

Volume 19, 2020

Accepting Editor Janice Whatley │ Received: June 24, 2020│ Revised: August 18, September 15, October 18,
October 19, November 11, 2020 │ Accepted: November 12, 2020.
Cite as: Saito, D., Kaieda, S., Washizaki, H., & Fukazawa, Y. (2020). Rubric for measuring and visualizing the
effects of learning computer programming for elementary school students. Journal of Information Technology Educa-
tion: Innovations in Practice, 19, 203-227. https://doi.org/10.28945/4666

(CC BY-NC 4.0) This article is licensed to you under a Creative Commons Attribution-NonCommercial 4.0 International
License. When you copy and redistribute this paper in full or in part, you need to provide proper attribution to it to ensure
that others can later locate this work (and to ensure that others do not accuse you of plagiarism). You may (and we encour-
age you to) adapt, remix, transform, and build upon the material for any non-commercial purposes. This license does not
permit you to use this material for commercial purposes.

RUBRIC FOR MEASURING AND VISUALIZING THE
EFFECTS OF LEARNING COMPUTER PROGRAMMING FOR

ELEMENTARY SCHOOL STUDENTS
Daisuke Saito* Waseda University, Tokyo, Japan d.saito@fuji.waseda.jp

Shota Kaieda Waseda University, Tokyo, Japan skaieda@fuji.waseda.jp

Hironori Washizaki Waseda University, Tokyo, Japan washizaki@waseda.jp

Yoshiaki Fukazawa Waseda University, Tokyo, Japan fukazawa@waseda.jp

* Corresponding author

ABSTRACT
Aim/Purpose Although many computer science measures have been proposed, visualizing in-

dividual students’ capabilities is difficult, as those measures often rely on spe-
cific tools and methods or are not graded. To solve these problems, we propose
a rubric for measuring and visualizing the effects of learning computer pro-
gramming for elementary school students enrolled in computer science educa-
tion (CSE), which is independent of the programming language being used.

Background In this research, we proposed a rubric based on existing CSE standards and cri-
teria having a programming education-learning goal. We then applied this rubric
to actual lessons to visualize the educational effects.

Methodology The proposed new rubric for teaching computer programming, based on exist-
ing standards and criteria, was applied to fourth- and sixth-grade students in Ja-
pan. We assessed which skills were cultivated through quizzes before and after
the teaching.

Contribution This paper contributes on how to make and utilize a rubric for programming
education in computer science. We evaluated and visualized the proposed ru-
bric’s learning effects on children and found that our proposed rubrics are inde-
pendent of any particular method or tool.

https://doi.org/10.28945/4666
https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/
mailto:d.saito@fuji.waseda.jp
mailto:skaieda@fuji.waseda.jp
mailto:washizaki@waseda.jp
mailto:fukazawa@waseda.jp

Measuring and Visualizing the Effects of Learning Computer Programming

204

Findings The results of this survey are twofold: (1) we proposed a rubric of programming
education in computer science, independent of the programming tools used and
(2) we succeeded in visualizing students’ learning stages by applying the pro-
posed rubric to programming education conducted in a Japanese elementary
school.

Recommendations
for Practitioners

Evaluating educational effects in CSE is important. In particular, graded assess-
ments of learner abilities can reveal individual characteristics. This research is
useful for assessing CSE because it focuses specifically on programming educa-
tion.

Recommendations
for Researchers

The rubric’s suggestions and quality improvements in CSE help learners assess
their learning progress and will clarify the cultivated computer science skills.

Impact on Society This research evaluates CSE based on a rubric in the programming education
field.

Future Research Future work is needed to improve the proposed rubric’s quality and relevance.
Also, this rubric should be applied to many classes to increase the number of
evaluations and analyses.

Keywords computer science education, programming education, rubric

INTRODUCTION
Evaluating computer science education (CSE) learning effects for children is crucial for improving
educational outcomes. This has led to the development of many CSE learning design and evaluation
indicators such as the Computer Science Teachers Association (CSTA) K-12 Computer Science
Standards (CSTA, 2017). Other studies have developed creative computer science rubrics (Cateté et
al., 2016; Grover et al., 2018). However, these indicators have evaluation items that are either not di-
vided into stages or depend on specific tools and methods. Additionally, many educators also wish to
evaluate the learning effect over time when employing some tools and methods. To cope with these
problems, we propose a learning evaluation stage indicator (rubric) for learning computer program-
ming in CSE for children. In the present study, the proposed rubric evaluates items related to pro-
gramming in CSE for children step by step, regardless of tools or methods. This study’s research
questions (RQs) are as follows:

 RQ1: Can evaluation criteria be proposed independently of tools and methods?
 RQ2: Can the proposed rubric evaluate and visualize learning effects?
 RQ3: In what ways does the proposed rubric based on Bloom’s taxonomy and structure of the

observed learning outcome (SOLO) taxonomy, correctly evaluate students’ learning of program-
ming?

RQ1 assesses the feasibility of designing evaluation criteria independently of the tools or learning en-
vironment used. Thus, tools and methods should provide a fair and consistent evaluation. In con-
trast, RQ2 assesses whether learning computer programming can be evaluated and visualized inde-
pendent of tools and methods. Herein, we applied a learning computer programming rubric (PLR) to
a programming class planned by an elementary school teacher. Furthermore, we used the proposed
PRL to analyze, evaluate, and visualize the learning effects of children learning computer program-
ming. In RQ3, we examined the design of rubrics in learning computer programming to see whether
they are useful for assessing learning and setting learning goals at learning stages based on SOLO tax-
onomy and Bloom’s taxonomy. We also examined whether these goals and assessment stages were
set correctly in learning computer programming. This will allow us to judge whether the students’
learning of computer programming is assessed correctly. We also hope that the solution for RQ3 will

Saito, Kaieda, Washizaki, & Fukazawa

205

improve the usefulness of rubrics based on the educational taxonomy for learning computer pro-
gramming in computer science.

Our proposed rubric focuses on learning computer programming in computer science, and it does
not need to be customized for any particular method or tool; therefore, our proposal is novel. The
proposed rubric is intended to guide the assessment of learning computer programming. Further-
more, our evaluation method is generic and does not rely on a specific method or tool.

The remainder of this paper is structured as follows. The next section explains the background of our
research. Materials and Methods presents our rubric design. Application of PLR describes the ru-
bric’s application experiments. Results and Discussion, respectively, present and discuss the results of
applying the rubric. The following section briefly discusses related works to place this work in per-
spective. Lastly, Conclusion summarizes the study, and the following lists future works and limita-
tions of this paper.

The present work is an extension of a previously published study of the rubric (Saito et al., 2019). In
previous studies, the proposed rubric was given only as an overview. In addition, it does not apply to
actual school lessons. Therefore, the present work presents a detailed proposal for a rubric and appli-
cation of the lesson to elementary schools.

BACKGROUND

EVALUATION STANDARDS AND RUBRICS
The most common CSE evaluation standards are the CSTA K-12 Computer Science Standards
(CSTA, 2017), which assess programming, algorithms, cyber security, and other computer science
learning goals. Other evaluation standards include the International Society for Technology in Educa-
tion (ISTE) Standards for Students (Permitted Educational Use) (ISTE, 2016) and the Computer Sci-
ence K-12 Learning Standards (Office of Superintendent of Public Instruction, 2018). Many of the
evaluation items in these standards can be applied to learning computer programming However, the
issue of these standards includes many elements in one item. For example, item 1B-AP-10 of the
CSTA K-12 Computer Science Standards is “Create programs that include sequences, events, loops,
and conditionals” (CSTA, 2017). This item contains multiple evaluation points such as sequences,
events, loops, and conditionals, obscuring the perspective from which the learner achieves the goal
and the evaluator may interfere in the evaluation. Furthermore, their learning goals are not stepwise
but rather are evaluated as 0 (satisfied) or 1 (not satisfied). Therefore, the learning effects on individ-
uals cannot be evaluated in detail. Thus, we divide the existing standards’ evaluation items into stages,
allowing detailed evaluations.

Rubrics are indicators that help to assess student outcomes by describing and defining a description
of goals and levels of achievement (Stegeman et al., 2016). Rubrics are commonly used to evaluate
learning computer programming in CSE and other similar fields. For example, the rubric study of
Mustapha et al. (2016) considered the differences in evaluation caused by variation between evalua-
tors, and this rubric is useful for evaluating programming courses in higher education. Cateté et al.
(2016) proposed a rubric to evaluate a curriculum opted by non-CS majors called The Beauty and Joy
of Computing, which targets third-year high school students to first-year university students. Their
rubric borrows ideas from the brick wall concept, creating a brick wall by programming. Using block-
based programming artifacts, Grover et al. (2018) performed a rubric-based analysis to assess what
students learned about programming. The rubric in their analysis followed the CSTA K-12 Computer
Science Standards and others. Further, Basu (2019) proposed a multidimensional evaluation rubric
for block-based programming in open-ended projects. Alves et al. (2020) also developed a rubric
based on the CSTA K-12 Computer Science Standards. Using this rubric, they evaluated the algo-
rithms and programming concepts of App Inventor applications. They also allocated automated as-
sessments and successfully achieved consistency in the evaluations. However, these rubrics are

Measuring and Visualizing the Effects of Learning Computer Programming

206

tailored to specific tools or methods, whereas educators prefer a common rubric suitable for many
learning computer programming assessments. Therefore, instead of proposing a rubric for a specific
tool or method, we propose a versatile rubric on which many tools and methods can be evaluated
from the same perspectives.

TAXONOMY
Here, we describe two taxonomies of pedagogy: The Structure of the Observed Learning Outcome
(SOLO) taxonomy (Biggs & Collis, 2014) and Bloom’s taxonomy (Bloom et al., 1984). Both taxono-
mies are useful for designing our PLR for elementary school students.

SOLO taxonomy
The SOLO taxonomy (Biggs & Collis, 2014) is a classification table that categorizes learning out-
comes into different levels of complexity. Previous studies have demonstrated the SOLO taxonomy’s
effectiveness in learning computer programming (Lister et al., 2006; Whalley et al., 2006). An evalua-
tion framework that evaluates the complexity of programming quizzes using SOLO has also been
proposed (Izu et al., 2016). This taxonomy classifies prior knowledge, motivation, and thinking meth-
ods on what will eventually be learned into five stages:

 Pre-structural: Learners do not understand the content.
 Uni-structural: Learners understand one aspect of the content.
 Multi-structural: Learners independently understand multiple aspects of the content.
 Relational: Learners understand the relationships and structural combinations between multiple

aspects of the content.
 Extended abstract: Learners can generalize the content, understand it from many different per-

spectives, and create new ideas.

Our study adopts the SOLO taxonomy for rubric grading.

Bloom’s taxonomy
Bloom’s taxonomy is well known in education. The six cognitive stages of the original Bloom’s tax-
onomy were knowledge (level 1), comprehension (level 2), application (level 3), analysis (level 4), syn-
thesis (level 5), and evaluation (level 6) (Bloom et al., 1984). These have been revised by Krathwohl
(2002), for example, to remember (level 1), understand (level 2), apply (level 3), analyze (level 4), eval-
uate (level 5), and create (level 6). Bloom’s taxonomy is also widely used in learning computer pro-
gramming (Selby, 2015; Thompson et al., 2008). We used Bloom’s taxonomy for setting the learning
objectives in our study.

MATERIALS AND METHODS

DESIGN OF RUBRIC FOR LEARNING COMPUTER PROGRAMMING
Our PLR evaluates CSE learning achievement stages using student deliverables, quizzes, and ques-
tionnaires. Our PLR is based on the SOLO taxonomy, and achievement at the determined learning
stage is evaluated from deliverables and quizzes. Additionally, learning goals are referenced to
Bloom’s taxonomy. Figure 1 provides an overview of the rubric’s design. The rating categories and
items are based on existing metrics. Each stage and learning item in Figure 1 was assigned using
SOLO and Bloom’s taxonomies and by referring to previous research (Lister & Leaney, 2003). The
designed rubrics are provided in Appendix A, Tables A1-A7.

Saito, Kaieda, Washizaki, & Fukazawa

207

Figure 1. Composition of the PLR

Evaluation categories and items
The PLR consists of 30 evaluation items, each of which is assigned to 1 of 8 categories. We deter-
mined the evaluation items by referencing existing metrics such as the CSTA K-12 Computer Stand-
ards (CSTA, 2017) and the ISTE Standards for Computer Science Educators (ISTE, 2016), as well as
other standards (Cateté et al., 2016; Grover et al., 2018; Office of Superintendent of Public Instruc-
tion, 2018). Table 1 lists the evaluation items and their categories. This rubric belongs to the CSE’s
learning computer programming category and assesses a learning computer programming sequence.
Specifically, students initially learn basic programming concepts and computers. Next, they think
about creating programs and then write programs. Lastly, they confirm the correct execution of their
program and share their work with others. The PLR covers all of these stages. Although the “Self-
Regulation” and “Cooperation with Others” categories are not directly related to programming, these
abilities are covered in programming classes and are thus included in the PLR.

Table 1. Evaluation categories and items in the proposed rubric

Category Item

Attitude Positivity, Interest, Toughness

Programming Concept Sequence, Loop, Conditional

Construction of Computer Construction of Computer

Designing Programs Subdivision, Analysis, Extraction, Construction and Func-
tionalization, Generalization, Design Document, Expres-
sion, Creativity

Creating Programs Use of Programming Concepts, Logical Thinking, Use of
Software, Programming Language, Data Expression, Use
of Formula

Read, Edit, and Evaluate Pro-
grams

Read, Edit, and Evaluate

Self-Regulation Plan, and Safety Considerations

Cooperation with Others Announce Own Idea, Understand Other’s Idea, Cooperate
Programming, Contribute to Group Work

Measuring and Visualizing the Effects of Learning Computer Programming

208

Four developmental stages
The PLR specifies each evaluation item’s learning goals. Dividing these learning objectives should
provide a detailed assessment of learning achievements. To this end, we divided and set the learning
goals based on the SOLO and Bloom’s taxonomies.

The PLR’s evaluation items are divided into four developmental stages, with 4 representing top
achievement and 1 representing failure. Stages 1, 2, 3, and 4 are analogous to the SOLO taxonomy’s
pre-structural, uni-structural, multi-structural, and relational and extended abstraction stages, respec-
tively, and students are expected to satisfy specific requirements at each stage. Furthermore, each
stage’s learning targets are referenced to the revised Bloom’s taxonomy. The six cognitive stages of
Bloom’s taxonomy (remembering, understanding, applying, analyzing, evaluating, and creating) clas-
sify educational goals and are thus useful for setting learning goals. Stages 2, 3, and 4 in our PLR are
associated with the bottom two stages (remembering and understanding), the middle two stages (ap-
plying and analyzing), and the top two stages (evaluating and creating) of Bloom’s technology, re-
spectively. Table 2 presents some of the learning objectives of each item in the PLR’s four stages.

Table 2. Developmental stages in the proposed rubric

Category Item Stage 4 Stage 3 Stage 2 Stage 1

Pr
og

ra
m

m
in

g
C

on
ce

pt

Se
qu

en
ce

Learners understand
sequential execution,
can read the pro-
gram in order from
beginning to end,
can write a program
of sequential execu-
tion, and can con-
struct a program to
be sequentially exe-
cuted without re-
quiring assistance.

Learners under-
stand sequential
execution, can
read the program
in order from
beginning to
end, and can
write a program
of sequential ex-
ecution.

Learners un-
derstand se-
quential execu-
tion and can
read the pro-
gram in order
from beginning
to end.

Learners do
not under-
stand se-
quential exe-
cution.

Lo
op

Learners understand
loops, can read
looped programs,
and find loops by
themselves. They
can also incorporate
loops into programs.

Learners under-
stand loops, can
read looped pro-
grams, and can
write loop pro-
grams.

Learners un-
derstand loops
and can read
looped pro-
grams.

Learners do
not under-
stand how
loops are
used in pro-
grams.

C
on

di
tio

na
l

Learners understand
conditional
branches, can read
programs containing
conditional
branches, and can
incorporate condi-
tional branches into
programs.

Learners under-
stand conditional
branches, can
read programs
containing con-
ditional
branches, and
can write pro-
grams containing
conditional
branches.

Learners un-
derstand condi-
tional branches
and can read
programs con-
taining condi-
tional
branches.

Learners do
not under-
stand condi-
tional
branching.

Saito, Kaieda, Washizaki, & Fukazawa

209

Correspondence with items in the existing standards
We mapped the proposed PLR’s categories to the CSTA K-12 Computer Science Standards and
ISTE Standards for Students items in the existing standards, making it possible to conduct classroom
evaluations in conjunction with existing standards. Table 3 shows the corresponding items.

Table 3. Correspondence of PLR categories with existing standards

PLR CSTA ISTE

Attitude Innovative Designer(d)

Programming Concept 1A-AP-08, 1A-AP-10, 1B-AP-
08, 1B-AP-10

Construction of Computer 1A-CS-02, 1A-CS-03, 1A-DA-
05, 1B-CS-01

Designing Programs 1A-DA-07, 1A-AP-11, 1A-
AP-12, 1B-AP-13

Computational Thinker (a, c, d)

Innovative Designer (a, d)

Knowledge Constructor (b, d)

Creating Programs 1A-CS-01, 1A-AP-15, 1B-AP-
08, 1B-AP-10, 1B-AP-12

Innovative Designer (b)

Computational Thinker (b)

Read, Edit, and Evaluate Pro-
grams

1A-AP-13, 1A-AP-14, 1B-AP-
12, 1B-AP-15

Innovative Designer (c)

Self-Regulation 1A-AP-12, 1B-AP-13 Empowered Learner (a)

Digital Citizen (b)

Knowledge Constructor (a)

Innovative Designer (b)

Cooperation with Others 1A-AP-15, 1A-IC-17, 1B-AP-
16, 1B-IC-20

Creative Communicator

Global Collaborator

APPLICATION OF PLR
To demonstrate our PLR’s usefulness, we applied it to programming classes at a Japanese elementary
school in 2017, 2018, and 2019. The targeted students were fourth-grade students aged 9–10 in 2017
and 2018; 43 students participated in 2017 and 39 participated in 2018. In 2019, the PLR was applied
to programming instruction for 75 sixth graders (ages 11 and 12). This programming class was
planned by an elementary school teacher. The class contents were focused on basic programming
concepts, and the material focused on programming a robot. Because the robot used in the lessons
differed between 2017, 2018, and 2019, the study was aimed to confirm the PLR evaluation’s inde-
pendence from the tools and methods.

EVALUATION METHOD
Effectiveness of learning computer programming in the participating class was evaluated with quiz-
zes. We evaluated learning stages by mapping programming quiz contents to the PLR. Each year
comprised two lessons, each lasting 45 minutes. Quizzes were given before the first and after the sec-
ond class. Students were allocated 30–45 minutes to complete the quizzes. Each quiz was explained
to the teachers and was conducted under their supervision. Table 4 outlines the types of quiz ques-
tions, and Figure 2 presents examples of before and after class quiz questions. The before and after

Measuring and Visualizing the Effects of Learning Computer Programming

210

quizzes had the same format and tested the same programming topics; however, the questions dif-
fered slightly. Figures B1, B2, and B3 in Appendix B provide examples of the quizzes. Table 5 shows
the correspondences between the quiz contents and PLR stages. A correct response in the quiz indi-
cated that the student had reached the corresponding PLR stage in Table 5. The analysis for 2019 dif-
fered from that for 2017 and 2018, in that the grade levels of the students were different, and the
quizzes given were different. The quizzes conducted in in 2017 and 2018 covered up to Q4 in Table
4. In 2019, the following two additional questions were asked:

 Q7: Selecting the type of input device
 Q8: Selecting a value that can be measured by a sensor

Table 4. Details of quizzes

No. About Quiz form

Q1 Simple repeat Four-choice question

Q2 Simple conditional branching processing. Handwriting question

Q3 Finding a rule from a given sequence Numerical sequence filling question

Q4 Thinking of algorithms using the law in Q3 Handwriting question

Q5 Drawing a free line through all squares in one stroke Handwriting question

Q6 “How did you draw that line?” in Q5 Handwriting question

Figure 2. Programming quiz example

Saito, Kaieda, Washizaki, & Fukazawa

211

Table 5. Correspondence between quiz and rubric

 Programming concept Designing programs Creating programs

Se-
quen
ce

Loop Con-
di-
tional

Sub-
divi-
sion

Anal-
ysis

Ex-
trac-
tion

Construction and
Functionalization

Design
Docu-
ment

Use of Program-
ming Concepts

Q1 2 2

Q2 2

Q3 3 3

Q4 3 3

Q5 2

Q6 4 4 4

* The numbers in the table indicate the stage of PLR.

Table 6 shows the correspondence between this quiz and the rubric. If both Q7 and Q8 are an-
swered correctly, the “Construction of Computer” learning achievement level will be evaluated as
“3.” In addition, Q6 is a free-form question. Hence, if the answer is correct, the document design
stage is evaluated as “2” (Table 5). However, as this question has multiple correct answers, it can be
evaluated in several ways, as different ways of thinking about programming. However, this survey did
not include this in the evaluation.

Table 6. Correspondence between quiz and rubric (questions added for sixth grade)

 Construction of computer

Q7 2 3

Q8 2

* The numbers in the table indicate the stage of PLR.

RESULTS

OVERALL APPLICATION RESULTS
We devised a rating scheme for the PLR based on quiz results from 2017, 2018, and 2019. Because
we surveyed the fourth graders in 2017 and 2018 and the sixth graders in 2019, the grades surveyed
were different and are reported separately. The total number of students assessed was 157. On such a
small population size, the results of the rubric assessment cannot capture all effects of learning com-
puter programming. Figure 3 shows the average PLR learning stages for all students in 2017 and
2018.

Student learning phases improved between the before and after class quizzes. The students under-
stood the three elements of basic programming concepts (sequential, repeating, and conditional
branching) as independent elements before the programming classes commenced, but their under-
standing approached PLR stage 2 after the class. Subdivision, construction, and functionalization in
program design were all at PLR stage 1 before the classes began, indicating that most of the students
did not understand these concepts. Students understood the items of analysis, extraction, and docu-
ment design as single elements before the class. After completing the class, many students reached
PLR stage 2 in the program design evaluation item. The PLR stages of students for the “Use of Pro-
gramming Concept” item in “Creating Programs” remained unchanged after the class, possibly be-
cause the quiz evaluated this item at PLR stage 1 or 3. The students could not easily deal with multi-
ple factors in this evaluation item; however, the other results suggested that students were

Measuring and Visualizing the Effects of Learning Computer Programming

212

approaching PLR stage 2 for the other items. Figure 4 shows the results for 2019. These results sug-
gest that the learning attainment stage for the assessed items prior to the programming class is very
close to stage 2. One reason for this could be that many of the students had previous programming
experience. After completing this class, students showed an improvement in their understanding of
computer principles, construction and functionalization of behavior, and creation of a program using
each element. It seems that these students were able to combine, utilize, and develop their knowledge
of programming. However, the fact that the attainment stage had not been raised for basic program-
ming concepts suggests that these concepts serve as a sensory understanding.

Figure 3. Rubric evaluation results for 2017 and 2018

Figure 4. Rubric evaluation results for 2019

Saito, Kaieda, Washizaki, & Fukazawa

213

When applied in this manner, the PLR indicates the learning effects of classes. Additionally, although
different robot teaching materials were used in 2017 and 2018, it is possible to apply common evalua-
tion items. Therefore, our PLR does not depend on learning tools.

APPLICATION TO EACH STUDENT
Next, we evaluated learning effects at the individual level. Figure 5 shows the results of two students
in the 2018 class as an example. The PLR clarifies the different learning effects on students in the
same class. The PLR stages of both Student 1 and Student 2 changed after completing the class. Stu-
dent 1 achieved a high overall PLR stage before the class, which was improved after the class. For
example, after the class, Student 1’s PLR stage for “Program Concepts” improved from 1 to 3. Stu-
dent 2 achieved overall PLR stages 1 or 2 before the class. After the class, Student 2’s PLR stage for
“Extraction and Subdivision of Programs” in the “Designing Programs” unit increased to 3. These
results confirm that the PLR distinguishes individual students’ learning effects and thus can visualize
learning effects in learning computer programming for individual students.

Figure 5. Results from two students in the 2018 class

DISCUSSION
In this section the research questions are answered using the PLR and its application to classes in an
elementary school.

ANSWER TO RQS

RQ1: Can the evaluation criteria be proposed independently of tools and methods?
RQ1 asks whether a PLR for elementary school students can be independent of learning tools and
methods. The categories and evaluation items in our programming-focused PLR are based on exist-
ing computer science and programming evaluation standards and rubrics. Moreover, the complexity
of the evaluation can be reduced by refining the elements of the learning objectives in the existing
standards. Past research (Grover et al., 2018) suggested that creating evaluation items by referring to
existing standards, such as CSTA K-12 Computer Standards (CSTA 2017), can improve the reliability
of evaluation. We also utilized educational classifications such as the SOLO taxonomy (Biggs & Col-
lis, 2014) and Bloom’s taxonomy (Krathwohl, 2002), which have been effective in previous learning
computer programming studies. Furthermore, the stages of the evaluation items can be presented in
a form that corresponds to the stages defined in these taxonomies. The PLR was thus divided into
four learning stages and applied to programming classes at an elementary school in 2017, 2018, and

Measuring and Visualizing the Effects of Learning Computer Programming

214

2019. These classes were designed by an elementary school teacher and were implemented using dif-
ferent robot-based teaching materials each year. The PLR was applicable to both classes without
modification, demonstrating that a stepwise learning evaluation can be performed independently of
tools and methods.

RQ2: Can the proposed rubric evaluate and visualize the learning effects?
To answer RQ2, PLR analyzed the learning effects in learning computer programming. We investi-
gated whether the learning effects could be evaluated and visualized from the results, by evaluating
and visualizing programming classes at an elementary school. For evaluation, we mapped quizzes ex-
amining students’ understanding of programming to the proposed PLR. Using the PLR, we could
visualize the overall changes in the learners’ progress in each learning item, as shown in Figures 3 and
4. In some studies (Danaher et al., 2019; Grover et al., 2018), the overall results are plotted in graph-
ical form. Other visualization systems for rubric-based assessment (Villamañe et al., 2016) confirm
the usefulness of rubrics for visualizing learning effects. In addition, as shown in Figure 5, we visual-
ized and evaluated the learning outcomes of various learning items of each student in a common les-
son. Therefore, our system helps to characterize the learning effect of each student. The PLR has
made it easier to visualize the development of skills of each student from the perspective of learning
evaluation. Hence, our PLR can evaluate and visualize learning computer programming with differ-
ent teaching materials and curricula.

RQ3: In what ways does the proposed rubric based on Bloom and SOLO taxonomies
correctly evaluate students’ learning in programming?
To address RQ3, we created a PLR based on SOLO taxonomy and Bloom’s taxonomy. First, the use
of SOLO and Bloom taxonomies was helpful in creating the rubrics. As shown in previous studies,
rubrics based on SOLO and Bloom’s taxonomy have been created with well-defined assessment
stages and learning goals (Lister et al., 2006; Whalley et al., 2006). Therefore, the rubrics were useful
for the learning stage and goal setting. Second, we investigated whether the learning stage and learn-
ing goals were set correctly. As seen from the answer of RQ2, the learning effect was evaluated and
visualized, and the learning stage and learning goal settings were found to be appropriate. In addition,
in a previous study, the reliability of the rubric rating was analyzed (Mustapha et al., 2016). The rubric
used in this study is based on the pre-revision Bloom’s taxonomy level principle. Thus, the rubric is
shown to be reliable. Therefore, it suggested that the use of Bloom’s taxonomy or SOLO taxonomy
is useful for improving the reliability of the learning stage and goals. However, securing validity re-
mains a challenge. Because our PLR is designed based on the revised Bloom and SOLO taxonomies,
we need to clarify the relevance of these taxonomies. In summary, our PLR learns stages based on
SOLO taxonomy. In addition, there are learning goals based on Bloom’s taxonomy. Thus, the learn-
ing stage and learning goals can be made clearer, and the evaluation of student outcomes can be eval-
uated uniformly. Therefore, it is considered that our PLR, which is based on educational taxonomy,
can evaluate student achievement learning computer programming more accurately.

EVALUATION DIFFICULTIES
In this study, we utilized a rubric to evaluate programming education. One of the challenges faced in
this study was the difficulty of evaluation. First, verifying whether the rubric can be used for the eval-
uation target is necessary. Second, the rubric itself must be evaluated as this is key to confirming the
rubric’s validity. Assessing the rubric’s validity is important as it indicates whether the assessment of
learning effectiveness is correct. We verified the rubric’s usefulness in this study; however, its validity
remains an issue. Therefore, we will evaluate the rubric in the future.

In addition, evaluating programming understanding was a difficult task during this research. The an-
swers in many programming problems were not limited to one response. For example, in the free-
writing question (Q5 in Table 4) (Appendix B, Figure B3), students provided different correct

Saito, Kaieda, Washizaki, & Fukazawa

215

answers to “draw a line that passes through all squares in the map.” Two representative examples are
shown in Figure 6. Although both answers are correct, determining which is better depends on what
is considered important. Hence, the evaluation should consider program correctness as well as suita-
bility. For this purpose, the evaluators must list all possible answers and compare them from differ-
ent viewpoints, and this requires thorough understanding of and experience in programming. This
situation highlights one difficulty of evaluation.

Figure 6. Comparison of the two answers

RELATED WORKS
Several indicators for learning computer programming evaluations are available. Our PLR references
typical computer science standards, such as the CSTA computer science standards (CSTA, 2017),
which have been systematically created to evaluate learning computer programming. However, the
evaluation items in these standards are not stepwise but rather are evaluated as either 0 (satisfied) or 1
(not satisfied). Several PLRs, such as the one proposed by Cateté et al. (2016), are also available.
However, these rubrics depend on methods and tools, a problem our PLR is intended to resolve.
The evaluation items in our rubric are based on related research and the SOLO taxonomy and
Bloom’s taxonomy (Biggs & Collis, 2014; Krathwohl, 2002) and are divided into four learning stages.

CONCLUSIONS
We proposed a PLR for assessing learning computer programming in CSE for elementary school stu-
dents. The PLR’s assessment items refer to existing CSE indicators such as CSTA K-12 Computer
Science Standards, and the learning stages and goals refer to educational goal classifications, such as
those in the SOLO and Bloom’s taxonomies. In addition, learning goals can be evaluated at four
stages. Moreover, the PLR is designed to be independent of any particular learning computer pro-
gramming tool or method.

To ascertain the usefulness of our rubric, we applied it to computer programming classes at an ele-
mentary school in 2017, 2018, and 2019, which were designed by elementary school teachers and
used a variety of robot-based materials. The evaluation was done using a programming quiz. These
quizzes were mapped and evaluated at the learning stage of the PLR. Consequently, the PLR was able
to carry out assessments in these classes without any modification. Therefore, the evaluation of the
PLR does not depend on the educational tools and methods, and the step-by-step learning evaluation
can be performed independently. Moreover, the PLR has succeeded in assessing and visualizing stu-
dent learning effectiveness at the overall and individual levels. Therefore, the proposed PLR renders
visualizing the development of each student’s skills easy and helps to characterize the learning effect.
In addition, PLR learning stages and goals are based on SOLO and Bloom’s taxonomies, thereby im-
proving the reliability of the PLR assessment. Therefore, students’ grades can be accurately evaluated
for learning computer programming. Consequently, the proposed PLR eliminates the reliance on
specific computer programming tools and methods. Furthermore, the PLR provides a step-by-step
evaluation of learners’ computer programming skills, thereby helping to facilitate the visualization
and characterization of learning effects.

Measuring and Visualizing the Effects of Learning Computer Programming

216

LIMITATIONS AND FUTURE WORK
This study has certain limitations. First, the PLR learning goals are based on SOLO and Bloom’s tax-
onomies, and the relationship between the two classification tables must be clarified. For example,
the “Create” in Bloom’s taxonomy is unclear in relation to the Relational and Extended abstraction
stages of the SOLO taxonomy. Second, assessing all aspects of learning computer programming in
CSE in PLRs remains a challenge. There can be more than one answer in programming so that dif-
ferent students provided different answers and aspects that can be assessed.

In addition, several PLR evaluation items were assessed based on the answers to questions that tested
students’ programming understanding. The quiz contents were mapped to the PLR in the evaluation;
however, this correspondence is problematic for two reasons. First, the quiz and rubric stage map-
ping has not been validated by many assessors. To improve their relevance, more assessors could be
used to discuss the correspondence between the PLR and the quizzes, curriculum, teaching materials,
and related factors. Second, examining an evaluation item at all evaluation stages may not be possible.
For example, the elements of “Use of Programming Concepts” cannot be evaluated at stage 4 of
PLR. In future work, the PLR’s mapping method must be improved to cover all evaluation stages.

Furthermore, the present study was performed on a small population size. We will continue the eval-
uation on larger cohorts of students.

Moreover, we plan to revise the rubric to clarify and increase the number of evaluation items. We will
also reconsider the learning objectives and conduct a long-term evaluation of our rubric and quizzes.
Finally, we plan to analyze the PLR’s effectiveness on different forms of learning computer program-
ming (e.g., workshops and lectures), which will enhance the PLR’s usefulness.

ACKNOWLEDGEMENT
This work was supported by JSPS KAKENHI Grant Number JP19K14328.

REFERENCES
Alves, N. D. C., von Wangenheim, C. G., Hauck, J. C. R., & Borgatto, A. F. (2020, February). A large-scale

evaluation of a rubric for the automatic assessment of algorithms and programming concepts. Proceedings of
the 51st ACM Technical Symposium on Computer Science Education, 556-562.
https://doi.org/10.1145/3328778.3366840

Basu, S. (2019, February). Using rubrics integrating design and coding to assess middle school students’ open-
ended block-based programming projects. Proceedings of the 50th ACM Technical Symposium on Computer Science
Education, 1211-1217. https://doi.org/10.1145/3287324.3287412

Biggs, J. B., & Collis, K. F. (2014). Evaluating the quality of learning: The SOLO taxonomy (Structure of the Observed
Learning Outcome). Academic Press.

Bloom, B. S., Krathwohl, D. R., & Masia, B. B. (1984). Bloom taxonomy of educational objectives. Allyn and Bacon:
Pearson Education.

CSTA. (2017). CSTA K-12 computer science standards https://www.csteachers.org/page/standards

Cateté, V., Snider, E., & Barnes, T. (2016, July). Developing a rubric for a creative CS Principles lab. Proceedings
of the 2016 ACM Conference on Innovation and Technology in Computer Science Education, 290-295.
https://doi.org/10.1145/2899415.2899449

Danaher, M., Schoepp, K., & Kranov, A. A. (2019). Effective evaluation of the non-technical skills in the com-
puting discipline. Journal of Information Technology Education: Research, 18, 1-18.
https://doi.org/10.28945/4181

Grover, S., Basu, S., & Schank, P. (2018, February). What we can learn about student learning from open-
ended programming projects in middle school computer science. Proceedings of the 49th ACM Technical Sym-
posium on Computer Science Education, 999-1004. https://doi.org/10.1145/3159450.3159522

https://doi.org/10.1145/3328778.3366840
https://doi.org/10.1145/3287324.3287412
https://www.csteachers.org/page/standards
https://doi.org/10.1145/2899415.2899449
https://doi.org/10.28945/4181
https://doi.org/10.1145/3159450.3159522

Saito, Kaieda, Washizaki, & Fukazawa

217

ISTE (2016). ISTE standards for students (Permitted Educational Use) https://www.iste.org/standards/for-stu-
dents

Izu, C., Weerasinghe, A., & Pope, C. (2016, August). A study of code design skills in novice programmers using
the SOLO taxonomy. Proceedings of the 2016 ACM Conference on International Computing Education Research, 251-
259. https://doi.org/10.1145/2960310.2960324

Lister, R., & Leaney, J. (2003, January). First year programming: Let all the flowers bloom. Proceedings of the Fifth
Australasian Conference on Computing Education-Volume 20, 221-230.

Lister, R., Simon, B., Thompson, E., Whalley, J. L., & Prasad, C. (2006). Not seeing the forest for the trees:
Novice programmers and the SOLO taxonomy. ACM SIGCSE Bulletin, 38(3), 118-122.
https://doi.org/10.1145/1140124.1140157

Krathwohl, D. R. (2002). A revision of Bloom’s taxonomy: An overview. Theory into Practice, 41(4), 212-218.
https://doi.org/10.1207/s15430421tip4104_2

Mustapha, A., Samsudin, N. A., Arbaiy, N., Mohammed, R., & Hamid, I. R. (2016). Generic assessment rubrics
for computer programming courses. Turkish Online Journal of Educational Technology-TOJET, 15(1), 53-68.

Office of Superintendent of Public Instruction. (2018). Computer science K-12 learning standards.
http://www.k12.wa.us/ComputerScience/LearningStandards.aspx

Saito, D., Washizaki, H., Fukazawa, Y., Tamura, M., & Sakuragi, Y. (2019, February). Rubric to evaluate pro-
gramming learning of elementary school students. Proceedings of the 50th ACM Technical Symposium on Com-
puter Science Education, 1280-1280. https://doi.org/10.1145/3287324.3293807

Selby, C. C. (2015, November). Relationships: Computational thinking, pedagogy of programming, and
Bloom’s Taxonomy. Proceedings of the Workshop in Primary and Secondary Computing Education, 80-87.
https://doi.org/10.1145/2818314.2818315

Stegeman, M., Barendsen, E., & Smetsers, S. (2016, November). Designing a rubric for feedback on code qual-
ity in programming courses. Proceedings of the 16th Koli Calling International Conference on Computing Education
Research, 160-164. https://doi.org/10.1145/2999541.2999555

Thompson, E., Luxton-Reilly, A., Whalley, J. L., Hu, M., & Robbins, P. (2008, January). Bloom’s taxonomy for
CS assessment. Proceedings of the Tenth Conference on Australasian Computing Education, 78, 155-161.
http://hdl.handle.net/2292/16257

Villamañe, M., Larrañaga, M., Álvarez, A., & Ferrero, B. (2016, November). RubricVis: Enriching rubric-based
formative assessment with visual learning analytics. Proceedings of the Fourth International Conference on Technolog-
ical Ecosystems for Enhancing Multiculturality, 363-368. https://doi.org/10.1145/3012430.3012541

Whalley, J. L., Lister, R., Thompson, E., Clear, T., Robbins, P., Ajith Kumar, P. K., & Prasad, C. (2006, De-
cember). An Australasian study of reading and comprehension skills in novice programmers, using the
bloom and SOLO taxonomies. Conferences in Research and Practice in Information Technology Series.

https://www.iste.org/standards/for-students
https://www.iste.org/standards/for-students
https://doi.org/10.1145/2960310.2960324
https://doi.org/10.1145/1140124.1140157
https://doi.org/10.1207/s15430421tip4104_2
http://www.k12.wa.us/ComputerScience/LearningStandards.aspx
https://doi.org/10.1145/3287324.3293807
https://doi.org/10.1145/2999541.2999555
http://hdl.handle.net/2292/16257
https://doi.org/10.1145/3012430.3012541

Measuring and Visualizing the Effects of Learning Computer Programming

218

APPENDIX A. PROPOSED RUBRIC
 Table A1. Proposed rubric 1 (Attitude)

C
at

e-
It

em
 Stage 4 Stage 3 Stage 2 Stage 1

A
tti

tu
de

Po
si

tiv
ity

 Learners voluntarily learn
and challenge themselves
without being instructed.

Learners spontane-
ously learn without
being instructed.

Learners tackle
learning if in-
structed but do not
learn voluntarily.

Learners do not
tackle learning
even when in-
structed.

In
te

re
st

Learners take a great inter-
est in learning computer
programming through
self-evaluation. In addi-
tion, learners enjoy the
programming activities.

Learners take a
great interest in
learning computer
programming
through self-evalu-
ation.

Learners are inter-
ested in learning
computer pro-
gramming through
self-evaluation.

Learners are not
interested in learn-
ing computer pro-
gramming through
self-evaluation.

T
ou

gh
ne

ss

Learners willingly meet
difficulties during the
learning process and vol-
untarily investigate the
clues and attempt self-so-
lutions using different
methods.

Learners do not
concede when en-
countering a diffi-
culty during learn-
ing and will at-
tempt to find solu-
tions.

Learners tend to
work on learning
but concede when
faced with difficul-
ties.

Learners conceded
before the learning
has properly be-
gun.

Saito, Kaieda, Washizaki, & Fukazawa

219

Table A2. Proposed rubric 2 (Programming Concept and Construction of Computers)

C
at

eg
or

y

It
em

Stage 4 Stage 3 Stage 2 Stage 1

Pr
og

ra
m

m
in

g
C

on
ce

pt

Se
qu

en
ce

Learners understand se-
quential execution, can
read the program in or-
der from beginning to
end, can write a pro-
gram of sequential exe-
cution, and can con-
struct a program to be
sequentially executed
without requiring assis-
tance.

Learners under-
stand sequential
execution, can
read the program
in order from be-
ginning to end,
and can write a
program of se-
quential execution.

Learners under-
stand sequential
execution and can
read the program
in order from be-
ginning to end.

Learners do
not under-
stand sequen-
tial execution.

Lo
op

s

Learners understand
loops, can read looped
programs, and find
loops by themselves.
They can also incorpo-
rate loops into pro-
grams.

Learners under-
stand loops, can
read looped pro-
grams, and can
write loop pro-
grams.

Learners under-
stand loops and
can read looped
programs.

Learners do
not under-
stand how
loops are used
in programs.

C
on

di
tio

na
l

Learners understand
conditional branches,
can read programs con-
taining conditional
branches, and can incor-
porate conditional
branches into programs.

Learners under-
stand conditional
branches, can read
programs contain-
ing conditional
branches, and can
write programs
containing condi-
tional branches.

Learners under-
stand conditional
branches and can
read programs
containing condi-
tional branches.

Learners do
not under-
stand condi-
tional branch-
ing.

C
on

st
ru

ct
io

n
of

 C
om

-
pu

te
r

C
on

st
ru

ct
io

n
of

 C
om

-
pu

te
r

Learners understand the
principles of computers
and external devices,
can connect them, and
can solve any problems
that occur.

Learners under-
stand the basic
principles of com-
puters and the
connections and
roles of external
devices (mouse,
printer, and net-
work equipment).

Learners under-
stand the basic
principles of com-
puters (input–out-
put processor,
sensor, and stor-
age).

Learners do
not under-
stand the
basic princi-
ples of com-
puters and de-
vices.

Measuring and Visualizing the Effects of Learning Computer Programming

220

Table A3. Proposed rubric 3 (Designing Programs)
C

at
eg

or
y

It
em

Stage 4 Stage 3 Stage 2 Stage 1

D
es

ig
ni

ng
 P

ro
gr

am
s

Su
bd

iv
is

io
n Learners can correctly

divide large problems
into small problems that
cannot be subdivided
further.

Learners can cor-
rectly divide large
problems into
multiple small
problems.

Learners can di-
vide large prob-
lems into two or
more smaller
problems.

Learners can-
not divide a
large problem.

A
na

ly
si

s

Learners can consider
the cause and effect re-
lationship of events, de-
rive abstract rules and
principles from the spe-
cific relationship, and
write an upright thread.

Learners recognize
the relationship
between cause and
effect of an event,
and can export to
a stand thread.

Learners can no-
tice a relationship
between the cause
and effect of
events.

Learners do
not recognize
the cause and
effect rela-
tionship of an
event.

E
xt

ra
ct

io
n

Learners can select a
method that suits the
purpose with a mini-
mum number of opera-
tions.

Learners can select
a method that suits
the purpose and
take necessary ac-
tion without guid-
ance.

Learners can se-
lect a method that
suits the purpose
and decide the
necessary action
from the choices.

Learners can-
not decide a
method that
suits the pur-
pose.

C
on

st
ru

ct
io

n
an

d
Fu

nc
tio

na
liz

at
io

n

Learners realize the ob-
jective, consider the op-
timal combination of a
plurality of procedures,
and can create proce-
dures with universality
and reproducibility.

Learners achieve
the objective by a
plurality of proce-
dures, including
sequential pro-
cessing, iteration,
and conditional
branch processes.

Learners notice
that a procedure is
composed of a
plurality of steps,
and can rearrange
those steps as re-
quired.

Learners can-
not build up
combined op-
erations in a
procedure.

G
en

er
al

iz
at

io
n

Learners seek similari-
ties and relationships
between the problem
and a plurality of past
resolved problems and
finds a set of generaliza-
ble rules and principles
that can be used to re-
solve new problems.

Learners observe
that a problem can
be solved using
the approaches
used to resolve
past problems.

Learners recog-
nize events with
similarity and rela-
tionships to other
events.

Learner can-
not recognize
an association
between the
current and
previous
events.

Saito, Kaieda, Washizaki, & Fukazawa

221

Table A4. Proposed rubric 4 (Designing Programs Continued)

C
at

eg
or

y

It
em

Stage 4 Stage 3 Stage 2 Stage 1

D
es

ig
ni

ng
 P

ro
gr

am
s D

es
ig

n
D

oc
u-

m
en

t
Learners can plan and create
a design document with ref-
erence to FIG. Learners can
convey sentences, ideas, and
procedures (story maps, etc.)
in an easy-to-understand way.

Learners use ideas
and procedures to
plan and create a de-
sign document from
figures and texts
(story maps, etc.).

Learners can ex-
press ideas and
procedures in
picture form.

Learners can-
not express
ideas and
procedures.

E
xp

re
ss

io
n Learners can create new orig-

inal expressions by fully uti-
lizing various expression
methods.

Learners can imitate
expressions of exist-
ing works and incor-
porate them into
their current work.

Learners can cre-
ate their own
works using basic
expression tech-
niques.

Learners can-
not make
their own
works.

C
re

at
iv

ity

Adopting a global perspec-
tive and design, learners
achieve the purpose by asso-
ciating the nature of the pro-
gram, the position of the
user, and other cues.

Learners achieve
their design goals
based on their own
understanding by
considering the
user’s position.

Learners achieve
their design goals
based on their
own understand-
ing.

Learners can-
not achieve
their design
goals.

Measuring and Visualizing the Effects of Learning Computer Programming

222

Table A5. Proposed rubric 5 (Creating Programs)
C

at
eg

or
y

It
em

 Stage 4 Stage 3 Stage 2 Stage 1
C

re
at

in
g

Pr
og

ra
m

s

U
se

 o
f P

ro
gr

am
m

in
g

C
on

ce
pt

s

Learners can create a
program, solution, or
creative expression
problems (including
sequential execution,
events, loops, condi-
tional branching, par-
allelism, and varia-
bles).

Learners can cre-
ate a program, so-
lution, or creative
expression prob-
lems (including
sequential execu-
tion, events, and
loops).

Learners can
create a pro-
gram, solution,
or creative ex-
pression prob-
lems (including
sequential exe-
cutions and sim-
ple loop).

Learners cannot
create a pro-
gram, solution,
or creative ex-
pressions.

Lo
gi

ca
l T

hi
nk

in
g

Learners can use
Boolean set logic
(e.g., condition set-
ting at the time of a
branch).

Learners can un-
derstand and use
logical structures,
such as repetition
and conditional
branching.

Learner can vis-
ually understand
the feasibility of
operations (e.g.,
whether opera-
tions can be
combined in the
correct order).

Learner cannot
apply program-
ming logic tools.

U
se

 o
f S

of
t-

w
ar

e

Learners can use pro-
gramming software
to create a program
that operates as in-
tended.

Learners can use
programming
software to create
some programs.

Learners can use
programming
software to a
limited extent.

Learners cannot
use program-
ming software.

Pr
og

ra
m

-
m

in
g

La
n-

gu
ag

e

Learners can pro-
gram in both visual-
and text-based lan-
guages.

Learners can pro-
gram in text-
based language.

Learners can
program only in
a visual-based
language.

Learners cannot
program in ei-
ther visual- or
text-based lan-
guages.

E
xp

re
ss

in
g

D
at

a

Learners can accu-
rately represent all
data as numbers or
other symbols (e.g.,
the raising and lower-
ing of the Yes/No
thumb, number rep-
resentation of colors,
and arrow represen-
tation of direction).

Learners can ac-
curately represent
some of data by
numbers or other
symbols.

Learners under-
stand that data
can be repre-
sented by num-
bers or other
symbols.

Learners cannot
understand how
all data can be
represented by
numbers or
symbols.

U
se

 o
f

Fo
rm

ul
a Learners can use a

range of arithmetic
operators and com-
parison operators.

Learners can use
operators to
change the value
of a variable.

Learners under-
stand the use of
operators in
programs.

Learners do not
understand the
use of operators
in programs.

Saito, Kaieda, Washizaki, & Fukazawa

223

Table A6. Proposed rubric 6 (Read, Edit, Evaluate Programs and Self-regulation)

R
ea

d,
 E

di
t,

E
va

lu
at

e
Pr

og
ra

m
s

R
ea

d

Learners can read
an existing pro-
gram and explain
its contents.

Learners can read an
existing program.

Learner can read
part of an existing
program.

Learners cannot
read an existing
program.

E
di

t
Learners can
change an existing
program to an-
other program.

Learners can change
part of an existing
program.

Learners can
modify an exist-
ing program.

Learners cannot
modify a pro-
gram.

E
va

lu
at

e

Learners can en-
sure that a pro-
gram works as in-
tended (i.e., can de-
bug a program).

Learners can check
that a program
works as intended.

Aided by the
teacher, learners
can verify the op-
eration of the
program.

Learners cannot
check the correct
operation of a
program.

Se
lf-

re
gu

la
tio

n Pl
an

Learners proac-
tively plan the
achievement of the
purpose or the
conditions of run-
ning the program.

Learners can proac-
tively plan the
achievement of the
objective.

Aided by the
teacher, learners
can plan the
achievement of
the objective.

Learners cannot
plan the achieve-
ment of the ob-
jective.

Sa
fe

ty
 C

on
-

si
de

ra
tio

ns
 Learners make

rules that guarantee
the safety of their
own working envi-
ronment.

Learners make rules
for safe operation in
their working envi-
ronment.

Learners under-
stand the need for
a safe working
environment.

Learners do not
understand
safety concerns.

Measuring and Visualizing the Effects of Learning Computer Programming

224

Table A7. Proposed rubric 7 (Cooperation with Others)
C

oo
pe

ra
tio

n
w

ith
 O

th
er

s

A
nn

ou
nc

e
ow

n
Id

ea
s Learners present their

ideas in a way that ex-
presses their thought
processes

Learners emphasize
their thought pro-
cesses

Learners can an-
nounce their thought
processes

Learners
cannot for-
mulate
thought pro-
cesses

U
nd

er
st

an
d

O
th

-
er

s’
 I

de
as

Learners are willing to
hear the announce-
ments of others, and
can reference them to
improve their own
work

Learners are willing to
hear and apply the an-
nouncements of oth-
ers

Learners can hear and
understand the an-
nouncements of oth-
ers

Learners are
unwilling or
unable to
understand
the ideas of
others

C
oo

pe
ra

tio
n

in

Pr
og

ra
m

m
in

g Learners work with
others in program-
ming teams and con-
tribute to the team ef-
fort without relying
on others

Learners work with
others in program-
ming teams and con-
tribute to the team ef-
fort without relying
on others

Learners work in part-
nership with others as
part of the team

Learners
cannot par-
take in team
program-
ming exer-
cises

C
on

tr
ib

ut
io

n
to

 G
ro

up
 W

or
k

When working in a
group, learners per-
form all three of the
following activities:
1. Actively use their
abilities to achieve
their objectives.
2. Think about solu-
tions to problems that
were clarified in the
middle of their activi-
ties.
3. Accept and analyze
the opinions of others
and compile the ideas
of the group to meet
the study objective.

When working in a
group, learners per-
form two of the fol-
lowing three activities:
1. Actively use their
abilities to achieve
their objectives.
2. Think about solu-
tions to problems that
were clarified in the
middle of their activi-
ties.
3. Accept and analyze
the opinions of others
and compile the ideas
of the group to meet
the study objective.

When working in a
group, learners per-
form one of the fol-
lowing three activities:
1. Actively use their
abilities to achieve
their objectives.
2. Think about solu-
tions to problems that
were clarified in the
middle of their activi-
ties.
3. Accept and analyze
the opinions of others
and compile the ideas
of the group to meet
the study objective.

Learners
cannot con-
tribute to
teamwork.

Saito, Kaieda, Washizaki, & Fukazawa

225

APPENDIX B. QUIZ EXAMPLE

Figure B1. Quiz Example 1 (Q2 in Table 4)

Figure B2. Quiz Example 2 (Q3 in Table 4)

Measuring and Visualizing the Effects of Learning Computer Programming

226

Figure B3. Freewriting quiz question (Q5 in Table 4)

Saito, Kaieda, Washizaki, & Fukazawa

227

BIOGRAPHIES
Daisuke Saito is an assistant professor at the School of Fundamental Sci-
ence and Engineering, Waseda University, Japan. He acquired his Doctor of
Engineering degree from Waseda University, Japan. His research interests in-
clude programming education and digital game-based learning.

Shota Kaieda entered the Waseda University’s English Program and re-
ceived his Bachelor of Engineering degree in September 2020. During his
freshman year, he started working as a programming teacher for elemen-
tary school students with Scratch and Minecraft. This experience peaked
his interest and he decided to proceed with Programming Education as
his research topic for his Bachelor Thesis. The research conducted for the
thesis was a proposal and analysis on merging the mentor method with
mob programming for programming education.

Hironori Washizaki is a Professor and Associate Dean at the Research Pro-
motion Division at Waseda University, Tokyo and a Visiting Professor at the
National Institute of Informatics. He also works in industry as Outside Di-
rectors of SYSTEM INFORMATION and eXmotion. Since 2017, he has
been the lead on a large-scale grant at MEXT called enPiT-Pro SmartSE,
which encompasses IoT, AI, software engineering, and business.

Yoshiaki Fukazawa received the B.E., M.E. and D.E. degrees in Electri-
cal Engineering from Waseda University, Tokyo, Japan in 1976, 1978, and
1986, respectively. Currently, he is a professor in the Department of Infor-
mation and Computer Science, Waseda University and the Director of In-
stitute of Open Source Software, Waseda University. His research interests
include software engineering, particularly reuse of object oriented software
and agent-based software.

	Rubric for Measuring and Visualizing the Effects of Learning Computer Programming for Elementary School Students
	Abstract
	Introduction
	Background
	Evaluation Standards and Rubrics
	Taxonomy
	SOLO taxonomy
	Bloom’s taxonomy

	Materials and Methods
	Design of Rubric for Learning Computer Programming
	Evaluation categories and items
	Four developmental stages
	Correspondence with items in the existing standards

	Application of PLR
	Evaluation Method

	Results
	Overall Application Results
	Application to Each Student

	Discussion
	Answer to RQs
	RQ1: Can the evaluation criteria be proposed independently of tools and methods?
	RQ2: Can the proposed rubric evaluate and visualize the learning effects?
	RQ3: In what ways does the proposed rubric based on Bloom and SOLO taxonomies correctly evaluate students’ learning in programming?

	Evaluation Difficulties

	Related Works
	Conclusions
	Limitations and Future Work
	Acknowledgement
	References
	Appendix A. Proposed Rubric
	Appendix B. Quiz Example
	Biographies

