. This is because students would be following a path that used all the fully functioning features.
For example, if there was a dropdown with 10 choices, perhaps only the first two would be func-
tional. In this way, the researchers could focus the students on making the main features work, but
not get into the detail of making every feature/element fully functional.

To do that would have added a lot of repetitive, data-entry type of work for which there was not
enough time and that did not significantly increase their learning. However, all of the advanced fea-
tures had to work completely. The advanced features incorporated into the app would be entirely up
to the team, but the teacher would provide feedback as to whether they were complex enough or
were too complex. Advanced features could be anything technical that had not been explicitly taught
in class in detail, such as commercial APIs (e.g. Google Maps, Yelp, Weather, etc.).

In order to incorporate enough complexity into the project, the researchers decided to use teams of
three students. The teams would be created in such a way as to balance member coding, creative, and
organizational skills on each team. Working in heterogeneous teams would also lend a realistic flavor

Corritore & Love

103

to the project. Grading would be equal parts on how well their app worked and its level of difficulty
(based on the coding and advanced features they incorporated).

A perfect execution of a simple app would receive a lower grade of B- to C versus a less than perfect
execution of an app that contained complex, challenging, and/or very creative elements (B+ to A).
The project was divided into three Milestones (see Table 2; see Appendix A for the specifications
given to the students). This would reflect how a large project would be organized in the real world
and would also serve to keep students on track.

Table 2: Tasks to be completed in each Milestone

Milestone Tasks
1 1. Develop an idea for the app.

2. Identify the target audience for the app.
3. Determine what the app will do, i.e. functional elements.
4. Determine the value-added features (i.e. the bling).

2 1. Make revisions made based on instructor feedback from Milestone
1.

2. Create storyboards (sketches) of main screens in the app.
3. Design algorithms for major functional elements.
4. Enumerate top three key user tasks (primary three things users will

do with the app).
5. Identify five potential problems or difficulties you anticipate in de-

veloping the app and how you will address them.
6. Create a timeframe of the main activities to be done and who will

do each.
3 1. Make revisions based on feedback from Milestone 2.

2. Complete a minimum of 50% of the app functionality (this includes
input and output from a database table).

3. Demonstrate with the app how a user would complete the three
key user tasks.

4. Identify what is left to do and the plan for completion.
5. Create an outline of the demonstration presentation.

The project would culminate with a public presentation and competition. The goal of including a
competition was to engender excitement within students as well as to make it clear that their work
had value outside of the course. This has been shown to be a strong motivator for learning and a fa-
cilitator of SOL (Kearsley & Shneiderman 1998; Ziegel, 2004). It was also another way to give the
students more control as it might encourage students to take on more difficult challenges, fueled by
their desire to be in the top five in the competition. Student teams would present and demonstrate
their app to a panel of judges and an audience.

All course students would be required to attend. Both groups would rate each app in real time using
set criteria. Judges could be faculty (with technical backgrounds) and other technical persons in or
outside of the University. The audience would be open to anyone in the University as well as the
community. The top 10 teams would receive significant awards such as iPads or Apple Watches.
These would be donated by the University and local businesses. Other prizes could be purchased us-
ing money raised by the students on social media.

The faculty recognizes that competition might have a negative effect on some students. So, while the
presentations would be scored, how each team did in the competition would not count toward their
course grade. In addition, the teacher could not be a judge.

Redesigning an Introductory Programming Course

104

FINDING / RESULT

THE COURSE PILOT

Running the pilot course
There were two sections of the new course offered; one with 14 students and one with 15 students,
but two students dropped out within the first two weeks of the redesigned course making a total of
27 students. The faculty worked hard to get the word out that this was a new course, replacing the
old programming course requirement, and that students would develop a working mobile app. There
was excitement that many students signed up, as previous semesters the researchers had seen few
students registered for the Computer Science introductory course.

One faculty member taught both sections. The faculty began the course by giving students a clear
and detailed description of the elements of the course that were different from those of traditional
course: the flipped approach with preparation for class, a quiz, and doing homework in class; giving
students control of decisions whenever possible, and working with another student(s), either a part-
ner or a team, at all times, a focus in the last half of the semester on designing and developing a non-
trivial working mobile app, and a significant public competition at the end. This made some of the
students apprehensive, but most seemed excited about the possibilities. This was reflected in com-
ments such as:

“It was obvious this course was going to be different from any course I have taken before.”

The first two weeks students were a bit hesitant to work with their partner and had to be encouraged
to interact with them to plan solutions, approaches, and when they had problems. Also, students who
tried to work alone alongside their partner never completed all of the homework assignment during
class. The faculty pointed out that the homework was designed to be completed in class with a part-
ner, not just one student. Also, during this time, the faculty adjusted to the new role in the redesigned
course. It was strange for the faculty to just wander around the class answering questions as they
came up while all the students were working and consulting with each other. When no one had a
question, the faculty was at a loss about what to do. The faculty learned to just pick a pair of students
to interact with by assessing what they were thinking and doing. The faculty’s favorite would be to
wander over and say, “tell me about what you are doing right now”, or “how did you come to that
conclusion”, or a favorite to ask “how is that working out for you?” This gave the faculty a great
teaching moment if the students were going down the wrong path, or a chance to congratulate them
if they were doing the right thing. The faculty often shared the good ideas with the rest of the class.

By the third week students were acting differently in the classroom. They gave the impression of be-
ing in charge of the course; they owned it. They approached class in a very deliberate manner. They
came into the classroom, took their online quiz, and then went immediately to work with their part-
ner or team with no faculty prompts. They told the faculty that they needed to maximize their home-
work time. They paused only when called by the faculty to go over any problematic quiz answers.
Their engagement was obvious. The classroom was alive, with students interacting with their partners
as well as students from other teams through consultation. Students moved around, moved the tables
to fit how they wanted to work, and had to be told to leave when class period was over.

The faculty circulated the classroom, answering team and individual questions, helping to debug
problems, posing questions about students’ work that had been done or ideas they had, and stepping
in with guidance when needed. By the end of the semester, student teams were actively consulting
with each other about problems they encountered, things they were trying to do that were not work-
ing, asking the faculty for advice on directions to take, eavesdropping on faculty interactions with
other teams, solving hard problems within their teams, and extending their learning into new areas in
order to make their final project superior to that of other teams. It was obvious that teams had taken

Corritore & Love

105

ownership of their projects; they always sat with their team, rarely talked to anyone outside of their
team (unless they were consulting) and gave their teams names (something the faculty never re-
quired).

The culminating competition, called the Argy-Bargy (named by affiliated UK partners), was impres-
sive. Every team had a functional app prototype that they demonstrated on their mobile devices by
projecting their phone screen to a large projection screen in an auditorium. The level of complexity
of the apps was astounding for students who had never programmed before, and in some cases posi-
tioned student as consultants to the University IT staff. See Appendix B for project examples. Fi-
nally, it was clear that students in the course had taken ownership of their learning. This was reflected
in the comments of a student who, prior to taking the course, had never programmed before and had
started the course with the statement “I hate programming.” She told the faculty after the course fin-
ished, “My team is going to take our app public. I can’t wait to start working on it again – it’s been
three months since I touched it and I really miss it.”

DISCUSSION

MEETING THE GOALS
The goals that were set for designing and implementing a course built on Student Ownership of
Learning were met. The first goal, to increase SOL, appeared to be accomplished. It was also clear
how students were finding value in the course content and how they had taken control of their learn-
ing. This is true of (Pierce et al., 2003) study of psychological ownership. The faculty no longer had
to point out how important different programming concepts were.

The students recognized when they had a loophole in their learning and were excited when shown a
programming concept that addressed the loophole. For example, loopholes were met with “boy, we
can really use this in our app” instead of comments about how complex they were. The course pro-
duced a desired result for students; for example, the way students would get the knowledge they
needed to make the best app they could. This is true of studies done by (Belk, 1988; Dittmar, 1992).

The faculty’s favorite example of the control students took of their time in class was the day that the
faculty had to be late to class. The faculty had told the students that they should expect 15 minutes
lateness. Upon arrival, the faculty member found them all engaged in coding, troubleshooting, and
having team project discussions. Just as they would have been had the faculty member not been late.

They were so engaged that they didn’t even notice the faculty arrival in the classroom! Another ex-
ample was their impressions and observations about the IDE (Integrated Development Environ-
ment) they were using to develop their app. While it was a mystery at the beginning of the term, by
the end they were consistently voicing strong opinions about what they saw as deficiencies in the tool
that they thought should be corrected by the developers. Interestingly, they were on target with their
critiques.

Students were also incorporating their learning into their identities. For example, teams became
known by their apps: The Game team, the Recipe team, the Parking team, etc. One team even made
team t-shirts. Further evidence of SOL and self-identify was their extensive use of the terminology
and concepts of the course when talking to others. This was particularly impressive outside the class-
room, such as during the public competition, when works like IDE and API were common.

This reflects that they were reaching the level of unconscious competence, the top level in the devel-
opment of competence (Broadwell, 1969). At this point, use of the terms had become second nature
in the context of their project and were not easily explained or defined to the lay audience as they
were being used unconsciously.

Another exciting reflection of the high SOL that occurred was the learning students were doing by
themselves. Instead of just consulting the faculty or textbook, they often moved onto the web and

Redesigning an Introductory Programming Course

106

learned where programming information, tutorials, forums and help was available, what sites were
good, which were bad, and how to use the information. The genuine need they had for information
drove them to learn and refine these skills.

All of these behaviors reflected their increased ownership in their own learning. The outcomes of
this were, as the researchers had hoped, good student performance in the course. The researchers
saw a reduction in the course failure rate (one out of 27); lowest grade was an F, and high quality of
student projects. Students developed significantly complex mobile apps, and in doing so extended
what they had learned in the classroom to learn and incorporate more complex functionality in their
apps.

Debugging reached new levels as they worked with more complex code. Students were anxious for
specific topics to be covered (e.g. how to connect to the database) as they had plans for using this
functionality in their app. Often, they wanted a specific topic like this moved up in the schedule as
they were ready to incorporate it into their app.

The second goal, developing a more positive attitude towards the course, also showed positive re-
sults. Student actions in the classroom strongly reflected a positive attitude. Attendance was almost
100% all semester even though no points for attendance were given. Students completed an Ultimate
Question (UQ) survey at the end of the course.

UQ is often used for measuring customer satisfaction in business; it has been found to provide useful
feedback for teachers as a course evaluation (Gallo et al., 2015). It is composed of two questions: (1)
Would you recommend the course to a friend? and (2) why or why not? All of the students com-
pleted the evaluation (n = 27). One hundred percent said they would recommend the course to a
friend. The top reasons given were:

• The amount they learned in the course.
• Working in groups and collaborating.
• Availability of individual help from the professor in class.
• The relaxed atmosphere.
• The style of the course.
• Independence.

Other representative answers included:

• I would recommend this course because it gives you the experience that you would need
when working through challenges and real-life scenarios.

• This course helped me learn a lot about developing an app which made me feel proud of
myself. I love the way that [the instructor] teaches us. It’s a really interesting class with
hands-on experience. It’s amazing at the very end of the semester seeing what I have done in
this class and the app I developed.

• It not only challenges you to work hard on your project and assignments, but it also forces
you to be creative and think outside the box, which I think is vital when it comes to learning
and preparing us for life after college.

• It’s a great combination of creativity and applicability. You learn a ton and the pressure com-
mits it to memory. It is unbelievable how much you learn in this class from developing a
mobile application.

• To be honest, in the beginning of the class I thought the class would be really hard and dry
especially for someone who doesn’t have any background with coding. And I was terrified
about the project that we have to code an app on our own. But throughout the course, I
learned so much about coding. It was hard in the beginning but after a while once I under-
stood the logic, it became very interesting. Overall, I really enjoyed the class which I didn’t
think I would.

Corritore & Love

107

• The independence that teams get in order to rely on one another.

CONCLUSION
The goal was to design a new programming course for non-programmers from the ground up based
on the model of Student Ownership of Learning (SOL). The researchers chose this model as one
that would increase student achievement. The researchers also targeted creating a more positive atti-
tude in students to the programming course. The researchers assessed the pilot run of the course ap-
peared to do these things. The methods the researchers implemented in order to increase SOL ap-
peared to have the desired effect of increasing SOL.

Students told the researchers that they felt they learned more in the course than in most courses,
something that Thibodeaux et al., had found in their study of SOL (2019b). Was this due to the
heavy use of SOL-oriented strategies? In this pilot, the researchers believe that this could be the case.
On one team, one of their members was a self-acclaimed programming hater initially; regardless,
stayed together with the team, started an LLC, and tried to go public with their app.

The team spoke to several organizations that were interested in buying it as a prototype. This appears
to indicate that these students had incorporated their object of ownership in the course; program-
ming learning and their app into their own self-identity.

The faculty continued for two more semesters to help them outside of class to refine and extend
their app. They also showed strong mastery of the material, and their desire to take it to the next level
likely reflected a high self-efficacy with the content. They had obviously taken control and were driv-
ing the process of taking their app to market long after they were required to interact with the app.
All of these elements were predicted by SOL and ownership in general and seemed to be evident in
many students (Pierce et al., 2003).

Although there was not a direct way to compare students achievement in the pilot with other stu-
dents in the old course; the level of application of programming concepts and skills in the project
apps built by students in the new course was remarkable. It is likely that SOL was increased in these
students in the new course, something which has been shown to move students beyond a superficial
demonstration of content understanding towards demonstration of the mastery and true understand-
ing required to apply the content.

As the old course did not have any assignments at this high of a level, the researchers suspect that the
learning done by most of the students in this course was likely much deeper and of higher level than
in the old course.

Table 3: Final Course Grade Distribution in Pilot New Course

Final Course
Grade

Number of
Students

Comment

A 18
B 8
C 0
D 0

F 1 B avg on assignments
A on midterm
F on Milestone 3
F on overall project grade (non-
participation)

Redesigning an Introductory Programming Course

108

The effects of increased SOL were also seen in the pilot. The researchers were very excited about the
student performance in the course (see Table 3). Student achievement was high, with just one student
failing the course. This was a strong improvement over the previous old course.

The strategies the faculty used to increase SOL appeared to have their intended effect. For example,
students commented that the authentic project and the work time in class on the project were their
favorite parts of the course as it gave them a reason for learning what they had in the first part of the
course, they could work on it with their teams and the faculty all present without trying to get every-
one together outside of class (which was a challenge), and that it was fun seeing their own ideas come
to fruition.

These comments were consistent with findings of earlier researchers. Thalluri and Penman (2016)
saw students identify and comment that the flipped approach increased their opportunity for devel-
oping their own ownership of learning. Also, the use of an authentic, complex project allowed the
researchers to add many opportunities for student control which is necessary for development of
ownership (Honebein et al., 1993; Hadjerrouit, 2005).

The researchers of this study also saw an improvement in attitudes towards the programming course,
perhaps due in part to the use of the flipped approach as well as the use of an authentic project
(Loftsson & Matthíasdóttir, 2019). While the researchers did not measure attitude change explicitly,
the level of energy and excitement in the classroom every day, the eager engagement of the students
during class work times, and the extent to which students applied themselves outside of class on the
project were more than enough at this course level.

The student course evaluations also were primarily positive, with a few negative comments about the
IDE and one of the texts. Opinions were evenly divided on Code Academy. The pilot marked the
end of the programming requirement being a roadblock for the MIS major. The department plans to
continuously run the newly redesign course in the MIS major curriculum. The researchers have seen
the MIS major grow and improved, and the department has even added another elective program-
ming course to the curriculum.

An unexpected component of SOL that the researchers witnessed was the use of peer pressure by
the students. Nothing the researchers reviewed in the literature predicted this. In the first part of the
course, when a student came unprepared to class, their paired partner let them know in no uncertain
terms that this was unacceptable. However, compliance with the class preparation element was al-
most a non-issue. In the project phase of the course, teams could fire an under-performing team
member. While this did not happen, it gave students who otherwise might have ridden the coattails
of their teammate’s incentive to come to class prepared and be productive team members. Team
members also used a free tool named Teammates (https://teammatesv4.appspot.com/) to do a peer
evaluation of themselves and their teammates at the end of each Milestone and when the project was
complete.

The faculty used these peer evaluations, along with the researchers’ observations, to adjust individual
team member grades up or down accordingly on each Milestone and for the overall Project with the
goal of minimizing freeloading. As a result of the peer pressure and evaluations, the faculty rarely had
to talk with students about poor attendance, late assignments, poor preparation, or not participating
in the project. Their paired partners and team members kept everyone in line well. This would be a
fascinating effect to study further.

The researchers of this study did encounter one unanticipated surprise with the project. The decision
for the project to be development of a mobile app raised several unanticipated issues. One was that
students planned apps were often too ambitious, something that became apparent during develop-
ment. Since students were familiar with mobile apps, they inclined to want to develop the quality of

https://teammatesv4.appspot.com/

Corritore & Love

109

apps that they themselves would use. These were generally beyond the reach of first semester pro-
grammers. However, these aspirations were great learning experiences as students settled, then ad-
justed, their project goals to meet their capabilities and timeframes.

The course itself also presented some challenges. It was definitely more work for the students. Every
class required them to be actively involved, prepared at a level to be able to apply new knowledge
during class, and to be accountable to their peers for their preparation and competence. Application
of concepts is a higher level of learning than knowledge acquisition and requires more effort (Bloom
et al., 1956). There was no just showing up for class or spending class time playing on their phones.
Students viewed class time as a precious commodity. In many ways, the course was also more work
for the faculty.

The faculty had to create the teaching and demonstration videos and organize the elements of the
course ahead of time so students could choose between options and alternatives. Additionally, with
each team making unique apps and adding different elements to their apps, the scope of questions
and programming problems for which the faculty was asked for help was quite broad. However, this
gave the faculty many opportunities to model problem-solving approaches. Finally, letting go of the
control that teachers traditionally have in the classroom required the faculty to adapt to a new mind-
set. However, any initial discomfort the faculty had initially was assuaged by the obvious high engage-
ment and SOL of the students.

Just as students became more proficient with this new way of learning as the semester progressed,
over time the faculty’s skills progressed with the new strategies to maximize student control, encour-
aged student ownership of their own learning, and worked effectively in a flipped environment. Be-
low the researchers present what was learned in this process in the hope that it will be helpful to oth-
ers.

• Trust yourself and your instincts. Every class is different, and your teaching methods must
be fine-tuned to fit your specific situation.

• Be prepared for student resistance, especially initially as they acclimate to the course.
• Make clear connections to the learning in the first half of the semester (the basics) to the

project.
• Be supportive as this process requires more work from the students than they may be accus-

tomed to. The researchers of this study found that keeping the workload reasonable for the
first half of the semester kept students from dropping, once the students began the project;
their feelings of ownership over-shadowed their concerns about workload.

• Be flexible. Regularly solicit feedback from your students; when students feel a sense of
ownership of a course, they may offer suggestions for how the learning environment could
better serve them. Seriously consider their suggestions and do not be afraid to make adjust-
ments during the semester.

• Provide frequent feedback and much encouragement. Make expectations very clear. These
students are not only learning a new subject, they are also most likely learning a new class-
room paradigm.

For teachers, the objective is that students learn what is available to them in a course. While the re-
searchers of this study saw the complexity and quality of the apps increase, they have not yet studied
whether this is the effect of SOL or other factors. The next step is to continue to offer the course
but begin to quantify the changes that are taking place. A pre- and post-test model to examine the
change in students with respect to SOL, ownership, self-identify, attitude, and other related factors
would be the next step. The researchers of this study plan to go this route and look at the changes
longitudinally.

Redesigning an Introductory Programming Course

110

The researchers of this study are currently experimenting with tools to measure the elements of SOL
in the context of a programming course. The plan is to repeat the course, doing a pre and post meas-
urement of SOL using a reliable and valid tool adapted from one developed by Thibodeaux et al.
(2019a). The researchers of this study want to closely examine the development of self-efficacy, ef-
fectance motivation, and self-identity in Student Ownership of Learning. How ownership in an edu-
cational setting happened would be very interesting to look at and could lead to more understanding
of a deeper type of learning.

Another important question to study is how to measure the deeper learning that the researchers of
this study believe drives Student Ownership of Learning. Research needs to be done to investigate
and tease out the factors involved in the nature of the learning that happens in SOL-facilitated
courses. While it may be that traditional and SOL-facilitated learning support acquisition of
knowledge and comprehension to the same extent, purposefully increasing SOL may cause more
learning to happen at the higher levels of concept application, general problem-solving, creative
thinking, and collaboration that is retained longer.

REFERENCES
Beggan, J. K. (1992). On the social nature of nonsocial perceptions: The mere ownership effect. Journal of Per-

sonality and Social Psychology, 62(16), 229–237. https://doi.org/10.1037/0022-3514.62.2.229

Belk, R. W. (1988). Possessions and the extended self. Journal of Consumer Research, 15(2), 139–168.
https://doi.org/10.1086/209154

Bergmann, J., & Sams, A. (2012). Flip your classroom: Reach every student in every class every day. International Society
for Technology in Education (ISTE).

Bloom, B. S., Englehard, M. D., Furst, E. J., Hill, W. H., & Krathwohl, D. R. (1956). In D. McKay (Ed.), Tax-
onomy of educational objectives: The classification of educational goals (2nd ed.). Addison-Wesley Longman Ltd.

Broadwell, M. M. (1969, February 20). Teaching for learning (XVI.). The Gospel Guardian, 20(41), 1–3a.
http://www.wordsfitlyspoken.org/gospel_guardian/v20/v20n41p1-3a.html

Brown, N.C.C., Sentence, S., Crick, T. & Humphreys, S. (2014). Restart: The resurgence of computer science in
UK schools. ACM Transactions on Computing Education (TOCE), 14(2), 1-22.
https://doi.org/10.1145/2602484

Chan, P., Graham-Day, K., Ressa, V., Peters, M., & Konrad, M. (2014). Beyond involvement: Promoting stu-
dent ownership of learning in classrooms. Formative Instructional Practices, 50(2), 105-115.
https://doi.org/10.1177/1053451214536039

Computer Science Teachers Association (CSTA). (2017). CSTA k-12 computer science standards (revised 2017).
http://www.csteachers.org/standards

Dewey, J. (1916). Democracy and education: An introduction to the philosophy of education. Macmillan Publishing.
https://psycnet.apa.org/record/2003-00119-000

Dittmar, H. (1992). The social psychology of material possessions: To have is to be. Harvester Wheatsheaf and St. Martin's
Press. http://sro.sussex.ac.uk/id/eprint/66565

Dounas-Frazer, D., Rios, L., & Lewandowski, H. (2019, July). Preliminary model for student ownership of pro-
jects. Physics Education Research (PER) Conference Series. Provo, UT.
https://doi.org/10.1119/perc.2019.pr.Dounas-Frazer

Dudley-Marling, C., & Searle, D. (Eds.) (1995). Who owns learning? Questions of autonomy, choice, and control. Heine-
mann Educational Books. https://eric.ed.gov/?id=ED375388

Durkheim, E. (1957). Professional ethics and civil morals (Translated by C. Brookfield). Routledge; Kegan Paul, Ltd.
https://doi.org/10.4324/9780429452901

Eckerdal, A. (2009). Novice programming students: Learning of concepts and practice [Doctoral Thesis. Sweden: Uppsala
University]. https://www.diva-portal.org/smash/get/diva2:173221/fulltext01.pdf

https://doi.org/10.1037/0022-3514.62.2.229
https://doi.org/10.1086/209154
http://www.wordsfitlyspoken.org/gospel_guardian/v20/v20n41p1-3a.html
https://doi.org/10.1145/2602484
https://doi.org/10.1177/1053451214536039
http://www.csteachers.org/standards
https://psycnet.apa.org/record/2003-00119-000
http://sro.sussex.ac.uk/id/eprint/66565
https://doi.org/10.1119/perc.2019.pr.Dounas-Frazer
https://eric.ed.gov/?id=ED375388
https://doi.org/10.4324/9780429452901
https://www.diva-portal.org/smash/get/diva2:173221/FULLTEXT01.pdf

Corritore & Love

111

Ellwood, C. (1927). Cultural evolution: A study of social origins and development. Century. https://psycnet.apa.org/rec-
ord/1927-10509-000

EURACTIV (2015, October 16). Infographic: Coding at school – How do EU countries compare?
https://www.euractiv.com/section/digital/infographic/infographic-coding-at-school-how-do-eu-coun-
tries-compare/

Figueiredo, J., & García-Peñalvo, F. J. (2019, October). Teaching and learning strategies of programming for
university courses. Proceedings of the 7th International Conference on Technological Ecosystems for Enhancing Multi-cul-
turality (pp. 1020–1027). León, Spain: ACM. https://doi.org/10.1145/3362789.3362926

FLIP Learning. (2014, March 12). Definition of flipped learning. https://flippedlearning.org/definition-of-flipped-
learning/

Foertsch, J., Moses, G., Strikwerda, J., & Litzkow, M. (2002). Reversing the lecture/homework paradigm using
eTEACH® web-based streaming video software. Journal of Engineering Education, 91(3), 267-274.
https://doi.org/10.1002/j.2168-9830.2002.tb00703.x

Formanek, R. (1994). Why they collect: Collectors reveal their motivations. In S. Pearce (Ed.), Interpreting objects
and collections (pp. 327–335). Routledge. https://psycnet.apa.org/record/1992-01508-001

Freeman, S., Eddy, S., McDonough, M., Smith, M., Okoroafor, N., Jordt, H., & Wenderoth, M. (2014). Active
learning increases student performance in science, engineering, and mathematics. Proceedings of the National
Academy of Sciences, 111(23), 8410-8415. National Academy of Sciences.
https://doi.org/10.1073/pnas.1319030111

Furby, L. (1976). The socialization of possession and ownership among children in three cultural groups: Israeli
kibbutz, Israeli city, and American. In Modgil, S. & Modgil, C., Piagetian research: Compilation and com-
mentary (Vol. 8, pp. 95–127). Windsor, England: National Foundation of Educational Research.

Gallo, P., Corritore, C., Wichman, C., & York, A. (2015). Trusting the simplicity of the ultimate question: A
customer satisfaction approach to student evaluation of teaching. Journal of Innovative Education Strategies,
4(1), 51–66. http://www.intl-academy.org/wp-content/uploads/2017/04/Paper-4-Trusting-the-Simplic-
ity-of-the-Ultimate-Question-A-Customer-Satisfaction-Approach-to-Student-Evaluations-of-Teaching-
Peter-Gallo-JIES-Vol-4-No-1-September-2015.pdf

Gannod, G. C., Burge, J. E., & Helmick, M. T. (2008). Using the inverted classroom to teach software engi-
neering. In 30th ACM/IEEE International Conference on Software Engineering (pp. 777-786). Leipzig, Germany:
ACM/IEEE. https://doi.org/10.1145/1368088.1368198

Hadjerrouit, S. (2005). Designing a pedagogical model for web engineering education: An evolutionary perspec-
tive. Journal of Information Technology Education: Research, 4, 115–140. https://doi.org/10.28945/268

Hadjerrouit, S. (2008). Towards a blended learning model for teaching and learning computer programming: A
case study. Informatics in Education, 7(2), 181–210. https://doi.org/10.15388/infedu.2008.12

Harel, I., & Papert, S. (1990). Software design as a learning environment. Interactive Learning Environments, 1(1),
1–32. https://doi.org/10.1080/1049482900010102

Hodge, A., Love, B., Grandgenett, N., & Swift, A. W. (2014). A flipped classroom approach: Benefits and chal-
lenges of flipping the learning of procedural knowledge. In P. R. Lowenthal, C. S. Yorkand, & J. C. Rich-
ardson (Eds.), Online learning: Common misconceptions, benefits and challenges (49–59). Nova Science Publishers.

Honebein, P. (1996). Seven goals for the design of constructivist learning environments. In B. Wilson (Ed.),
Constructivist learning environments: Case studies in instructional design (pp. 11-24). Educational Technology Publi-
cations. http://studentcenteredlearning.pbworks.com/f/DesignConstructivistHonebein.pdf

Honebein, P., Duffy. T., & Fishman, B. (1993). Constructivism and the design of learning environments: Con-
text and authentic activities for learning. In T. Duffy, J. Lowyck, & D. Jonassen (Eds.), Designing environ-
ments for constructive learning (pp. 87–108). Springer-Verlag. https://doi.org/10.1007/978-3-642-78069-1_5

Isaacs, S. (1933). Social development in young children. Routledge; Kegan Paul Limited.
https://doi.org/10.1111/j.2044-8279.1933.tb02920.x

James, W. (1890). The principles of psychology (volume 1). Henry Holt and Co. https://doi.org/10.1037/10538-000

https://psycnet.apa.org/record/1927-10509-000
https://psycnet.apa.org/record/1927-10509-000
https://www.euractiv.com/section/digital/infographic/infographic-coding-at-school-how-do-eu-countries-compare/
https://www.euractiv.com/section/digital/infographic/infographic-coding-at-school-how-do-eu-countries-compare/
https://doi.org/10.1145/3362789.3362926
https://flippedlearning.org/definition-of-flipped-learning/
https://flippedlearning.org/definition-of-flipped-learning/
https://doi.org/10.1002/j.2168-9830.2002.tb00703.x
https://psycnet.apa.org/record/1992-01508-001
https://doi.org/10.1073/pnas.1319030111
http://www.intl-academy.org/wp-content/uploads/2017/04/Paper-4-Trusting-the-Simplicity-of-the-Ultimate-Question-A-Customer-Satisfaction-Approach-to-Student-Evaluations-of-Teaching-Peter-Gallo-JIES-Vol-4-No-1-September-2015.pdf
http://www.intl-academy.org/wp-content/uploads/2017/04/Paper-4-Trusting-the-Simplicity-of-the-Ultimate-Question-A-Customer-Satisfaction-Approach-to-Student-Evaluations-of-Teaching-Peter-Gallo-JIES-Vol-4-No-1-September-2015.pdf
http://www.intl-academy.org/wp-content/uploads/2017/04/Paper-4-Trusting-the-Simplicity-of-the-Ultimate-Question-A-Customer-Satisfaction-Approach-to-Student-Evaluations-of-Teaching-Peter-Gallo-JIES-Vol-4-No-1-September-2015.pdf
https://doi.org/10.1145/1368088.1368198
https://doi.org/10.28945/268
https://doi.org/10.15388/infedu.2008.12
https://doi.org/10.1080/1049482900010102
http://studentcenteredlearning.pbworks.com/f/DesignConstructivistHonebein.pdf
https://doi.org/10.1007/978-3-642-78069-1_5
https://doi.org/10.1111/j.2044-8279.1933.tb02920.x
https://doi.org/10.1037/10538-000

Redesigning an Introductory Programming Course

112

Johnson, L., & Renner, J. (2012). Effect of the flipped classroom model on secondary computer applications course: Student
and teacher perceptions, questions and student achievement [Unpublished Doctoral Dissertation]. Louisville, KY:
University of Louisville. http://www.academia.edu/download/38862495/Flipped_Classroom.pdf

Kearsley, G., & Shneiderman, B. (1998). Engagement theory: A framework for technology-based teaching and
learning. Educational Technology, 38(5), 20–23. https://www.jstor.org/stable/44428478

Lage, M., Platt, G., & Treglia, M. (2000). Inverting the classroom: A gateway to creating an inclusive learning
environment. The Journal of Economic Education, 31(1), 30–43. https://doi.org/10.1080/00220480009596759

Loftsson, H., & Matthíasdóttir, Á. (2019). Using flipped classroom and team-based learning in a first-semester
programming course: An experience report. Proceedings of 2019 IEEE International Conference on Teaching, As-
sessment, and Learning for Engineering (TALE) (pp. 25-31). Australia: IEEE. http://www.ru.is/fac-
ulty/hrafn/papers/flipped-classroom-programming-final.pdf

Love, B., Hodge, A., Grandgenett, N., & Swift. A. W. (2014). Student learning and perceptions in a flipped lin-
ear algebra course. International Journal of Mathematical Education in Science and Technology, 45(3), 317–324.
https://doi.org/10.1080/0020739X.2013.822582

Marshall, H. W., & DeCapua, A. (2013). Making the transition to classroom success: Culturally responsive teaching for strug-
gling language learners. University of Michigan Press.

Milner-Bolotin, M. (2001). The effects of topic choice in project-based instruction on undergraduate physical science students’
interest, ownership, and motivation [Doctoral Dissertation. Austin, TX: University of Texas at Austin].
http://hdl.handle.net/2152/10544

Mok, H. N. (2014). Teaching tip: The flipped classroom. Journal of Information Systems Education, 25(1), 7-11.
http://ink.library.smu.edu.sg/cgi/viewcontent.cgi?article=3363&context=sis_research

Musib, M. (2014). Student perceptions of the impact of using the flipped classroom approach for an introduc-
tory-level multidisciplinary module. CDTL Brief, 17(2), 15-20. https://pdfs.seman-
ticscholar.org/cff8/07b691f9dd92eb1b640f55d981a83088e201.pdf

Nuttin, J. M., Jr. (1987). Affective consequences of mere ownership: The name letter effect in twelve European
languages. European Journal of Social Psychology, 17(4), 381–402. https://doi.org/10.1002/ejsp.2420170402

Pacheco, A., Gomes, A., Henriques, J., de Almeida, A., & Mendes, A. (2008). Mathematics and programming:
Some studies. Proceedings of the 9th International Conference on Computer Systems and Technologies and Workshop for
PhD Students in Computing (pp. V.15–1). ACM. https://doi.org/10.1145/1500879.1500963

Papadopoulos, C., & Roman, A. S. (2010). Implementing an inverted classroom model in engineering statics:
Initial results. In Proceedings of the 40th ASEE/IEEE Frontiers in Education Conference (pp. 15.679.1–27). Lou-
isville, Kentucky: American Society for Engineering Statistics. https://peer.asee.org/16768

Pierce, J., Kostova, T., & Dirks, K. (2003). The state of psychological ownership: Integrating and extending a
century of research. Review of General Psychology, 7(1), 1089–2680. https://doi.org/10.1037/1089-2680.7.1.84

Rainer, J. D., & Matthews, M. W. (2002). Ownership of learning in teacher education. Action in Teacher Educa-
tion, 24(1), 22–30. https://doi.org/10.1080/01626620.2002.10463264

Robins, A., Rountree, J., & Rountree, N. (2003). Learning and teaching programming: A review and discussion.
Computer Science Education, 13(2), 137–172. https://doi.org/10.1076/csed.13.2.137.14200

Rochberg-Halton, E. (1980). Cultural signs and urban adaptation: The meaning of cherished household possessions [Doc-
toral Dissertation. Chicago, IL: University of Chicago]. https://psycnet.apa.org/record/1981-51420-001

Sharp, J., & Sharp, L. (2017). A comparison of student academic performance with traditional, online, and
flipped instructional approaches in a C# programming course. Journal of Information Technology Education: In-
novations in Practice, 16, 215-231. https://doi.org/10.28945/3795

Thalluri, J., & Penman, J. (2016). To flip a class or not to flip a class: That is the question. Proceedings of the 2016
Informing Science & IT Education Conference (InSITE 2016) (pp. 147-157). https://doi.org/10.28945/3414

Thibodeaux, T., Harapnuik, D., & Cummings, C. (2019a). Student perceptions of the influence of choice, own-
ership, and voice in learning and the learning environment. International Journal of Teaching and Learning in
Higher Education, 31(1), 50-62. https://files.eric.ed.gov/fulltext/EJ1206966.pdf

http://www.academia.edu/download/38862495/Flipped_Classroom.pdf
https://www.jstor.org/stable/44428478
https://doi.org/10.1080/00220480009596759
http://www.ru.is/faculty/hrafn/papers/flipped-classroom-programming-final.pdf
http://www.ru.is/faculty/hrafn/papers/flipped-classroom-programming-final.pdf
https://doi.org/10.1080/0020739X.2013.822582
http://hdl.handle.net/2152/10544
http://ink.library.smu.edu.sg/cgi/viewcontent.cgi?article=3363&context=sis_research
https://pdfs.semanticscholar.org/cff8/07b691f9dd92eb1b640f55d981a83088e201.pdf
https://pdfs.semanticscholar.org/cff8/07b691f9dd92eb1b640f55d981a83088e201.pdf
https://doi.org/10.1002/ejsp.2420170402
https://doi.org/10.1145/1500879.1500963
https://peer.asee.org/16768
https://doi.org/10.1037/1089-2680.7.1.84
https://doi.org/10.1080/01626620.2002.10463264
https://doi.org/10.1076/csed.13.2.137.14200
https://psycnet.apa.org/record/1981-51420-001
https://doi.org/10.28945/3795
https://doi.org/10.28945/3414
https://files.eric.ed.gov/fulltext/EJ1206966.pdf

Corritore & Love

113

Thibodeaux, T., Harapnuik, D., & Cummings, C. (2019b). Student perceptions of the influence of the COVA
learning approach on authentic projects and the learning environment. International Journal on E-Learning,
18(1), 79-101. http://www.academia.edu/download/60488834/Published_20190904-88092-1mp8kny.pdf

Warter-Perez, N., & Dong, J. (2012). Flipping the classroom: How to embed inquiry and design projects into a
digital engineering lecture. In Proceedings of the 2012 ASEE PSW Section Conference. California: American So-
ciety for Engineering Education (ASEE). http://curtbonk.com/pdfs/10B_35_ASEE_PSW_2012_Warter-
Perez.pdf

White, R. W. (1959). Motivation reconsidered: The concept of competence. Psychological Review, 66(5), 297–330.
https://doi.org/10.1037/h0040934

Xu, S., & Rajlich, V. (2004). Cognitive processes during program debugging. In Proceeding of 3rd IEEE Interna-
tional Conference on Cognitive Informatics. British Columbia, Canada: IEEE.
https://doi.org/10.1109/COGINF.2004.1327473

Yang, C. C. R. (2017). An investigation of the use of the ‘flipped classroom’ pedagogy in secondary English lan-
guage classrooms. Journal of Information Technology Education: Innovations in Practice, 16, 1-20.
https://doi.org/10.28945/3635

Ying, K. M., Pezzullo, L. G., Ahmed, M., Crompton, K., Blanchard, J., & Boyer, K. E. (2019). In their own
words: Gender differences in student perceptions of pair programming. In Proceedings of the 50th ACM Tech-
nical Symposium on Computer Science Education (SIGCSE ‘19), (pp. 1053–1059). Minneapolis MN: ACM.
https://doi.org/10.1145/3287324.3287380

Zhang, X., Zhang, C., Stafford, T., & Zhang, P. (2019). Teaching introductory programming to IS students:
The impact of teaching approaches on learning performance. Journal of Information Systems Education, 24(2),
Article 6. http://jise.org/Volume24/n2/JISEv24n2p147.pdf

Ziegel, M. (2004). Preparing teachers for the challenges of technology integration. Issues in Informing Science and
Information Technology, 1, 105-113. https://doi.org/10.28945/723

APPENDICES

APPENDIX A: PROJECT DESCRIPTION: GRADING, MILESTONES,
PRESENTATION GIVEN TO STUDENTS

Project & Milestones Description

The project will be evaluated on several aspects. Here is the breakdown. You will be given a
grade at each milestone as well as for the final project presentation and your final project.

 Milestone 1 10%
 Milestone 2 10%
 Milestone 3 10%
 Final Project Deliverable 65%
 Final Project Presentation 5%

Breakdown of Final Project Deliverable (65% of total project grade)

60% works on device chosen as target (iPhone and/or Android, iPad), and all functionality
in place

30% level of difficulty of what you did – brought in new features, new ideas

10% creativity – clever idea, interesting implementation, great design

http://www.academia.edu/download/60488834/Published_20190904-88092-1mp8kny.pdf
http://curtbonk.com/pdfs/10B_35_ASEE_PSW_2012_Warter-Perez.pdf
http://curtbonk.com/pdfs/10B_35_ASEE_PSW_2012_Warter-Perez.pdf
https://doi.org/10.1037/h0040934
https://doi.org/10.1109/COGINF.2004.1327473
https://doi.org/10.28945/3635
https://doi.org/10.1145/3287324.3287380
http://jise.org/Volume24/n2/JISEv24n2p147.pdf
https://doi.org/10.28945/723

Redesigning an Introductory Programming Course

114

Milestones & Individual Participation Summaries

If you are working with someone else on the project, also due for each milestone is an Indi-
vidual Participation Summary, a Word doc that simply lists what each person did for this
leg of the project (include yourself). This information could include the number of meetings
attended as well as specific activities carried out (e.g. Mary and I built the initial framework;
Joe refined the first two screens, etc.). Turn these in using BL. This is my way of understand-
ing the contribution of each person to the project. I will use this, along with my observa-
tions, to adjust individual grades up or down.

Grading (as per syllabus):

A category: All of B category plus is an innovative, creative project, ideas, and imple-
mentations that go beyond the information in the course. Demonstrates a lot of out-
side the box thinking, really dazzling.

B category: clear, organized, professional, and complete. Includes all aspects of the re-
quired materials/points to be made.

C category: incomplete, unorganized, ad-lib in nature goes overtime allowed, incomplete.
Partial credit based on extent and nature of problems. No new ideas incorporated. Have
few if any professional aspects.

Milestone 1: Present an overview of your project idea to the class (5 min). This presentation is in-
formal, but should be professional, informative, and complete. The purpose is to obtain feedback
from myself and your classmates that you can use to refine your project. You must address these
points:

1. Describe the problem you are addressing in detail – what your app will solve.
2. Describe (in detail) the target audience for your app.
3. Provide a high-level description of the app (not a feature list). High-level description means

how you would describe it to a friend. For example, "our app helps you to manage a to-do
list for each of your classes."

4. Short discussion about any apps out there like this (that’s OK if there are) and how yours
may differ or be better.

5. Any other items you want to include making your project case clear and compelling,
unique, cool. This is the part that is going to make your project either an A or a B (or be-
low) project - be creative, think outside the box!

6. Each person hands in your Individual Participation Summary (via BL) - this is simply a
Word doc (see above).

Milestone 2 (10%): Present an overview of your second milestone. This is an informal presentation
to me only during class at your desk (5 min). The ‘presentation’ should be organized, professional,
informative, complete, creative, and compelling. The purpose is to obtain feedback from myself that
you can use to refine your project. Your presentation must cover the points below (use these as head-
ings).

1. Revisions Made: Note revisions you have made to your project from Milestone 1.
2. Show me algorithms that you will use to develop code. Make an algorithm for each

major function or action for which you will be writing code. Remember, algorithms
are NOT code, but rough ideas written out in English that code sometimes creeps
into just because you know how to code (kind of a short-hand). These are rough out-
lines you can then use to write code. These will be hand-written. Example algorithm
to calculate the average of two numbers:

Corritore & Love

115

1. Make a function that takes two numbers, adds them, divides by 2, and returns the
answer

2. Obtain two numbers from the user – two Alert windows or two prompts?
3. Convert the numbers from text to numbers, if necessary (toString)

4. Call the function and pass it the two numbers

5. Catch the return number from the function

6. Display the answer – alert (“the average of x and y is z”)

3. Show me sketches of storyboards of your app – rough sketches of how the screen will
look at different points in time – these are very rough – like cocktail napkin sketches.
For example, here is a storyboard of the opening screen of an app under design.

4. What are the three main things a user will do with your app?
5. List of 5 potential problems or hard parts that you anticipate as you develop your app.

Write these down.
6. How you anticipate organizing your app development within your team, and the plat-

form you are developing for (iPhone/Android, Blackberry, iPad).
7. Hand in your Individual Participation Summary (via BL)

Milestone 3 (10%): This milestone is an informal presentation to me (5 min), and should be profes-
sional, informative, complete, creative, and compelling. The purpose is to obtain feedback from my-
self that you can use to refine your app. At this point, your app should be at least 50% coded.
Demonstrate using your emulator if you used one. At a minimum, it should be working on the iPh-
one emulator (others just extra points). Your presentation must cover these points.

1. Revisions Made: Note revisions you have made to your project from Milestone 2.
2. Present and discuss the parts of the app you have completed as well as those that are in

skeleton form.
3. Walk me through an example of how a user would complete one of the three main tasks

you identified in Milestone 2 (even if some parts of the app aren’t done – just talk me
through those).

4. Identify briefly what you have left to do (this may overlap with #2 above) and your plan
of how to complete it.

5. Hand in your Individual Participation Summary (via BL)

Redesigning an Introductory Programming Course

116

Final Project Presentation Day

You will turn in three deliverables due at the time of your final presentation:

1. Your app (all of the web pages and code, packaged into one zipped file) – export it and put it
on a cd, as well as upload the zipped file to BL.

2. Executive Summary – Word doc. Turn it into BL.

3. Peer evaluation (of entire project). There is an Excel form in the Files > Project folder. Eval-
uate your partner AND YOURSELF for the entire project – BE OBJECTIVE and support
your scores with narrative. Turn it in using BL.

Presentation
Your final project presentation is formal – your timeframe will be given by your instructor. This in-
cludes an allowance of a 5-minute question period, and a 5 min. demo time in which the class can use
your app on their own devices. That means you must post your app and instructions for how to ‘get’
it before class (use FB).

Practice your presentation several times. Plan a snappy, to-the-point talk with an organized, focused
demo session.

Your presentation will be graded on the following criteria:

· Keeping to your time frame, with demo and Q&A.

· Covering all required elements (see below).

· Quality of the demo.

· Professional quality of the visual presentation itself.

· Professional demeanor and dress of the presenter(s) – if you are working by
yourself, get someone else to run your computer while you present.

· How well you answer questions.

Required Presentation Elements

a. Introduction: Team name, members, statement of problem your app addresses, target
audience.

b. App Presentation: Present your app, demonstrate the main features, pointing out how
you implemented them (i.e. I used an onclick event here to …..). Walk us through at least
2 actions that your user would do with your app. Demonstrate native features you incor-
porated.

This is your opportunity to demonstrate your knowledge of the concepts of this course –
impress us!

c. Hands-on Demo: Make sure the class has installed your app on their device of choice
before class. Now walk the entire class through your app in a kind of overview of its
main features (keep an eye on time here).

d. Q&A: you know I will have at least always have questions!

Executive Summary
This is a one-page summary of your project and app. Since it is short, you have to distill down every-
thing you have done and what you have produced – so conciseness and clarity in your writing are key.

Corritore & Love

117

Give enough detail that it makes sense, tells a clear story, but does not elaborate to the extent of being
repetitive and verbose. Here is the format:

1. Title Page

Give the report a title that reflects the nature of the project, with the course name, the app
name, your section (early or late) and your name(s) on it.

2. Executive Summary
Include a brief description of the aim of the project, what you did, and the main outcomes.
Devices the app works on, and how the app can be installed. Include any information
needed to install the app to an iPhone, an Android phone, and an iPad. Summarize key is-
sues you had, and point out clever or unique things you did, as well as necessary concepts
you used (i.e. DOM, events, errors, etc.). Discuss the native features you used.

APPENDIX B: EXAMPLES OF PROJECT APPS

1. City Slicker: a grocer shopping budget helper, with the intent of incorporating local grocery sales.
2. College Cookbook: a recipe app that accesses recipes for college students in a database.
3. Creighton University Athletics; app that could be used to record baseball statistics during a game by

the Athletics Department.
4. Creighton University Fitness: app to help students design fitness workouts depending on their

needs and personal physique.
5. Drive Safe: app that helped students who had had too much to drink to not drive. It kept track

of drinks, emergency friend called, Uber calling, blocked sending text messages.
6. Grade Calculator: student could enter grades obtained on assignments and test, and their course

grade would be calculated
7. Ideal Gift: kept track of people and what they wanted; also got information from Amazon when

there was a sale on any of these items.
8. Opportunity Calendar: calendar that updated activities on campus to students’ personal calendar

and provided way for student to communicate about events with friends.

APPENDIX C: EXAMPLE OF TYPICAL HOMEWORK ASSIGNMENTS

Assignment 6: Loops, Functions and Arrays

For this assignment you will be turning in some of the work you complete with Code Academy. You
will also be creating some extra web pages to turn in.

Process: Complete the work in CodeAcademy.com for the unit indicated. When done, copy the
code, paste it into a Notepad (Windows) or the Text Editor (Mac) doc - save as a .html document.
Then upload it to your online web hosting account. (don't forget to upload your homepage also).
Add the url to the link on your homepage. When you are all done, create a homepage for this assign-
ment that has links to all of the web pages for this assignment. Turn in the url of this homepage for
grading.

Assignment

0. First, in your web hosting account, make a folder named ass6 (for assignment 6). All of the work
you do for this assignment will go into this folder.

Redesigning an Introductory Programming Course

118

Part 1 – Tues

In Code Academy> JavaScript

1. Complete Unit 2 Functions > Build Rock, Paper, Scissors and use this for one of your web pages.
Name this page rps_game.html.

2. Complete Unit 3 > 'For' Loops in JavaScript> Search Text for your Name and use this for one of
your web pages. Name this page namesearch.html.

3. Make a homepage for this assignment that has the assignment name and your name on it in Note-
pad (Windows) or TextWrangler (Mac) saved as a .html document. Put a link to each of your web
pages that you made for this assignment (including the Extra Credit if you did that). Name this
webpage index.html.

Part 2 – Tues

In Code Academy>JavaScript

1. Complete Unit 4 > 'While' Loops in JavaScript> Dragon Slayer! and use this for one of your web
pages. Name this page dragonslayer.html.

2. Complete Unit 5 > Control Flow > Choose your Own Adventure 2! and use this for one of your
web pages. Name it adventure2.html.

3. Put links to these two web pages on your homepage for this assignment.

Optional Extra Credit (10 pts)
1. Find Max - Get two numbers from the user. Create a function that takes two arguments (these
two numbers) and returns the largest one. Outside of the function, write the largest one to the screen
in this format:

The largest of your two numbers, x and y, is y. // where x and y are their two numbers, of course

Name this webpage findmax.html. Put a link to it on your ass6 homepage, and indicate it is Extra
Credit.

2. Backwards - create an array of numbers 50 - 100, in increments of 5 by using a For loop (e.g.: 50,
55, 60, etc). Then create a function named backwards that takes an array as an argument, prints out
the numbers backwards (e.g. 100, then 95, etc). Name this webpage backwards.html. Put a link to it
on your ass6 homepage, and indicate it is Extra Credit.

3. Wheel of Fortune - Make a new game - the Wheel of Fortune Game. It takes two people. The
game asks user1 (input via popup) for a word. Then it asks for the number of letters in the word.
This is the word to be guessed by user2 player. Now, the computer displays how many letters the
word is, then waits for the first letter guess. User1 inputs a letter. The computer says "wrong, give me
another letter, and you have X guesses left" or, if the letter was in the word, the computer says "Yes,
i is the fourth letter in the word". The user will have to keep track of the word and the letters guessed
(the computer will not). You will need these functions:

 function locateALetter (word, letter) < this takes the current word and letter, and sees if the
 letter is in the word.

 function getALetter < this function gets a letter from the user and saves it to a variable

 function getAWord < use to start the game

Corritore & Love

119

Use a Switch to output the correct message to the user based on their guess (eg. Letter is xth in the
word, or Wrong or you won!).

You may have to add additional logic and code. This is just to get you started.

APPENDIX D: GRADING AND DESCRIPTIONS OF COURSE WORK

Grading

 Percentage
Midterm Exam 15%
Assignments 35%
Project 35%
Engagement 15%

Here are the overarching grading criteria for all work in this course. This is in addition to the specific
requirements of each item.

 A B C

Content
elements
(95%)

Contains all elements re-
quired by assignment.
Shows creativity, works
correctly and completely.

Missing less than 10%
of elements or function-
ality required by assign-
ment. Little or no crea-
tivity or initiative dis-
played.

Missing more
than 10% of ele-
ments or func-
tionality of as-
signment.

Quality
(5%)

Assignment well done,
organized, shows extra
work above and beyond
what assignment re-
quired, professional, cre-
ative.

Assignment fulfills re-
quirements completely
with few to no extra
work.

Assignment ele-
ments and func-
tionality in place
but work is
messy, shoddy,
thrown together
and shows little
effort, unprofes-
sional.

Late Assignments
Individual assignments will be assessed up to 25% off for each day they are late (weekends and holi-
days will be counted), up to 2 days late. After two days, NO late individual assignments will be ac-
cepted for any reason.

Assignments

1. Midterm Exam. This exam is a combination of what you know and how you apply it. It
will involve answering questions and writing code.

2. Assignments. Assignments that build on the content and work done in class will be as-
signed intermittently. These are opportunities for you to bring several skills together and
show what you can do with the problem scenario posed in the assignment. The grading cri-
teria are shows earlier in this syllabus (see above). Don’t forget that creativity can count to
raise your grade, it needs to work to get an A, and there are MANY ways to do just about

Redesigning an Introductory Programming Course

120

anything in development! It is a good idea to work with someone else when you are writing
code – but each of you needs to do your own work. Don’t cut and paste each other’s code,
or you will also have to split the points for the assignment.

3. Project. The course has a significant project, which will involve creating an app that not
only works but works well and is complex. You will work on this for several weeks, towards
the end of the semester. It will require all of the skills you have learned in the class, and will
involve a formal presentation. While the design of your app will count wrt creativity, you will
be primarily graded on whether it works (see grading criteria above). This project may be in-
dividual or with teams – ask your professor which one will be done in your class.

Specific guidelines and grading criteria will be provided in a Project Documentation doc. Ba-
sically, the overall project grade takes into account the quality and completeness of the pro-
ject as well as how well the concepts of the course are applied, classmate and my input as to
effectiveness in the team, peer evaluations (your contribution), and presentation of the pro-
ject. There may be Milestones that are graded as the project moves forward. If the project is
done with teams, your individual grade for your team project (all parts) will be a mix of
the project grade and your effort/participation in the project. This will be deter-
mined by intermittent peer evaluations from your team members and my profes-
sional observations. Note that a team member may be fired by the team for non-per-
formance. I must be involved in this decision as arbitrator.

4. Engagement. Course engagement is vital; that means your ‘attendance’ and active participa-
tion is necessary. I will use my judgment to evaluate your involvement and quality of partici-
pation in the course. I will use these criteria to guide my focus on your engagement.

Positives Al-

ways
(3)

Occasion-
ally (2)

Rarely
(1)

1. Enters into class discussions and activities
with quality input.

2. Offers questions or comments during activi-
ties and on Facebook.

3. Interacts with professor and classmates out-
side of scheduled activities to obtain clarifica-
tion, enrichment, both in person and on Fa-
cebook.

4. Interacts with professor and classmates to
clarify ideas, offer questions or comments
both in person and on Facebook.

5. Engages in the group activities and commu-
nication tools as needed.

6. Finds and shares additional information
about a topic both in class and on Facebook.

7. Contributes to class in meaningful ways; with
comments, questions, helping others, answer-
ing questions on Facebook.

8. Class and Facebook contributions of high
quality and relevant.

9. Adds terms and defines terms in Facebook
Doc.

Corritore & Love

121

10. Completes work (in-class, assignments) con-
sistently on time.

Negatives Al-
ways
(-3)

Occasion-
ally (-2)

Rarely
(-1)

1. Skips class.
2. Interacts intermittently, infrequently in-per-

son and on Facebook.

3. Exhibits disruptive behavior.
4. Never logs in to course information system

or Facebook.

5. Rarely posts in Facebook group or helps
classmates.

Scale:
A: 25-30 + my judgment B: 20-25 + my judgment C: 19 and below + my
judgment

APPENDIX E: COURSE SCHEDULE

 Aug

Week 1

8/22
Thurs Do before Class

1. iPhone and iPad owners - bring your device to class and
bring your Device ID (directions here on how to get it
from your device).
3. Install Google Chrome, Mozilla Firefox, and the add-in
Firebug for Chrome and for Firefox (your Mac or PC).
4. Get a Google account if you don't have one already
(your Gmail account is a Google account).
5. Get an account on CodeAcademy.com - use your name
for the account so I can tell it is yours (you will be handing
in some homework using this tool).
6. Join class Facebook space (anyone who is a member can
approve membership requests from other class students).

In Class
1. Welcome to BIA 375 and
more with ZeFrank frog
2. Format of the class: read,
listen, practice before class.
Then apply concepts in
harder work in class, finish
after class for homework as
needed.
FB for questions, announce-
ments.
WebEx for online seminars,
meetings.
4. Experience Survey -
HTML, CSS, JS, FTP, DB

New Assignments (look under Syllabus on Menu for listing of all due dates)

1. Assignment 1: Facebook Introductions
2. Assignment 2: Google Website
3. Assignment 3: App Project Brainstorming

https://blueline.instructure.com/courses/826464/assignments/2774682
https://blueline.instructure.com/courses/826464/assignments/2789138
https://blueline.instructure.com/courses/826464/assignments/2774681

Redesigning an Introductory Programming Course

122

Week 2

8/27
Tues Do before Class

1. nothing today
In Class
No formal class today - work
with your team and on your
own on Assignments 1-3

8/29
Thurs Do before Class

1. nothing today
In Class
No formal class today - work
with your team and on your
own on Assignments 1-3.

New Assignments

No new assignments

Week 3

9/3
Tues Do before Class*

1. nothing today (build on what you started last week -
project brainstorming, HTML homework)

In Class
1. Some of Last year's pro-
jects - scan QR codes with
your phone to run them (30
min)

2. Project Brainstorming -
finish up (15 min). Pick main
ones - list what you need
technically (eg. Database)

3. Work on HTML home-
work - finish up, work on
problems.

9/5
Thurs Do before Class

*you will be assessed and graded on these at the beginning
of class - see PreClass 1 Assignment on right (we'll do this
In Class)

1. Readings

a. Introduction to CSS Style Sheets (Links to an exter-
nal site.)(Note: there are three ways to structure and
use CSS with a webpage - we are using the separate
stylesheet file method).

b. How to add CSS to a Google Sites webpage (Links to
an external site.)

In Class
1. PreClass 1 Assess-
ment (graded)
2. Project Brainstorming
Presentations (informal - no
ppts needed; class provides
feedback). Auction next Tues
- team who came up with
idea has first chance.
3. Ass 4: CSS and Styl-
ing (Code Academy) - work
on this in class
** if you finished this al-
ready, go to the Extra Credit
at the end of this assignment
and finish that in class today.

https://blueline.instructure.com/courses/826464/wiki/example-projects-from-2012
https://blueline.instructure.com/courses/826464/wiki/example-projects-from-2012
http://www.yourhtmlsource.com/stylesheets/introduction.html
http://www.yourhtmlsource.com/stylesheets/introduction.html
https://support.google.com/sites/answer/2500646?hl=en
https://support.google.com/sites/answer/2500646?hl=en
https://blueline.instructure.com/courses/826464/assignments/2951573
https://blueline.instructure.com/courses/826464/assignments/2951573
https://blueline.instructure.com/courses/826464/assignments/2951532
https://blueline.instructure.com/courses/826464/assignments/2951532

Corritore & Love

123

2. Lecture Vodcasts -

a. Web CSS: HTML Attributes and Introduction to
Styles (Links to an external site.) *note - HTML at-
tributes are being phased out and replaced by styles

b. Web CSS: DIVs, IDs, and Classes (Links to an exter-
nal site.)

New Assignments

1. Finish Ass 4: CSS and Styling

Week 4

9/10
Tues Do before Class*

*you will be assessed and graded on these at the
beginning of class - see PreClass 1 Assignment on
right (we'll do this In Class)

1) CodeAcademyJavaScript Unit 1: Introduction
to JavaScript> Getting Started with Programming -
complete these sections:

1. Getting to Know You
2. Why learn programming?

2) Readings - WebMonkey tutorial by Thau (Links to an
external site.)

a. Intro http://www.webmonkey.com
/2010/02/JavaScript_tutorial/

b. Lesson 1 http://www.webmonkey.com
/2010/02/JavaScript_Tutorial_-_Lesson_1

In Class
1. PreClass 1 Assess-
ment (graded)

2. JS Pointers

3. Problem Solving

4. Assignment 5 Part 1: Intro
to JavaScript (JS)

9/12
Thurs Do before Class

1) Readings - WebMonkey tutorial by Thau (Links to an
external site.)

a. Lesson 2 (up to 7. Link events) - http://www.
webmonkey.com/
2010/02/JavaScript_Tutorial_-_Lesson_2

In Class
1. PreClass 1 Assess-
ment(graded)
2. JS Pointers
3. Problem Solving
4. Assignment 5 Part 2: Intro
to JavaScript (JS)

New Assignments

http://bluecast.creighton.edu/Panopto/Pages/Viewer/Default.aspx?id=2422c581-bac7-43e8-9f42-b650f829e81a
http://bluecast.creighton.edu/Panopto/Pages/Viewer/Default.aspx?id=2422c581-bac7-43e8-9f42-b650f829e81a
http://bluecast.creighton.edu/Panopto/Pages/Viewer/Default.aspx?id=4b3778f5-9fea-49c1-8e45-b68b343f1c44
http://bluecast.creighton.edu/Panopto/Pages/Viewer/Default.aspx?id=4b3778f5-9fea-49c1-8e45-b68b343f1c44
http://www.webmonkey.com/2010/02/javascript_tutorial/
http://www.webmonkey.com/2010/02/javascript_tutorial/
https://blueline.instructure.com/courses/826464/assignments/2951573
https://blueline.instructure.com/courses/826464/assignments/2951573
https://blueline.instructure.com/courses/826464/assignments/2965460
https://blueline.instructure.com/courses/826464/assignments/2965460
http://www.webmonkey.com/2010/02/javascript_tutorial/
http://www.webmonkey.com/2010/02/javascript_tutorial/
https://blueline.instructure.com/courses/826464/assignments/2965460
https://blueline.instructure.com/courses/826464/assignments/2965460

Redesigning an Introductory Programming Course

124

Week 5

9/17
Tues Do before Class*

*you will be assessed and graded on these at the
beginning of class - see PreClass 1 Assignment on
right (we'll do this In Class)

1) CodeAcademy

a. JavaScript Unit 2: Functions
> complete section Introduction to Functions in JS

b. JavaScript Unit 3: For Loops
> complete section Introduction to 'For' Loops in JS

2) Readings

a. Functions - http://www.quirksmode.org/js/func-
tion.html (Links to an external site.)

b. For Loops - http://www.quirks-
mode.org/js/state.html#for (Links to an external
site.)

3) Install Filezilla Client on your computer for use in class
Tues (FTP program for uploading/downloading files) -

https://filezilla-project.org/download.php?
show_all=1 (Links to an external site.)

4) Resources

a. JS Loops http://www.echoecho.
com/JavaScript9.htm (Links to an external site.)

In Class
1. PreClass 1 Assess-
ment(graded)

2. JS Pointers

3. Filezilla - setup and use
with otis accounts, change
pw

4. Assignment 6: Functions
and Loops Part 1

9/19
Thurs Do before Class

1) CodeAcademy

a. JavaScript Unit 4: While Loops in JavaScript
> complete section Introduction to 'While' loops in JS

b. JavaScript Unit 5: Control Flow
> complete section More on Control Flow in JS

2) Readings -

a. While loop http://www.tutorialspoint.com
/javascript/javascript_while_loop.htm (Links to an
external site.)

b. Boolean Logic (and/or/not):
http://www.quirksmode.
org/js/boolean.html (Links to an external site.)

In Class
1. PreClass 1 Assess-
ment (graded)
2. JS Pointers
3. Problem Solving
4. Assignment 6 Part 2:
Functions and Loops

http://www.quirksmode.org/js/function.html
http://www.quirksmode.org/js/function.html
http://www.quirksmode.org/js/state.html#for
http://www.quirksmode.org/js/state.html#for
http://www.quirksmode.org/js/state.html#for
https://filezilla-project.org/download.php?show_all=1
https://filezilla-project.org/download.php?show_all=1
https://filezilla-project.org/download.php?show_all=1
https://filezilla-project.org/download.php?show_all=1
http://www.echoecho.com/javascript9.htm
http://www.echoecho.com/javascript9.htm
https://blueline.instructure.com/courses/826464/assignments/2991962
https://blueline.instructure.com/courses/826464/assignments/2991962
http://www.tutorialspoint.com/javascript/javascript_while_loop.htm
http://www.tutorialspoint.com/javascript/javascript_while_loop.htm
http://www.tutorialspoint.com/javascript/javascript_while_loop.htm
http://www.quirksmode.org/js/boolean.html
http://www.quirksmode.org/js/boolean.html
https://blueline.instructure.com/courses/826464/assignments/2951573
https://blueline.instructure.com/courses/826464/assignments/2951573
https://blueline.instructure.com/courses/826464/assignments/2991962
https://blueline.instructure.com/courses/826464/assignments/2991962

Corritore & Love

125

c. Switch
https://developer.mozilla.org/en-US/docs/Web/Ja-
vaScript/Referenc
e/Statements/switch (Links to an external site.)

New Assignments

Week 6

9/24
Tues Do before Class*

Breather Day - no preps - read over what we are doing in
class - be ready! You will be randomly assigned with a
partner to one of these to be completed entirely in class.

In Class
1. Work on Assignment 7 -
Breather Day assign-
ment. Due by the end of
class.

9/26
Thurs Do before Class

1) CodeAcademy

a. JavaScript Unit 5: Data Structures
> complete section Arrays and Objects in JS

b. JavaScript Unit 6: Objects I
> complete section Introduction to Objects I

2) Readings -

a. JavaScript Objects movie (7 min) - great one but need
good bandwidth

b. JavaScript Basics - http://www.htmlgoodies.com/pri-
mers/jsp/
article.php/3600451/Javascript-
Basics-Part-8.htm (Links to an external site.)

c. Optional: if you want to hear another person describe
JS objects another way: Elegant Code - (read up to
Constructors and stop) http://elegantcode.com/
2010/11/12/basic-
javascript-part-2-objects/ (Links to an external site.)

In Class
1. PreClass Assessment
2. JS Pointers
3. Assignment 8

New Assignments

Week 7

10/1
Do before Class

1) Readings

a. JavaScript Events - http://www.elated.com/arti-
cles/events-and-event-handlers/Asses

In Class

1. Assessment
(format TBA on FB;

Assessment link on top of

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/switch
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/switch
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/switch
https://blueline.instructure.com/courses/826464/assignments/3008825
https://blueline.instructure.com/courses/826464/assignments/3008825
https://blueline.instructure.com/courses/826464/assignments/3008825
https://blueline.instructure.com/courses/826464/assignments/3008825
https://blueline.instructure.com/courses/826464/files/30099817/download?wrap=1
http://www.htmlgoodies.com/primers/jsp/article.php/3600451/Javascript-Basics-Part-8.htm
http://www.htmlgoodies.com/primers/jsp/article.php/3600451/Javascript-Basics-Part-8.htm
http://www.htmlgoodies.com/primers/jsp/article.php/3600451/Javascript-Basics-Part-8.htm
http://www.htmlgoodies.com/primers/jsp/article.php/3600451/Javascript-Basics-Part-8.htm
http://elegantcode.com/2010/11/12/basic-javascript-part-2-objects/
http://elegantcode.com/2010/11/12/basic-javascript-part-2-objects/
http://elegantcode.com/2010/11/12/basic-javascript-part-2-objects/
https://blueline.instructure.com/courses/826464/assignments/3025465

Redesigning an Introductory Programming Course

126

b. The DOM model - http://www.elated.
com/articles
/javascript-dom-intro/ (Links to an external site.)

c. More about DOM: read all three
 http://dom-tutorials.appspot.com/
static/index.html (Links to an external site.) (do Tu-
torial 1: Lessons 1 and 2; Tutorial 2: Lesson 1; Tuto-
rial 3: Lesson 1)

2) Videos

a. What's the DOM? (5 min) - plays in BL

The rest of these videos are .mov format - if they
don't play in BL for you, download them and play
them on your computer (PC or Mac) - you need
QuickTime Player (free) to play them.

b. Nodes (in DOM) (3 min)
c. Working with the DOM -Getting Elements (11 min)
d. JS Events Introduction (8 min)
e. JS Click-Load Event (7 min)
f. JS Focus-Blur Event (2 min)
g. JS Timers (6 min)

3) Resources and References (for future use)

a. * List of JavaScript Events http://
www.web-source.net/javascript_tutorial/
javascript_events
_reference.htm#.UkXZhGiYYt0 (Links to an external
site.)

b. Another list of JS Events with exam-
ples http://www.koderguru.
com/tutorials/
javascript/javascriptevents.php (Links to an external
site.)

c. JS and DOM Reference - short tutorials with exam-
ples http://www.htmldog.com/
guides/javascript/ (Links to an external site.)

d. Details about DOM
http://www.w3schools.com/htmldom/dom_in-
tro.asp (look at menu on left side)

e. Essentials of DOM and JS in 10 min
http://www.youtube.com/watch?v=URF2sVQWuxU

this schedule - opens 2 min
before class starts)

2. Assignment 9: Events and
DOM

New Assignments

10/3
Do before Class In Class

1) Assessment - log into AC

http://www.elated.com/articles/javascript-dom-intro/
http://www.elated.com/articles/javascript-dom-intro/
http://www.elated.com/articles/javascript-dom-intro/
http://dom-tutorials.appspot.com/static/index.html
http://dom-tutorials.appspot.com/static/index.html
https://blueline.instructure.com/courses/826464/files/30149385/download?wrap=1
https://blueline.instructure.com/courses/826464/files/30149794/download?wrap=1
https://blueline.instructure.com/courses/826464/files/30149874/download?wrap=1
https://blueline.instructure.com/courses/826464/files/30150214/download?wrap=1
https://blueline.instructure.com/courses/826464/files/30150261/download?wrap=1
https://blueline.instructure.com/courses/826464/files/30150366/download?wrap=1
https://blueline.instructure.com/courses/826464/files/30281783/download?wrap=1
http://www.web-source.net/javascript_tutorial/javascript_events_reference.htm#.UkXZhGiYYt0
http://www.web-source.net/javascript_tutorial/javascript_events_reference.htm#.UkXZhGiYYt0
http://www.web-source.net/javascript_tutorial/javascript_events_reference.htm#.UkXZhGiYYt0
http://www.web-source.net/javascript_tutorial/javascript_events_reference.htm#.UkXZhGiYYt0
http://www.web-source.net/javascript_tutorial/javascript_events_reference.htm#.UkXZhGiYYt0
http://www.koderguru.com/tutorials/javascript/javascriptevents.php
http://www.koderguru.com/tutorials/javascript/javascriptevents.php
http://www.koderguru.com/tutorials/javascript/javascriptevents.php
http://www.koderguru.com/tutorials/javascript/javascriptevents.php
http://www.htmldog.com/guides/javascript/
http://www.htmldog.com/guides/javascript/
https://blueline.instructure.com/courses/826464/assignments/3036256
https://blueline.instructure.com/courses/826464/assignments/3036256

Corritore & Love

127

1) ** log into your Application Craft account - and look
around. Your login is your CU email
(netID@creighton.edu) - pw is my last name with 99 on
the end - no caps or space.

and pick one interesting item
to tell class about.

2) Assign. 10 - Intro to AC

3) Change your AC pw (have
to do this in class today)

New Assignments

**** MIDTERM REVIEW

Week 8 - Oct 7 - 11

10/8
Do before Class

1) Readings (read AFTER you watch the videos)

 > Standard Mobile Widgets http://www.applica-
tioncraft.com/
developers/
documentation/product-guide/
mobile-apps-sites/
other-mobile-widgets (Links to an external site.)

 > Global Data Store (goes with Switching between
Apps and Embedding Apps videos)

http://www.applicationcraft.com/
developers
/documentation/scripting-apis/client-
api/global-data-
pool-functions/ (Links to an external site.)
 > Switch App
http://www.applicationcraft.com/
developers/
documentation/scripting-apis/client-
api/app-
functions/switchapp/ (Links to an external site.)
 >parentApp
http://www.applicationcraft.com
/developers/
documentation/scripting-apis/client-
api/app-
functions/parentapp/ (Links to an external site.)
 >getGlobalData (it's counterparts, setGlobalData and
clearGlobalData are linked at bottom of the page)
http://www.applicationcraft.com/
developers/
documentation/scripting-apis/client-
api/global-

In Class
1. Assessment

2. download these files for
midterm and put on zymic in
"midterm" folder that you
create. You'll use these on
the midterm.
I used BL to mail links to the
zipped Midterm Exam files
and the Midterm Review
files:

http://www.cindycorri-
tore.com/375/mid-
term13/midterm.zip (Links
to an external site.)
cindycorri-
tore.com/375/MTRe-
view.zip
 (Links to an external site.)

3. Assignment 11

mailto:netID@creighton.edu
https://blueline.instructure.com/courses/826464/assignments/3041555
https://blueline.instructure.com/courses/826464/wiki/midterm-2013-review
http://www.applicationcraft.com/developers/documentation/product-guide/mobile-apps-sites/other-mobile-widgets
http://www.applicationcraft.com/developers/documentation/product-guide/mobile-apps-sites/other-mobile-widgets
http://www.applicationcraft.com/developers/documentation/product-guide/mobile-apps-sites/other-mobile-widgets
http://www.applicationcraft.com/developers/documentation/product-guide/mobile-apps-sites/other-mobile-widgets
http://www.applicationcraft.com/developers/documentation/product-guide/mobile-apps-sites/other-mobile-widgets
http://www.applicationcraft.com/developers/documentation/product-guide/mobile-apps-sites/other-mobile-widgets
http://www.applicationcraft.com/developers/documentation/scripting-apis/client-api/global-data-pool-functions/
http://www.applicationcraft.com/developers/documentation/scripting-apis/client-api/global-data-pool-functions/
http://www.applicationcraft.com/developers/documentation/scripting-apis/client-api/global-data-pool-functions/
http://www.applicationcraft.com/developers/documentation/scripting-apis/client-api/global-data-pool-functions/
http://www.applicationcraft.com/developers/documentation/scripting-apis/client-api/global-data-pool-functions/
http://www.applicationcraft.com/developers/documentation/scripting-apis/client-api/app-functions/switchapp/
http://www.applicationcraft.com/developers/documentation/scripting-apis/client-api/app-functions/switchapp/
http://www.applicationcraft.com/developers/documentation/scripting-apis/client-api/app-functions/switchapp/
http://www.applicationcraft.com/developers/documentation/scripting-apis/client-api/app-functions/switchapp/
http://www.applicationcraft.com/developers/documentation/scripting-apis/client-api/app-functions/switchapp/
http://www.applicationcraft.com/developers/documentation/scripting-apis/client-api/app-functions/parentapp/
http://www.applicationcraft.com/developers/documentation/scripting-apis/client-api/app-functions/parentapp/
http://www.applicationcraft.com/developers/documentation/scripting-apis/client-api/app-functions/parentapp/
http://www.applicationcraft.com/developers/documentation/scripting-apis/client-api/app-functions/parentapp/
http://www.applicationcraft.com/developers/documentation/scripting-apis/client-api/app-functions/parentapp/
http://www.applicationcraft.com/developers/documentation/scripting-apis/client-api/global-data-pool-functions/getglobaldata/
http://www.applicationcraft.com/developers/documentation/scripting-apis/client-api/global-data-pool-functions/getglobaldata/
http://www.applicationcraft.com/developers/documentation/scripting-apis/client-api/global-data-pool-functions/getglobaldata/
http://www.applicationcraft.com/developers/documentation/scripting-apis/client-api/global-data-pool-functions/getglobaldata/
http://www.cindycorritore.com/375/midterm13/midterm.zip
http://www.cindycorritore.com/375/midterm13/midterm.zip
http://www.cindycorritore.com/375/midterm13/midterm.zip
http://www.cindycorritore.com/375/midterm13/midterm.zip
http://cindycorritore.com/375/midterm13/MTReview.zip
http://cindycorritore.com/375/midterm13/MTReview.zip
http://cindycorritore.com/375/midterm13/MTReview.zip
http://cindycorritore.com/375/midterm13/MTReview.zip
https://blueline.instructure.com/courses/826464/assignments/3046267

Redesigning an Introductory Programming Course

128

data-pool-functions/getglobaldata/ (Links to an external
site.)

2) Videos

 Watch all of the "An Intro to UI Design" videos (there
are six; total of about 15
 min. worth) - might want to take notes.

 > Overview
 > Pages and Page Navigation
 > Repeating Widgets across Multiple Pages
 > Switching Between Apps Seamlessly and the Global
Store
 > Embedding One App Inside Another
 > Time Saving Tricks and Tips

3) Resources and References (for future use)

 AC Product Guide - user manual for all of
AC http://www.applicationcraft.com/developers/
documentation/product-guide (Links to an external site.)
New Assignments

10/10
Do before Class

Study for the Midterm - practice writing html, css, and
JS, putting it on pages, uploading to zymic using FileZilla.
Go over notes - few questions on tech language and con-
cepts from class.

** You will be using Notepad or TextWrangler
(Mac), FileZilla (for FTP), and your Zymic.com web-
site. Your work MUST be uploaded in order to be
graded.

(I posted the review again here)

Right before you come to class to take the midterm:

1. Have Notepad or TextWranlger, FileZilla, and a
web browser open.

2. Make a folder named "midterm" in your Zymic ac-
count (using FileZilla)

3. Download and unzip this file - put it in a folder
named biamidterm on your own computer (where
you can find it). You can do all of your midterm work
from that folder. So have it open before taking the
test.

In Class
Midterm -
Open book, computer,notes,
online, etc.

** You will be using Note-
pad or TextWrangler
(Mac), FileZilla (for FTP),
and your Zymic.com web-
site. Your work MUST be
uploaded in order to be
graded.

http://www.applicationcraft.com/developers/documentation/scripting-apis/client-api/global-data-pool-functions/getglobaldata/
http://www.applicationcraft.com/developers/documentation/scripting-apis/client-api/global-data-pool-functions/getglobaldata/
http://www.applicationcraft.com/developers/documentation/product-guide
http://www.applicationcraft.com/developers/documentation/product-guide
https://blueline.instructure.com/courses/826464/wiki/midterm-2013-review
https://blueline.instructure.com/courses/826464/assignments/2774693

Corritore & Love

129

4. Using FileZilla, upload the three unzipped files
(briards.html, styles, css, and dog.jpeg) into your
Zymic account (be sure you can see them using the
url so you know they are in the right place) and
browse to that webpage in your browser.
http://www.cindycorritore.com/
375/midterm13/
midterm.zip
 (Links to an external site.)
5. Open the briards.html file on your computer in
Notepad or TextWrangler.

6. Open Blueline > Homework.

New Assignments

1. Write your reflection for the first half of the semester. I have details
here about how to write a reflection, etc.

Week 9

10/22
Do before Class

1) Readings

 > Using the Firefox built-in Developer
Tools for Debugging JavaS-
cript https://hacks.mozilla.org/2013/09/re-
introducing-the-firefox-developer-tools-
part-1-the-web-console-and-the-javascript-
debugger/ (Links to an external site.)

>JavaScript Try-Catch state-
ment http://www.impressivewebs.com/ja-
vascript-try-catch/ (Links to an external
site.)

2) Videos

 a. Watch all of the "Client-Side JavaS-
cript" videos EXCEPT the last one
(Ajax) - there are five to watch (about 10
min. worth) - might want to take notes.

 > App & Widget Events
 > The Code Explorer and Editor
 > The Application Craft Client API
 > Debugging your Apps - read the first
reading above before viewing

In Class
1. Pre-Class Assessment

2. Assignment 12 Part 1 (due Weds mid-
night) - we'll do Part 2 Thurs.

http://www.cindycorritore.com/375/midterm13/midterm.zip
http://www.cindycorritore.com/375/midterm13/midterm.zip
http://www.cindycorritore.com/375/midterm13/midterm.zip
http://www.cindycorritore.com/375/midterm13/midterm.zip
https://blueline.instructure.com/courses/826464/assignments/2774679
https://blueline.instructure.com/courses/826464/assignments/2774679
https://hacks.mozilla.org/2013/09/reintroducing-the-firefox-developer-tools-part-1-the-web-console-and-the-javascript-debugger/
https://hacks.mozilla.org/2013/09/reintroducing-the-firefox-developer-tools-part-1-the-web-console-and-the-javascript-debugger/
https://hacks.mozilla.org/2013/09/reintroducing-the-firefox-developer-tools-part-1-the-web-console-and-the-javascript-debugger/
https://hacks.mozilla.org/2013/09/reintroducing-the-firefox-developer-tools-part-1-the-web-console-and-the-javascript-debugger/
http://www.impressivewebs.com/javascript-try-catch/
http://www.impressivewebs.com/javascript-try-catch/
http://www.impressivewebs.com/javascript-try-catch/
https://blueline.instructure.com/courses/826464/assignments/3077398

Redesigning an Introductory Programming Course

130

 > Customizing the Error Handling - read
the second reading above before viewing

 b. Watch all of the "Adaptive Layout"
videos EXCEPT the last one (Adaptive
Rules) - there are six to watch (about 15
min. worth) - might want to take notes.

 > An Overview of Responsive Design
 > The Importance of Containers
 > The Sizes Property Explained
 > Layout Modes
 > Widget Alignment
 > Using Tables in Adaptive Layout

3) Resources and References - good ones

 > Client API (for Application Craft) -
note these sections in particular that list and
describe the functions available for different
objects in AC:
 > App functions
 > Page functions
 > Widget functions

 > AC Developer Cheat Sheet - one page
description of all AC objects and their
events

New Assignments

10/24
Do before Class

1) Readings
 none

2) Videos

 none

3) Resources and References - good ones

In Class
1. Pre-Class Demo (Dr Corritore)

2. Assignment 12 Part 2

3. Database Review Packet

New Assignments

Week 10

10/29
Do before Class

1) Readings

In Class
1. Pre-Class Assessment

https://blueline.instructure.com/courses/826464/assignments/3077398
https://blueline.instructure.com/courses/826464/wiki/database-review-packet
https://blueline.instructure.com/courses/826464/wiki/preclass-second-half-semester-f13

Corritore & Love

131

> Database Review Packet

> Create a Database using phpMyAd-
min (Links to an external site.) - read the
first 3 pages - up to Open and Close a Con-
nection. phpMyAdmin is a program that
runs in a web browser written in the pro-
gramming language php. It is used to access
and interact with databases that live on data-
base servers.

> phpMyAdmin - this is the ide we will be
using to interface with our mySQLdata-
base: http://www.phpmyadmin.net/home_
page/index.php (Links to an external site.)
- click on Demo to open the Demo
phpMyAdmin - login in with Username:
root and no password. You can see on the
left all of the databases that have been cre-
ated on the Demo database server.

This will start phpMyAdmin that is con-
nected to their many demo databases. Look
around, try stuff out. Then watch this video
(http://www.youtube.com/watch?v=
n7c5zMk8cx4 (Links to an external site.)

) using the
Demo database to work along with the
video (instead of the one the video uses).

2) Videos

3) Resources and References - good ones

2.Assignment 13 Part 1 (due Weds mid-
night) - we'll do Part 2 Thurs.

New Assignments

1. Project Milestone 1 (due next Tues in class)

11/1
Do before Class

1) Readings

In Class
1. Pre-Class Assessment
2. Assignment 13 Part B

https://blueline.instructure.com/courses/826464/wiki/database-review-packet
http://www.homeandlearn.co.uk/php/php12p2.html
http://www.homeandlearn.co.uk/php/php12p2.html
http://www.phpmyadmin.net/home_page/index.php
http://www.phpmyadmin.net/home_page/index.php
http://www.youtube.com/watch?v=n7c5zMk8cx4
http://www.youtube.com/watch?v=n7c5zMk8cx4
https://blueline.instructure.com/courses/826464/assignments/3091427
https://blueline.instructure.com/courses/826464/wiki/preclass-second-half-semester-f13
https://blueline.instructure.com/courses/826464/assignments/3077398
https://blueline.instructure.com/courses/826464/assignments/3077398
http://www.youtube.com/watch?v=n7c5zMk8cx4

Redesigning an Introductory Programming Course

132

2) Videos

 a. in AC, watch the first four videos in
the section Integration. *
 > An Overview
 > Setting up a Connection
 > Querying External Databases
 > Data Views
 > Configuring Data Section Properties
and Expression Editor

 b. in AC, watch this video from the sec-
tion Widget Data:
 > Populating List Widgets with the
Population Dialog

 * here is the AC program that are used
in these videos. There are two versions: one
is done with "minimal" JavaScript, and the
other uses 'maximum' JavaScript. To import
them into your AC account, log in. Then
pick the icon Import - navigate to one of
the files (on your computer), pick it, take all
the defaults. Note: the Next button on the
screens is at the bottom - you have to pull
the little white window up to see it.
 Minimum JavaScript
 Maximum JavaScript

3) Resources and References - good ones

New Assignments

Week 11

11/5
Do before Class

1) Readings

none

2) Videos

a. None

3) Resources and References - good ones

In Class
1. Milestone Presentations to Class

2. Review Project

3. Review Milestone 2

New Assignments

1. Project Milestone 2

https://blueline.instructure.com/courses/826464/files/30999299/download?wrap=1
https://blueline.instructure.com/courses/826464/files/30999297/download?wrap=1
https://blueline.instructure.com/courses/826464/wiki/database-review-packet

Corritore & Love

133

11/7
Do before Class

1) Readings

> CRUD http://en.wikipedia.org/wiki/

 (Links to an external site.)

2) Videos

a. AC Database - * import this AC file- it
is the app used in the videos. We will
use it in class.

b. in AC, these are under the Video:
Server-Side JavaScript - first three mov-
ies*

> A High-Level Overview of Server -
Side JavaScript Using AC ** Note: our
gator Databases are called Server-Side
Databases (they are on a server other
than AC's).
> An Overview on Coding Up Your
Server-Side JavaScript Calls in Applica-
tion Craft
> A Detailed Look at Coding Up Cli-
ent/Server Side JavaScript Calls in AC

c. in AC, these are under the Video Inte-
gration section.

> Automated and JavaScript Drill-
Down
> Containers Explained (this is about
data containers)

3) Resources and References - good ones

In Class
1. Pre-Class Assessment
2. Assignment 14 (finish in class)

New Assignments

Week 12

11/12
Do before Class

Nothing required

In Class
1. Milestone 2 Due in Class

2. Milestone 3 review

3. Work on Project

http://en.wikipedia.org/wiki/
http://en.wikipedia.org/wiki/
http://en.wikipedia.org/wiki/
https://blueline.instructure.com/courses/826464/files/31105317/download?wrap=1

Redesigning an Introductory Programming Course

134

New Assignments

1. Project Milestone 3

11/14
Do before Class

Nothing required.

In Class

1. Work on Project

New Assignments

Week 13

11/19
Do before Class

Nothing required.

In Class

1. Work on Project

New Assignments

11/21
Do before Class

Nothing required.

In Class
1. Milestone 3 Due in Class

2. Final Project review

3. Work on Project

New Assignments

Week 14

11/26
Do before Class

Nothing required.

In Class
1. Work on Project

New Assignments

11/28
Thanksgiving!

New Assignments

1. Final Project and Presentation next week !!!

Week 15

12/3
Do before Class In Class

1. Review Presentation for Thurs

Corritore & Love

135

Nothing required. 2. Finish up Final Project

New Assignments

12/5
ARGY-BARGY
PROJECT PRESENTATIONS

Time TBA - both classes present at same time

New Assignments

FINALS WEEK

12/9
Mon-
day

2PM

Do before Class

** check BL - you have several assignments due by 2PM today (evaluations, reflec-
tion), my custom Course Evaluation.

** Remember, you must fill out the Creighton College of Business Course Evaluation
(you received an email with a link to it) in order for your grade in the course to be re-
leased.

New Assignments

BIOGRAPHIES
Dr. Cynthia Corritore is a Full rank Professor of Information Systems
and Technology in the Heider College of Business, Department of Busi-
ness Intelligence and Analytics at Creighton University in Omaha, Ne-
braska. Her Ph.D. degree is in Computer Science from the University of
Nebraska - Lincoln, where she specialized in Artificial Intelligence and
Human Computer Interaction. Her research interests center around ex-
amining the effect of technology on humans. Her publications range
from modeling online trust in e-commerce as well as innovative methods
of teaching. She has published research in these areas, but most recently
has been focusing on teaching pedagogies with innovative technologies.

Dr. Betty Love is a Full rank Professor in the Mathematics Department
at the University of Nebraska at Omaha. Her Ph.D. degree is in Opera-
tions Research from Southern Methodist University where she specialized
in the design and implementation of parallel algorithms for network opti-
mization problems. Her research interests have focused on the interface
between mathematics and computer science at various levels. Currently,
she is the Principal Investigator on a grant from the National Science
Foundation to create and evaluate a novel general-education course called
Introduction to Mathematical and Computational Thinking that uses pro-
gramming to teach mathematical concepts.

	Redesigning an Introductory Programming Course to Facilitate Effective Student Learning: A Case Study
	Abstract
	Introduction
	Literature Review
	Psychological Ownership
	Student Ownership of Learning (SOL)
	Constructivist Model of Learning
	The Flipped Course

	Research Methodology: The New Course
	Background of the Problem
	Methodology
	Goals for the New Course
	Increasing SOL
	Developing a more positive attitude toward the course

	Design of the New Course
	Time allocation
	Course design in detail

	Finding / Result
	The Course Pilot
	Running the pilot course

	Discussion
	Meeting the Goals

	Conclusion
	References
	Appendices
	Appendix A: Project Description: Grading, Milestones, Presentation Given to Students
	Appendix B: Examples of Project Apps
	Appendix C: Example of Typical Homework Assignments
	Appendix D: Grading and Descriptions of Course Work
	Appendix E: Course Schedule

	Biographies

