

Volume 19, 2020

Accepting Editor France Cheong │Received: November 1, 2019│ Revised: January 6, February 3, February 13,
2020 │ Accepted: February 18, 2020.
Cite as: Hassenfeld, Z. R., Govind, M., de Ruiter, L., E., & Bers, M. U. (2020). If you can program you can
write: Learning introductory programming across literacy levels. Journal of Information Technology Education: Re-
search, 19, 65-85. https://doi.org/10.28945/4509

(CC BY-NC 4.0) This article is licensed to you under a Creative Commons Attribution-NonCommercial 4.0 International
License. When you copy and redistribute this paper in full or in part, you need to provide proper attribution to it to ensure
that others can later locate this work (and to ensure that others do not accuse you of plagiarism). You may (and we encour-
age you to) adapt, remix, transform, and build upon the material for any non-commercial purposes. This license does not
permit you to use this material for commercial purposes.

IF YOU CAN PROGRAM YOU CAN WRITE:
LEARNING INTRODUCTORY PROGRAMMING ACROSS

LITERACY LEVELS
Ziva R. Hassenfeld* Tufts University, Medford, MA, USA Ziva.Hassenfeld@tufts.edu

Madhu Govind Tufts University, Medford, MA, USA Madhu.Govind@tufts.edu

Laura E. de Ruiter Tufts University, Medford, MA, USA Laura.DeRuiter@tufts.edu

Marina Umaschi Bers Tufts University, Medford, MA, USA Marina.Bers@tufts.edu

* Corresponding author

ABSTRACT
Aim/Purpose This paper presents findings on a curricular intervention aimed at integrating

computer programming with reading and writing in early elementary school. The
purpose of this research was to explore the relation between students’ varying lit-
eracy levels and their level of success in mastering an introductory programming
language.

Methodology This curricular intervention study was implemented in a single school district in
southeastern Virginia. Of the district’s 33 elementary schools, eight schools re-
ceived an external grant from the U.S. Department of Defense to introduce com-
puter science in early elementary education. Standardized literacy test scores were
correlated with internally developed, and age appropriate programming assess-
ment scores from N = 132 second grade students.

Contribution This study is the first of its kind to look at how students at varying literacy levels
succeed in mastering an introductory programming language when introduced
through a literacy lens.

Findings The findings indicated that there was strong evidence for a weak, positive correla-
tion between students’ literacy levels, as determined by the PALS assessment, and
their programming mastery, as determined by the curricular programming assess-
ments. The positive correlation suggests that there may indeed be underlying con-
structs that overlap between literacy and programming.

https://doi.org/10.28945/4509
https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/
mailto:Ziva.Hassenfeld@tufts.edu
mailto:Madhu.Govind@tufts.edu
mailto:Laura.DeRuiter@tufts.edu
mailto:Marina.Bers@tufts.edu

If You Can Program You Can Write

66

Recommendations
for Practitioners

Consider integrating computer programming as a foundational component of the
literacy curriculum, especially in the early grades, where the two skill sets can mu-
tually support one another.

Recommendations
for Researchers

Additional research is necessary, using a variety of literacy and programming
measures, to continue to understand the relationship between emerging literacy
and emerging computer programming skills.

Impact on Society Reimagining computer programming as a language has significant implications for
how we teach programming in schools and how students then use programming
out in the workforce.

Future Research Future work will repeat this curricular intervention with younger students: the dis-
trict’s first grade and kindergarten classrooms. Introducing programming through
the Coding as Literacy (CAL) approach even earlier in students’ literacy trajecto-
ries, we believe, will allow the positive impact of programming knowledge to in-
fluence students’ literacy development. In this next phase of our research agenda,
we will collect pre and post literacy scores, both standardized and internally devel-
oped, to see the myriad ways that programming knowledge impacts literacy.

Keywords emerging programming, pedagogy, curricula, early childhood, computer science
education, literacy

INTRODUCTION
Simon, a second grade student in southeastern Virginia, participated in a 12-hour robotics-based pro-
gramming curriculum. The experience was different than his other classes. He had never seen a tangi-
ble programming language. The KIBO robotics kit and its accompanying wooden blocks were noth-
ing like the screen-based programming puzzles he had done on Code.org. The curriculum combined
learning of the robotics kit and the programming language blocks with a children’s book. Simon was
used to clear distinctions among his various subjects, so having “KIBO Time” in the middle of his
typical reading block was unusual but refreshing. All of the questions his teachers asked in the les-
sons were open-ended, and so too were the prompts he was asked to work on in his design journal.
He was continually asked to think, create, imagine and revise his work in a way that he isn’t often
asked to do in school. Simon is a “PALS-identified” literacy student, which means he performed be-
low average on the Phonological Awareness Literacy Screening (PALS) assessment and thus qualifies
for remedial literacy instruction. However, his writing in his design journal to document his process
was clear, engaging, and sophisticated—and so were the programs he wrote for the KIBO robot. Si-
mon, in this new learning context, asserted a very different student identity. He was far from reme-
dial. As a composer of program and prose, he was exceptional.

Simon was part of a district-wide initiative to pilot the integration of computer science into the core
curriculum at the early elementary level. Thirteen second grade classrooms (N = 132 students) partic-
ipated in a 12-lesson robotics curriculum that incorporates the tangible KIBO robotics platform (see
e.g., Bers, 2018b) and explicitly connects programming concepts to parallel concepts in natural lan-
guage and literacy. The goal of the curriculum, called CAL, is to understand “coding as literacy”
(CAL), that is, programming as a creative, meaning-making, and communicative act, as is the case
with reading and writing. This pilot study, which took place in a complex district in Virginia, the first
U.S. state to mandate the teaching of computer science in K-12 education, was the first to explore
how students engage with programming through the CAL approach.

For decades, researchers have been interested in the correlation between programming knowledge
and other academic knowledge, or, more precisely, the possibility of transfer from programming
skills to other disciplines and domains (see e.g., Denning, 2017; Scherer, 2016). Recently, Scherer,

Hassenfeld, Govind, de Ruiter, & Bers

67

Siddiq and Sánchez Viveros (2018) published a meta-analysis of 105 studies that looked at the trans-
fer of programming skills to a variety of domains. They found a positive transfer effect to situations
that require creative thinking, mathematical skills and metacognition, but they found very little trans-
fer effect to students’ literacy skills. Scherer et al. conclude, “Reading comprehension and writing
skills [are] skills that overlap only marginally with programming,” (p. 783). However, the authors note
that there were relatively few studies that explored the transfer effect on literacy, and those studies
did not necessarily seek to foster literacy through programming.

This paper starts from a different theoretical perspective that there is significant overlap when using
natural and artificial languages (Fedorenko, Ivanova, Dhamala, & Bers, 2019) and specifically, that
there is overlap between writing skills and programming skills (Bers, 2019; Vee, 2013, 2017). How-
ever, these connections have largely been overlooked by the field of computer science education
when developing pedagogical approaches. This paper presents findings on one such effort to inte-
grate programming and reading and writing in early elementary school. Specifically, we look at the
relation between students’ varying literacy levels and their level of success in mastering an introduc-
tory programming language when taught through an intentionally integrative curriculum.

CONCEPTUAL FRAMEWORK
Part of the reticence to viewing programming as connected to reading and writing is the history of
separation between subject matter. The idea that subject matter is discipline-specific and is the most
significant fault line upon which to organize classroom teaching and learning became popular in the
1980s (Reisman, 2012; Shulman & Quinlan, 1996). The underlying premise was that disciplines con-
tain distinct forms of knowledge with their own unique modes of inquiry (Bruner, 1960; Hirst, 1965;
Schwab, 1978), and as Reisman (2012) explained, “Experts in each field had normative definitions of
domain-specific knowledge and understanding,” (e.g., Schoenfeld, 1985; Shulman, 1987; Wineburg,
1991). Out of this body of research emerged the still popular idea of Pedagogical Content
Knowledge (PCK), the idea that an English teacher needs familiarity with the canon of English litera-
ture, literary theory, and, equally significant, knowledge of how to scaffold this body of knowledge
and set of skills for young students (Shulman, 1987). In other words, learning to read and think like a
historian (Wineburg, 2001) is different than learning to read and think like a scientist.

A decade later, the field of education experienced an uptick of interest in integrated curriculum
(Czerniak, Weber, Sandmann, & Ahern, 1999). Multiple national reform efforts popped up, stressing
the importance of making connections across the curriculum (see e.g., National Council of Teachers
of English [NCTE], 1996; National Council of Teachers of Mathematics [NCTM], 1989; National
Research Council [NRC], 1996). Drake and Burns (2004) write about three forms of integrated cur-
riculum, of which the curricula themselves often don’t distinguish: inter-disciplinary, multi-discipli-
nary, and trans-disciplinary. Inter-disciplinary refers to a curriculum focused on a particular skill and
applied to various disciplines (e.g., working on sourcing in science, English and biology). Multi-disci-
plinary refers to a curriculum that chooses one topic to explore in a variety of disciplines (e.g., study-
ing apples in literature, history, and chemistry). Trans-disciplinary refers to a curriculum focused on
an issue and not particular subjects (e.g., studying food scarcity in America and allowing that to touch
economics, psychology, child development, etc.).

Programming, an emerging discipline in elementary education, became associated with science and
technology and has been integrated with STEM (Science, Technology, Engineering and Mathematics)
curricula (Bers, 2019; Clements, 1999; Guzdial & Morrison, 2016). The assumed wisdom is that the
auxiliary skills for programming are math and science, not literacy. This has led to the creation of ro-
botics and programming applications that are based on solving challenges with increased complexity,
which leave out the creative and self-expressive aspects of programming that align more closely with
literacy. More recently, programming has been integrated with the arts and social sciences to fill these
gaps (Aguirre-Muñoz & Pantoya, 2016; Maguth, 2012; Sullivan & Bers, 2017; Sullivan, Strawhacker,

If You Can Program You Can Write

68

& Bers, 2017). These types of integration, however, still do not address how literacy can be fostered
through programming, hence the creation of the Coding as Literacy (CAL) approach.

The CAL Approach: Beyond Integration
The CAL approach, developed by Bers (2019), says programming is much more aligned with literacy
than ever before. CAL’s premise is that programming is a language, that is, a “system of communica-
tion, natural or artificial, composed of a formal system of signs, governed by syntactic and grammati-
cal combinatory rules, that serves to communicate meaning by encoding and decoding information”
(Bers, 2019, p. 64) and, as such, it should be taught in tandem with literacy. CAL is premised on a re-
imagination of what programming in early childhood is, itself, as a discipline.

To understand our re-imagination, it is important to return to Seymour Papert and the Construction-
ist movement. Seymour Papert proposed that the true power of computer science education was
providing students with a new medium for expression and communication through the production
of technological artifacts (Bers, 2018b; Kafai & Resnick, 1996; Papert, 1980). In other words, pro-
gramming as a language, like natural language—is a tool for expression and communication. This,
they argued, needed to be emphasized.

The CAL approach returns to Papert’s conception of programming as a tool for thinking in new
ways and expressing these ideas through the use of a computer language. In a recent article, Hassen-
feld and Bers (2020) articulated how writing and programming mirror one another as compositional
activities. We argued that writing and coding are both compositional processes that share a sub-set of
activities: planning and prewriting, creating and drafting, testing and evaluating, debugging and edit-
ing/revising.

Planning and Prewriting. In coding, planning refers to the process the programmer goes through
before she begins programming the actual composition or project. It can involve creating a flowchart
or completing a design journal (Strawhacker & Bers, 2015). In writing, prewriting refers to everything
that happens before the writer begins the actual composition. It can involve doing research on a
topic, outlining one’s composition, and planning the prose one wishes to write.

Creating and Drafting. In coding and writing, both creating and drafting refer to the actual creation
of the composition or project. The writer writes the words on the page and the programmer uses the
icons or text of the programming language.

Testing and Evaluating. In both coding and writing, testing and evaluating are the review process.
The programmer watches her program run and the writer reads her composition. This is a chance to
see whether the composition accomplishes what the writer/programmer had planned. To do so the
writer must become the reader and the programmer must become the viewer and observe the results
of the computer’s compiler.

Debugging and Editing and Revising. Debugging in coding, like editing and revising in writing, is
the activity of fixing one’s existing composition. This can involve mechanical errors (editing), for ex-
ample, the programmer forgot a start block in her programming composition and so the character
did not move, or the writer started a sentence without a capitalized letter. It can also involve stylistic
changes (revising). For example, the programmer changes her program to have a character move
fewer steps or the writer adds particular details to her written composition to help clarify. In both
cases, the composer reviews her composition, identifies the gaps, and then engages the debug-
ging/editing and revising process to address those gaps.

The fact that both compositional activities, writing and coding, involve these four sub-activities sug-
gests that the integration of coding into literacy, especially in the early grades where both skillsets are
still being developed, is essential.

For the most part, while the field of literacy has embraced technological tools produced by coding,
the field has yet to consider the relationship between coding and literacy (Vee, 2013; 2017). In other

Hassenfeld, Govind, de Ruiter, & Bers

69

words, while the world of literacy education understands that coding tools can be used to reinforce
key existing strategies from reading and writing (e.g., summarizing, re-telling, visualizing, compos-
ing/story-telling, and sequencing), the connection is understood to be one of support, not mutual re-
inforcement (see e.g., https://www.literacyworldwide.org/blog/digital-literacies/teaching-with-tech).
The CAL approach comes at a time where there is a rising call for thoughtful curriculum in early
childhood programming. In a recent review of the research, Buitrago Flórez et al. (2017) wrote:

It is important to mention that there is a critical gap in terms of educational research focused
on teaching and learning CS and programming. Despite the significant number of articles
written by computer scientists that investigate issues related to teaching and learning CS and
programming, research conducted by experts in the field of education are almost nonexistent
in most countries. Because social and cultural factors have a direct impact in learning, they
must be taken into account in curricula design. Thus, constructivist, sociocultural, and
pedagogical approaches are needed to create curricula that are geared toward the de-
velopment of CT skills in primary, middle, and high school. These skills will, without
a doubt, be fundamental for the vast majority of jobs in the 21st century (p. 852).

The CAL-KIBO curriculum begins to fill this gap. The curriculum takes programming outside of
STEM and reframes it as a language. The curriculum is centered around children’s books and has stu-
dents create interpretations and text-to-world connections through open-ended, tangible program-
ming projects and written compositions.

THE CAL-KIBO CURRICULUM
In order to introduce programming as a language, to be used for communication and expression, the
CAL-KIBO curriculum explicitly connects each programming concept to parallel concepts in natural
language and literacy.

The CAL-KIBO curriculum (CAL-K) consists of 12 one-hour lessons oriented around the popular
children’s book Where the Wild Things Are by Maurice Sendak. Topically, the lessons are designed to
introduce students to the KIBO programming language, beginning with the easier programming
blocks and then moving into the more difficult programming blocks. Before introducing any pro-
gramming blocks, there are a number of foundational activities in the first two lessons that establish
programming as a language. One activity (Lesson 1: Programmers and Writers) visually presents the
Design Process next to the Writing Process and has the students discuss the similarities and differ-
ences between programmers and writers. Another activity (Lesson 2: Tools of Communication) has
the students play a game of telephone first with whispering, then with a handwritten message and fi-
nally with a typed message. The students explore how the canvas/medium of communication im-
pacts the clarity of the message. For example, typed messages are easier to decipher than handwritten
messages for some readers but maybe not for others. Computers are also readers of code but very
different readers than humans.

After these introductory lessons, the curriculum begins introducing the KIBO robot and its program-
ming blocks. As the programming blocks are introduced, the curriculum weaves between what the
new blocks can do and the connections back to natural language. This connection is mediated in the
curriculum through the focus book, Where the Wild Things Are. For example, one activity (Lesson 6:
What Did Max Sense) reviews the way the protagonist of the book, a little boy named Max, uses his
five senses in the story. This activity leads into the introduction of the various sensors and sensor
blocks in the KIBO programming language and robotics kit. The teachers are guided to lead a discus-
sion comparing the “poetic” language used in the story to describe Max’s senses and the contrasting
command language needed for sensor blocks in the KIBO programming language. Another activity
(Lesson 8: Repeated Loops) looks at how repetition is used as a literary device in Where the Wild
Things Are and compares and contrasts that to the efficiency of using repeat blocks in the KIBO pro-

https://www.literacyworldwide.org/blog/digital-literacies/teaching-with-tech

If You Can Program You Can Write

70

gramming language. These sorts of activities are augmented with other activities that support stu-
dents in understanding programming as a language. For example, debugging is introduced as the pro-
gramming corollary to revising. Just as writing doesn’t always perfectly convey our message to the
reader, our programs don’t always perfectly convey our intended message to the robot. We revise and
debug to perfect our communication.

The final project in the curriculum has students create a “Wild Rumpus” in both writing and pro-
gramming. In the book Where the Wild Things Are, the Wild Rumpus takes up six wordless pages. The
students are invited to imagine what was happening in the Wild Rumpus and add their own ideas as
to what might be fun to do during a Wild Rumpus. The students describe the Wild Rumpus in writ-
ing and then try to program their KIBO to do it. Between compositional activities, after writing and
before programming, the students engage in a meta-cognitive reflection on the constraints and af-
fordances of expression in natural language and programming. To accomplish this, the students par-
ticipate in a technology circle where the teacher poses the following questions: Are there certain ac-
tivities that you wrote about that you can code with KIBO? Are there certain activities you wrote
about that might not work with KIBO? How will you change your idea so that it makes sense for
KIBO?

Over the course of the curriculum, students gain a foundational understanding of programming con-
cepts such as algorithmic thinking, debugging and control structures and discuss how they are analo-
gous to literacy concepts such as story structure, awareness of audience and tools of communication,
among others. By the end of this introductory programming curriculum, algorithmic thinking is con-
nected to sequencing in stories, debugging is connected to revision, and control structures are linked
to cause and effect in storytelling. Both writing and programming are framed for the children as tools
for self-expression and creative communication.

KIBO PROGRAMMING LANGUAGE
The curriculum described here utilizes KIBO robotics and its tangible programming language. The
KIBO robotics kit is a block programming language created by the DevTech Research Group
through funding from the National Science Foundation. KIBO involves hardware (the robot itself)
and software (tangible programming blocks) used to make the robot move (Sullivan & Bers, 2015).
KIBO, as a beginner programming language, is explicitly designed to meet the developmental needs
of young children. The kit contains easy-to-connect construction materials including: wheels, motors,
light output, and a variety of sensors. KIBO’s language is displayed on interlocking wooden program-
ming blocks (see Figure 1). These wooden blocks contain no embedded electronics or digital compo-
nents. Instead, KIBO has an embedded scanner in the robot. This scanner allows users to scan the
KIBO robot with sensors and light output attached. No computer, tablet, or other form of ‘‘screen-
time’’ is required to learn programming with KIBO.

KIBO’s programming language contains a total of 21 different individual programming blocks, with
many increasingly complex programming concepts that can be introduced such as repeat loops, con-
ditional statements and nesting statements. As a block-based programming language, KIBO supports
the act of programming by “encoding the grammar of the language” into the individual blocks using
specific color and shape attributes (Weintrop & Wilensky, 2015, p. 200). For instance, every program
begins with a green “begin” block, and a blue block with a left arrow icon corresponds to a “turn
left” action. Assembling and scanning a sequence of KIBO blocks introduces children to the central
ideas of programming in a way that is playful, tangible, and easy to use.

Hassenfeld, Govind, de Ruiter, & Bers

71

Figure 1. KIBO Robotics Kit

Tangible programming interfaces like KIBO are important tools for learning for young children. Re-
search on educational robotics indicate that children show cognitive gains by being able to physically
manipulate blocks and visualize their thought processes; behavioral gains by showing greater motiva-
tion for learning; and socioemotional gains by working collaboratively with peers to assemble their
robotic creations (Horn & Bers, 2018). Recent research on KIBO has shown that beginning in pre-
kindergarten, children are able to master foundational sequencing concepts using KIBO’s program-
ming language (Sullivan & Bers, 2015, 2017; Sullivan, Strawhacker, & Bers, 2017). This study also
found that as children got older, they were able to master more complex concepts such as repeat
loops and conditional statements (Sullivan & Bers, 2015). In addition to these robotic and program-
ming components, the KIBO kit also contains art platforms that can be used for children to person-
alize their projects with crafts materials.

KIBO was designed to be developmentally appropriate and to be used alongside curriculum. In the
aforementioned section, we described the scope and sequence of the CAL-KIBO curriculum and
how students engage with the KIBO robotics kit through the CAL pedagogical approach. In these
subsequent sections, we describe the pilot study in which the CAL-KIBO curriculum was imple-
mented.

RESEARCH QUESTION
This pilot study is part of a larger research agenda into CAL that involves several dimensions: 1) the
creation of programming environments, such as KIBO robotics and ScratchJr explicitly designed
with a literacy approach (Bers, 2018a), 2) curricular materials for emergent and early readers; 3) a ped-
agogical approach with professional development strategies that explicitly highlight the connection
between the activity of programming and the mastering of a natural language and its uses to convey
meaning, 4) classroom studies to understand the affordances of this approach compared to other ap-
proaches, and 5) experimental studies in lab settings to characterize cognitive mechanisms using
fMRI techniques to explore if the language networks in the brain activate when programming.

In this paper, we will explore one such classroom study in a complex district in Virginia, specifically
focusing on how students of different literacy levels succeeded with the CAL curriculum. We asked
the following research question: Among the second grade students who participated in the CAL-
KIBO curriculum, did the students at higher literacy levels, as measured by a standardized literacy as-
sessment, gain greater mastery of the programming curriculum than the students at lower literacy lev-
els?

If You Can Program You Can Write

72

METHOD

PARTICIPANTS/CLASSROOM CONTEXT
This study was implemented in a single school district in southeastern Virginia with a high percentage
of military-connected students. Of the district’s 33 elementary schools, eight schools received an ex-
ternal grant from the U.S. Department of Defense to introduce computer science in early elementary
education. We focused this research on four of these eight schools because they followed similar
training and implementation schedules. Teachers from these four schools attended the same one-day
training in the fall and subsequently implemented the CAL-KIBO curriculum in the spring. The ana-
lytic sample for this pilot study was N = 132 students (Mage = 7.61 years, SD = 0.38) from 13 class-
rooms (and thus, 13 second grade teachers). Only students whose teachers implemented the curricu-
lum with adequate fidelity and who participated in both literacy and programming assessments were
included in the analytic sample. For further details on our standards for inclusion, see Appendix A.

TEACHER TRAINING AND SUPPORT
Participating teachers agreed to implement the curriculum twice a week (two lessons, approximately
one hour per lesson) for six weeks between February and March 2019. None of the teachers had
prior programming experience or were familiar with the CAL approach before this study. All partici-
pating teachers attended a full-day training in the fall semester, which introduced teachers to the CAL
approach, the KIBO robotics kit, and the scope and sequence of the CAL-KIBO curriculum. Partici-
pating teachers also engaged in ongoing professional learning throughout implementation, including
video tutorials for every lesson, coaching calls with our team, and additional in-person support from
the schools’ instructional technology resource technicians (ITRTs). ITRTs participated in the same
training as teachers and attended two additional days of professional learning, conducted by the re-
search team, on how to observe classrooms and provide support for teachers.

DATA SOURCES

PHONOLOGICAL AWARENESS AND LITERACY SCREENING (PALS)
Developed by the University of Virginia Curry School of Education and supported by the Virginia
Department of Education, PALS (https://pals.virginia.edu/) is the state-provided screening tool for
the Virginia Early Intervention Reading Initiative (EIRI). The purpose of EIRI is “to reduce the
number of children with reading problems by detecting those problems through early diagnosis and
immediate intervention,” (Introduction and Overview, p. 3). This assessment looks at phonological
awareness, alphabet knowledge, letter-sound knowledge, phonetic spelling, concept of word, and
word recognition. Tasks and items were selected “because of their standing in literacy research, their
technical properties, and their correlation to the Commonwealth of Virginia’s Standards of Learn-
ing,” (Introduction and Overview, p. 3). Through PALS, students who need additional literacy in-
struction/intervention services are identified. The PALS assessment score used in this research was
administered in late November 2018.

Reliability of the PALS assessment is reported in the instrument’s technical manual (Invernizzi, Sulli-
van, & Meier, 2004). Average internal consistency estimates from the total pilot sample are accepta-
ble (Cronbach’s α = .83). Inter-rater reliability was reported to be stable for all tasks (r = .99).

KIBO MASTERY CHALLENGES (KMC)
The KIBO Mastery Challenges (KMCs) were used to gain insight into students’ understanding of the
KIBO programming language. The KMCs, a second iteration of the Solve-Its, utilized widely in pre-
vious studies (e.g., Sullivan & Bers, 2018; Sullivan, Bers, & Mihm, 2017; Sullivan, Strawhacker, &

https://pals.virginia.edu/

Hassenfeld, Govind, de Ruiter, & Bers

73

Bers, 2017), were embedded in the CAL-KIBO curriculum at four different points (at the end of les-
sons 4, 6, 8 and 12). They assessed students’ mastery of the KIBO programming language and pro-
gramming concepts taught up to that point in the curriculum (See Appendix B for more details about
how the KMCs aligned with the curriculum). Each of the four KMCs was comprised of six multiple
choice items with a single correct answer choice and several incorrect distractor options. The ques-
tions were phrased in an age-appropriate language. Classrooms that implemented all four KMCs
were included in the analytic sample (See Appendix A for more details on inclusion criteria).

During the administering of the KMCs, the questions were presented in the same order, and no feed-
back was provided for any question. Aligning with the increasing difficulty of subsequent lessons, the
later assessments were designed to be harder than the earlier ones due to the content of the curricu-
lum. In order to ascertain precise question difficulty, we used item response theory to calculate each
question's difficulty index. The difficulty index was used to calculate a weighted score for each ques-
tion reflective of this population, with more weight being given to more difficult questions. Once
weighted, each student’s individual KMC scores were summed to obtain a single composite score.

DATA ANALYSIS

LITERACY AND PROGRAMMING
To investigate the relationship between students’ KMC composite scores, i.e., their mastery of the
introductory programming language curriculum and their literacy ability (as measured by the PALS
score), we used Bayesian linear regression using the BayesFactor package version 0.9.12-2 (Morey &
Rouder, 2015) in R (R Core Team, 2016). Details of the implementation are provided below. With
Bayes factors, several statistical models can be directly compared with each other, and the strength of
the evidence for each model can be determined. The analysis tells us under which statistical model
our data are most likely. Researchers sometimes use verbal labels to describe the strength of the evi-
dence that the Bayes factors provide. Table 1 gives an overview of a common textual interpretation
of Bayes factor values.

Table 1. Common Textual Interpretation of Bayes Factor Values, adapted from Jeffreys
(1961), cited in Wetzels et al. (2011). HA = alternative hypothesis, H0 = null hypothesis

BAYES FACTOR INTERPRETATION

> 100 Decisive evidence for HA

30 – 100 Very strong evidence for HA

10 – 30 Strong evidence for HA

3 – 10 Substantial evidence for HA

1 – 3 Anecdotal evidence for HA

1 No evidence

1/3 – 1 Anecdotal evidence for H0

1/10 – 1/3 Substantial evidence for H0

1/30 – 1/10 Strong evidence for H0

1/100 – 1/30 Very strong evidence for H0

< 1/100 Decisive evidence for H0

If You Can Program You Can Write

74

Linear regression from the BayesFactor package allows for the incorporation of random factors such
as students. In our analysis, we are interested in the potential effect of literacy scores on students’
KMC scores, but not in the individual variance associated with each student. Including student as a
random factor allows making inferences about the role of the main effect that we are interested in
(literacy scores) that do not depend on a particular student. Similarly, we also included teacher as a
random factor, as potential teacher effects are not the focus of this pilot study.

Using the generalTestBF function in the BayesFactor package, we specified a full model with KMC
composite scores as the dependent variable, and PALS scores, gender, TeacherID, and StudentID as
independent variables (with TeacherID and StudentID specified as random factors). The function
successively removes terms from the full model and tests the resulting submodels, which can then be
compared with each other. In line with recommendations by Morey and Rouder (2011), we used a
Cauchy prior with scale parameter 1/√2 for the standardized effect size.

RESULTS

DESCRIPTIVES
KMC composite scores for the N = 132 students ranged from 1.57 to 6.24 (M = 3.36, SD = 1.08).
The distribution of scores is shown in Figure 2. PALS scores ranged from 7-68 (M = 46.58, SD =
14.33). The distribution of the scores is shown in Figure 3.

Figure 2. Histogram of KMC composite scores with overlaid density plot (N = 132).

Figure 3. Histogram of PALS entry scores with overlaid density plot (N = 132).

Hassenfeld, Govind, de Ruiter, & Bers

75

INFERENTIAL STATISTICS
The Bayesian regression determined that the preferred model contained the PALS entry score and
the random factors StudentID and TeacherID (but not gender). Comparing this model directly with
the model that does not include the PALS scores (i.e., a model with only the random effects Studen-
tID and TeacherID), we obtain a Bayes factor of 4.11. This means that the data are more than four
times more likely under the model with PALS scores than the one without, which is considered sub-
stantial evidence.

We followed up on the relationship between KMC composite scores and PALS scores with Bayesian
correlations, using the jzs_cor function in the BayesMed package (Nuijten, Wetzels, Matzke, Dolan,
& Wagenmakers, 2015). The correlation between the two variables was 0.3, with a Bayes factor of
43.85 (very strong evidence). Figure 4 shows the relationship between students’ KMC composite
scores and their PALS score.

Figure 4. Scatterplot showing the relationship between KMC composite scores and PALS en-
try scores. The blue line indicates the smoothed conditional mean, the grey area the associ-

ated confidence bands.

DISCUSSION
The CAL-KIBO curriculum was designed to introduce young students to programming as a lan-
guage, analogous to a natural language in its expressiveness and open-endedness within a pre-set sys-
tem of rules and vocabulary. In this pilot study we sought to investigate whether students at higher
literacy levels would also perform higher in programming, compared to students at lower literacy lev-
els. We suspected a correlation based on our conceptual framework of programming as distinct but
akin to natural language, but we did not know how strong the correlation would be.

The findings indicated that there was strong evidence for a weak, positive correlation between stu-
dents’ literacy levels, as determined by the PALS assessment, and their programming mastery, as de-
termined by the KMCs. The size of the correlation is in line with previous related research on the re-
lationship between computational thinking and verbal ability in older children and adolescents.
Román-González, Peréz-González, and Jiménez-Fernández (2017) found a weak positive correlation
(.273) between a computational thinking test and the verbal factor of the Primary Mental Abilities
Battery (Thurstone, 1938) in 10- to 16-year-olds. While our study is not fully comparable to this
study, both indicate that language/literacy ability has some role to play when it comes to mastering
age-appropriate computational concepts.

If You Can Program You Can Write

76

The positive correlation suggests that there may indeed be underlying constructs that overlap be-
tween literacy and programming, which future experimental studies will explore more closely. How-
ever, the correlation was not so strong that lower literacy students were not able to perform well on
the KMCs. In other words, while the findings suggest a shared underlying construct between literacy
and programming that promotes students with strong literacy skills to more readily master program-
ming skills, the relationship is not deterministic. The pedagogical implications of this are significant.

The fact that students from all literacy levels were able to master an introductory programming lan-
guage, albeit, with varying levels of ease, can be leveraged for the development of literacy. Recent re-
search (Hassenfeld & Bers, 2020; Thompson, Tanimoto, Berninger, & Nagy, 2016) has shown how
programming composition can support young students in writing composition. Specifically, facility
and comfort with debugging can help students with the cognitively and conceptually difficult work of
revision in writing and enhance their motivation to do so. Furthermore, prior research has shown
that immersion in a computer programming language can lead to increases in language mechanics,
reading comprehension, and verbal creativity (Clements, 1999; Studyvin & Moninger, 1986). If stu-
dents at all literacy levels are able to master age-appropriate programming, then young children who
are learning foundational reading and writing skills can use their understanding of programming as a
resource for their writing development and other literacy skills.

There are a number of limitations inherent in the design of this study. Most significantly, we don’t
know the causality of the correlation. We don’t know whether the weak, positive correlation between
literacy levels and mastery of the KIBO programming language and programming concepts, as taught
by the curriculum, was because of the language-based nature of the curriculum, i.e., introducing pro-
gramming as a language akin to natural language and related to literacy, or if the correlation is simply
an expression of general mental ability (e.g., Spinath, Spinath, Harlaar, & Plomin, 2006), that is, that
strong students often do well in school in all curricular areas. We are also missing students’ experi-
ence of the curriculum in their own voice. How did the stronger and weaker literacy students experi-
ence the curriculum? Is there a difference in how they might self-report on the difficulty of the les-
sons? We plan to address these limitations in the next phase of this research.

Simon, introduced in the opening vignette, is a “PALS-identified” literacy student. He is below grade
level in all of the literacy markers. And yet, in the CAL-KIBO curriculum, he not only scored highly
in the KMCs, evidencing mastery of the curriculum and introductory programming language, but his
writing embedded in the curriculum was also strong. We have two hypotheses for why this might be
the case. First, taking literacy outside of the formal literacy block allowed Simon to revisit reading
and writing anew, free of his remedial literacy identity (McDermott, 2010; Steele, Spencer, & Ar-
onson, 2002). If so, developmentally appropriate programming has the potential to serve as a motiva-
tor for students struggling with reading and writing. Second, and more significantly, learning an intro-
ductory programming language through the CAL approach reinforced essential concepts for literacy,
i.e., juxtaposing algorithms in programming with sequencing and story structure in literacy. Perhaps
the practice of scanning syntactically correct and incorrect sequences of KIBO blocks allowed Simon
to transfer his understanding of algorithms into literacy as he composed writing reflections in his de-
sign journal with clear and sophisticated story structure. In our future work we hope to identify the
underlying skills of programming that permeate into literacy and the extent to which this transfer
may occur.

Future work will repeat this curricular intervention with younger students: the district’s first grade
and kindergarten classrooms. Introducing programming through the CAL approach even earlier in
students’ literacy trajectories, we believe, will allow the positive impact of programming knowledge to
influence students’ literacy development. In this next phase of our research agenda, we will collect
pre and post literacy scores, both standardized and internally developed, to see the myriad ways that
programming knowledge impacts literacy. For example, mastering a block based introductory pro-
gramming language may not impact students’ spelling inventory, but learning the powerful idea of
algorithms in computer science, i.e., that programs are constructed using step-by-step instructions,

Hassenfeld, Govind, de Ruiter, & Bers

77

may impact students’ sequencing abilities in reading, thereby improving their capacity to summarize,
predict and ask questions, all key reading strategies. The CAL pedagogical approach, as evident from
these findings, has the potential of fostering literacy through programming.

CONCLUSION
This study is the first of its kind to look at how students at varying literacy levels succeed in master-
ing an introductory programming language when introduced through a literacy lens. The findings in-
dicated that there was strong evidence for a weak, positive correlation between students’ literacy lev-
els, as determined by the PALS assessment, and their programming mastery, as determined by the
curricular programming assessments. The positive correlation suggests that there may indeed be un-
derlying constructs that overlap between literacy and programming. Educators should consider inte-
grating computer programming as a foundational component of the literacy curriculum, especially in
the early grades, where the two skillsets can mutually support one another. Additional research is
necessary, using a variety of literacy and programming measures, to continue to understand the rela-
tionship between emerging literacy and emerging computer programming skills.

REFERENCES
Aguirre-Muñoz, Z., & Pantoya, M. L. (2016). Engineering literacy and engagement in kindergarten classrooms.

Journal of Engineering Education, 105(4), 630-654. https://doi.org/10.1002/jee.20151

Bers, M. U. (2018a). Coding as a literacy for the 21st century. Education Week. Retrieved from http://blogs.ed-
week.org/edweek/education_futures/2018/01/coding_as_a_literacy_for_the_21st_century.html

Bers, M. U. (2018b). Programming as a playground: Programming and computational thinking in the early childhood classroom.
London and New York: Routledge Press. https://doi.org/10.4324/9781315398945

Bers, M. U. (2019). Programming as another language: Why computer science in early childhood should not be
STEM. In C. Donohue (Ed.), Exploring key issues in early childhood and technology: Evolving perspectives and innova-
tive approaches (pp. 63-70). https://doi.org/10.4324/9780429457425-11

Bruner, J. S. (1960). The process of education. Cambridge, MA: Harvard University Press.

Buitrago Flórez, F., Casallas, R., Hernández, M., Reyes, A., Restrepo, S., & Danies, G. (2017). Changing a gen-
eration’s way of thinking: Teaching computational thinking through programming. Review of Educational Re-
search, 87(4), 834-860. https://doi.org/10.3102/0034654317710096

Clements, D. H. (1999). The future of educational computing research: The case of computer programming.
Information Technology in Childhood Education, 1999(1), 147–179. Association for the Advancement of Compu-
ting in Education (AACE). Retrieved from https://www.learntechlib.org/p/10815/

Czerniak, C. M., Weber, W. B., Sandmann, A., & Ahern, J. (1999). A literature review of science mathematics
integration. School Science and Mathematics, 99(8), 421-430. https://doi.org/10.1111/j.1949-
8594.1999.tb17504.x

Denning, P. J. (2017). Remaining trouble spots with computational thinking. Communications of the ACM, 60(6),
33-39. https://doi.org/10.1145/2998438

Drake, S. M., & Burns, R. C. (2004). Meeting standards through integrated curriculum. Alexandria, VA: Association for
Supervision and Curriculum Development.

Fedorenko, E., Ivanova, A., Dhamala, R., & Bers, M. U. (2019). The language of programming: A cognitive
perspective. Trends in Cognitive Sciences, 23(7), 525–528. https://doi.org/10.1016/j.tics.2019.04.010

Guzdial, M., & Morrison, B. (2016). Growing computer science education into a STEM education discipline.
Communications of the ACM, 59(11), 31–33. https://doi.org/10.1145/3000612

Hassenfeld, Z. R., & Bers, M. U. (2020). Debugging the writing process: Lessons from a comparison of stu-
dents’ coding and writing practices. The Reading Teacher. https://doi.org/10.1002/trtr.1885

https://doi.org/10.1002/jee.20151
http://blogs.edweek.org/edweek/education_futures/2018/01/coding_as_a_literacy_for_the_21st_century.html
http://blogs.edweek.org/edweek/education_futures/2018/01/coding_as_a_literacy_for_the_21st_century.html
https://doi.org/10.4324/9781315398945
https://doi.org/10.4324/9780429457425-11
https://doi.org/10.3102/0034654317710096
https://www.learntechlib.org/p/10815/
https://doi.org/10.1111/j.1949-8594.1999.tb17504.x
https://doi.org/10.1111/j.1949-8594.1999.tb17504.x
https://doi.org/10.1145/2998438
https://doi.org/10.1016/j.tics.2019.04.010
https://doi.org/10.1145/3000612
https://doi.org/10.1002/trtr.1885

If You Can Program You Can Write

78

Horn, M., & Bers, M. U. (2018). Tangible computing. In S. A. Fincher, & A. V. Robins (Eds.), The Cambridge
handbook of computing education research (pp. 663-678). Cambridge, England: Cambridge University Press.
https://doi.org/10.1017/9781108654555.023

Hirst, P. (1965). Liberal education and the nature of knowledge. In R. D. Archambault (Ed.), Philosophical analy-
sis and education (pp. 113 - 138). London: Routledge.

Invernizzi, M., Sullivan, A., & Meier, J. (2004). Phonological Awareness Literacy Screening for Preschoolers (PALS-PreK).
Charlottesville, VA: University of Virginia. https://doi.org/10.1037/t27727-000

Jeffreys, H. (1961). Theory of probability (3rd ed.). Oxford: Clarendon Press.

Kafai, Y., & Resnick, M. (1996). Constructionism in practice: Designing, thinking, and learning in a digital world. Mahwah,
NJ: Lawrence Erlbaum Associates, Inc.

Maguth, B. M. (2012). In defense of the social studies: Social studies programs in STEM education. Social Studies
Research and Practice, 7(2), 65-90. Retrieved from http://www.socstrpr.org/wp-content/up-
loads/2012/08/MS06393-5.pdf

McDermott, R. P. (2010). The acquisition of a child by a learning disability. In S. Chaiklin & J. Lave (Eds.), Un-
derstanding learning: Influences and outcomes (pp. 60-70). Cambridge, England: Cambridge University Press.
https://doi.org/10.1017/CBO9780511625510.011

Morey, R. D., & Rouder, J. N. (2011). Bayes factor approaches for testing interval null hypotheses. Psychological
Methods, 16(4), 406–419. https://doi.org/10.1037/a0024377

Morey, R. D., & Rouder, J. N. (2015). BayesFactor: Computation of Bayes factors for common designs. R Packages on
CRAN. Retrieved from https://rdrr.io/cran/BayesFactor/

National Council of Teachers of English. (1996). NCTE / IRA standards for the English Language arts. Newark,
Delaware & Urbana, Illinois: International Reading Association, & National Council of Teachers of Eng-
lish. Retrieved from https://ncte.org/resources/standards/ncte-ira-standards-for-the-english-language-
arts/

National Council of Teachers of Mathematics. (1989). Curriculum and evaluation standards for school mathematics.
Reston, VA: The Council. Retrieved from http://csmc.missouri.edu/PDFS/CCM/summaries/stand-
ards_summary.pdf

National Research Council. (1996). National science education standards. Washington, DC: National Academies
Press. https://doi.org/10.17226/4962

Nuijten, M. B., Wetzels, R., Matzke, D., Dolan, C. V., & Wagenmakers, E. J. (2015). BayesMed: Default Bayesian
hypothesis tests for correlation, partial correlation, and mediation. R Packages on CRAN. Retrieved from
https://rdrr.io/cran/BayesMed/

Papert, S. (1980). Mindstorms: Children, computers, and powerful ideas. New York, NY: Basic Books, Inc.

R Core Team (2016). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Sta-
tistical Computing. Retrieved from https://www.R-project.org/

Reisman, A. (2012). Reading like a historian: A document-based history curriculum intervention in urban high
schools. Cognition and Instruction, 30(1), 86-112. https://doi.org/10.1080/07370008.2011.634081

Román-González, M., Pérez-González, J. C., & Jiménez-Fernández, C. (2017). Which cognitive abilities under-
lie computational thinking? Criterion validity of the Computational Thinking Test. Computers in Human Be-
havior, 72, 678-691. https://doi.org/10.1016/j.chb.2016.08.047

Scherer, R. (2016). Learning from the past – The need for empirical evidence on the transfer effects of pro-
gramming skills. Frontiers in Psychology, 7, 1390. https://doi.org/10.3389/fpsyg.2016.01390

Scherer, R., Siddiq, F., & Sánchez Viveros, B. (2018). The cognitive benefits of learning programming: A meta-
analysis of transfer effects. Journal of Educational Psychology, 111(5), 764-792.
https://doi.org/10.1037/edu0000314

Schoenfeld, A. H. (1985). Mathematical problem solving. Cambridge, MA: Academic Press.

https://doi.org/10.1017/9781108654555.023
https://doi.org/10.1037/t27727-000
http://www.socstrpr.org/wp-content/uploads/2012/08/MS06393-5.pdf
http://www.socstrpr.org/wp-content/uploads/2012/08/MS06393-5.pdf
https://doi.org/10.1017/CBO9780511625510.011
https://doi.org/10.1037/a0024377
https://rdrr.io/cran/BayesFactor/
https://ncte.org/resources/standards/ncte-ira-standards-for-the-english-language-arts/
https://ncte.org/resources/standards/ncte-ira-standards-for-the-english-language-arts/
http://csmc.missouri.edu/PDFS/CCM/summaries/standards_summary.pdf
http://csmc.missouri.edu/PDFS/CCM/summaries/standards_summary.pdf
https://doi.org/10.17226/4962
https://rdrr.io/cran/BayesMed/
https://www.r-project.org/
https://doi.org/10.1080/07370008.2011.634081
https://doi.org/10.1016/j.chb.2016.08.047
https://doi.org/10.3389/fpsyg.2016.01390
https://doi.org/10.1037/edu0000314

Hassenfeld, Govind, de Ruiter, & Bers

79

Schwab, J. J. (1978). The practical: A language for curriculum. In I. Westbury, & N. J. Wilkof (Eds.), Science, cur-
riculum, and liberal education: Selected essays (pp. 287–321). Chicago, IL: University of Chicago Press.

Shulman, L. (1987). Knowledge and teaching: Foundations of the new reform. Harvard Educational Review, 57(1),
1-23. https://doi.org/10.17763/haer.57.1.j463w79r56455411

Shulman, L., & Quinlan, K. (1996). The comparative psychology of school subjects. In D. Berliner & R. Calfee
(Eds.), Handbook of educational psychology (pp. 399-437). New York, NY: Simon & Schuster, Inc.

Spinath, B., Spinath, F. M., Harlaar, N., & Plomin, R. (2006). Predicting school achievement from general cog-
nitive ability, self-perceived ability, and intrinsic value. Intelligence, 34(4), 363-374.
https://doi.org/10.1016/j.intell.2005.11.004

Steele, C. M., Spencer, S. J., & Aronson, J. (2002). Contending with group image: The psychology of stereotype
and social identity threat. Advances in Experimental Social Psychology, 34, 379-440.
https://doi.org/10.1016/S0065-2601(02)80009-0

Strawhacker, A., & Bers, M. U. (2015). “I want my robot to look for food”: Comparing Kindergartner’s pro-
gramming comprehension using tangible, graphic, and hybrid user interfaces. International Journal of Technol-
ogy and Design Education, 25(3), 293-319. https://doi.org/10.1007/s10798-014-9287-7

Studyvin, D., & Moninger, M. (1986). Logo as an enhancement to critical thinking. Paper presented at Meeting of
the Logo 86 Conference, Cambridge, MA.

Sullivan, A., & Bers, M. U. (2015). Robotics in the early childhood classroom: Learning outcomes from an 8-
week robotics curriculum in pre-kindergarten through second grade. International Journal of Technology and
Design Education, 26(1), 3-20. https://doi.org/10.1007/s10798-015-9304-5

Sullivan, A., & Bers, M. U. (2017). Dancing robots: Integrating art, music, and robotics in Singapore’s early
childhood centers. International Journal of Technology and Design Education, 28(2), 325-346.
https://doi.org/10.1007/s10798-017-9397-0

Sullivan, A., & Bers, M. U. (2018). The impact of teacher gender on girls’ performance on programming tasks
in early elementary school. Journal of Information Technology Education: Innovations in Practice, 17, 153-162.
https://doi.org/10.28945/4082

Sullivan, A., Bers, M. U., & Mihm, C. (2017). Imagining, playing, & programming with KIBO: Using KIBO
robotics to foster computational thinking in young children. In S. C. Kong, J. Sheldon, & K. Y. Li (Eds.).
Proceedings of the International Conference on Computational Thinking Education (pp. 110-115). Wanchai, Hong
Kong: The Education University of Hong Kong. Retrieved from
https://www.eduhk.hk/cte2017/doc/CTE2017%20Proceedings.pdf#page=121

Sullivan, A., Strawhacker, A., & Bers, M. U. (2017). Dancing, drawing, and dramatic robots: Integrating robot-
ics and the arts to teach foundational STEAM concepts to young children. In M. S. Khine (Ed.), Robotics in
STEM education: Redesigning the learning experience (pp. 231-260). Springer, Cham.
https://doi.org/10.1007/978-3-319-57786-9_10

Thompson, R. H., Tanimoto, S. L., Berninger, V. W., & Nagy, W. (2016). Programming, reading, and writing:
Integrated instruction in written language. In Proceedings of 2016 IEEE Symposium on Visual Languages and
Human-Centric Computing (VL/HCC) (pp. 73-77). Cambridge, UK: IEEE.
https://doi.org/10.1109/VLHCC.2016.7739667

Thurstone, L. L. (1938). Primary mental abilities. Chicago, IL: University of Chicago Press.

Vee, A. (2013). Understanding computer programming as a literacy. Literacy in Composition Studies, 1(2), 42-64.
https://doi.org/10.21623/1.1.2.4

Vee, A. (2017). Programming literacy: How computer programming is changing writing. Cambridge, MA: The MIT Press.
https://doi.org/10.7551/mitpress/10655.001.0001

Weintrop, D., & Wilensky, U. (2015). To block or not to block, that is the question: Students’ perceptions of
blocks-based programming. Proceedings of the 14th International Conference on Interaction Design and Children (IDC
'15) (pp. 199–208). https://doi.org/10.1145/2771839.2771860

https://doi.org/10.17763/haer.57.1.j463w79r56455411
https://doi.org/10.1016/j.intell.2005.11.004
https://doi.org/10.1016/S0065-2601(02)80009-0
https://doi.org/10.1007/s10798-014-9287-7
https://doi.org/10.1007/s10798-015-9304-5
https://doi.org/10.1007/s10798-017-9397-0
https://doi.org/10.28945/4082
https://www.eduhk.hk/cte2017/doc/CTE2017%20Proceedings.pdf#page=121
https://doi.org/10.1007/978-3-319-57786-9_10
https://doi.org/10.1109/VLHCC.2016.7739667
https://doi.org/10.21623/1.1.2.4
https://doi.org/10.7551/mitpress/10655.001.0001
https://doi.org/10.1145/2771839.2771860

If You Can Program You Can Write

80

Wetzels, R., Matzke, D., Lee, M. D., Rouder, J. N., Iverson, G. J., & Wagenmakers, E. J. (2011). Statistical evi-
dence in experimental psychology: An empirical comparison using 855 t tests. Perspectives on Psychological Sci-
ence, 6(3), 291–298. https://doi.org/10.1177/1745691611406923

Wineburg, S. (1991). Historical problem solving: A study of the cognitive processes used in the evaluation of
documentary and pictorial evidence. Journal of Educational Psychology, 83(1), 73-77.
https://doi.org/10.1037/0022-0663.83.1.73

Wineburg, S. (2001). Historical thinking and other unnatural acts: Charting the future of teaching the past. Philadelphia,
PA: Temple University Press.

https://doi.org/10.1177/1745691611406923
https://doi.org/10.1037/0022-0663.83.1.73

Hassenfeld, Govind, de Ruiter, & Bers

81

APPENDIX A
Inclusion Criteria

From the four elementary schools, 333 total students from 15 classrooms participated in the CAL-
KIBO curriculum. Included in the final dataset were only those classrooms that met the project’s
standards for inclusion, detailed in the chart below. The analytic sample for this study was N = 132
students (Mage = 7.61 years, SD = 0.38) from 13 classrooms. Sex was split almost evenly: 49.2% fe-
male and 50.8% male. The majority of students (87.9%) were identified as Native English speakers
and 3.0% as Dual Language Learners. Chi-square tests revealed no significant demographic differ-
ences in sex, number of Native English speakers, and number of Dual Language Learners between
the analytic and full samples.

COMPONENT DESCRIPTION CRITERION

Classroom observa-
tions

Instructional technology specialists (ITRTs)
observed classrooms at least three times over
the course of implementation using the Posi-
tive Technological Development (PTD)
Checklist for Environment and Facilitators
(see e.g., Bers, 2018b).

At least three observations
were recorded. Teachers
who met inclusion standards
received moderate-to-high
observation scores.

Teacher self-report Teachers participated in surveys, interviews
and lesson logs in order to capture their per-
ceptions and experiences with the curricu-
lum.

• Surveys were administered online at four
time points (pre/post training and
pre/post curriculum).

• Interviews were conducted either in-per-
son or via conference call at five time
points (pre/during training and
pre/mid/post curriculum).

• Lesson logs, completed by teachers at
the end of every lesson, captured teach-
ers’ highlights and challenges during the
lesson and how they may have modified
the lesson to meet their classroom’s
needs.

Teachers participated in mul-
tiple surveys, interviews, and
lesson logs and displayed ad-
equate adherence to the
CAL-KIBO curriculum.

Student data Students actively participated in the curricu-
lum, evidenced by their design journals and
KIBO Mastery Challenges (KMCs).

• Student design journals consisted of
writing prompts and programming re-
flections at the end of every lessons.

• KMCs were administered four times at
the end of every few lessons (see Appen-
dix A).

Classroom was included if
the majority of students had
completed prompts in design
journals and participated in
all four KMCs.

If You Can Program You Can Write

82

APPENDIX B
KIBO Mastery Challenges - Match to Curriculum

The CAL-KIBO curriculum is accessible using this link: https://sites.tufts.edu/programmingaslit-
eracy/kibo-readers/. Embedded within the curriculum are four six-item KIBO Mastery Challenges
(KMCs), which assess students’ mastery of the KIBO programming language and the programming
concepts taught up to that point in the curriculum.

ITEM
NUMBER

TYPE OF QUES-
TION CURRICULAR CONCEPT & REFERENCE

1A Programming Con-
cept

Engineers follow a series of steps called the Design Process to turn
their ideas into projects that are shared with others. (Lesson 1, Activ-
ity: What is an Engineer, p. 18-19)

2A Programming Con-
cept

Both the Design and Writing Processes are cycles - there’s no offi-
cial starting or ending point. You can begin at any step, move back
and forth between steps, or repeat the cycle over and over. (Lesson
1, Activity: Engineers and Writers, p. 18-19)

3A Programming Con-
cept

A KIBO robot and computer are most alike because they are both
machines. A pig and a house are not machines. A bike may look
like a KIBO (both have wheels), but a bike is not a programmable
machine. (Lesson 2, Activity: Characteristics of Robots, p. 21)

4A KIBO Hard-
ware/Software

The KIBO body is a part of the KIBO robot. (Lesson 3, Meet the
KIBO Robot, p. 26)

5A Programming Con-
cept

All robots use computers to perform a function (e.g., movement)
and have computers in them. Computers are not programmed to
perform physical tasks and therefore are not robots. (Lesson 2,
Characteristics of Robots, p. 21)

6A KIBO Syntax
Each KIBO program begins with the green “Begin” block and
ends with the red “End” block. (Lesson 4, Program the Hokey-Pokey,
p. 28)

1B Evaluate the KIBO
Program

A program is a sequence of instructions that the robot performs in
order. To make KIBO spin twice, the correct program sequence is
“Begin, Spin, Spin, End”. (Lesson 2, Activity: Human Language vs.
Code Language, p. 23)

2B Evaluate the KIBO
Program

Debugging is a method that describes how people find errors in
their programs and use different strategies to solve the problem.
The green “Begin” block is missing at the start of this program.
(Lesson 5, Why is KIBO Confused, p. 31)

3B KIBO Hard-
ware/Software

KIBO’s Sound Sensor is shaped like an ear and senses sounds
from the environment using the “Wait for Clap” block. (Lesson 6,
KIBO Sound Sensor, p. 34-35)

https://sites.tufts.edu/codingasliteracy/kibo-readers/
https://sites.tufts.edu/codingasliteracy/kibo-readers/

Hassenfeld, Govind, de Ruiter, & Bers

83

ITEM
NUMBER

TYPE OF QUES-
TION CURRICULAR CONCEPT & REFERENCE

4B Identify the KIBO
Program

In programming, an event is an action that causes something to
happen. In order for KIBO to shake only after it hears a clap, the
correct program is “Begin, Wait for Clap, Shake, End”. (Lesson 6,
KIBO Sound Sensor, p. 34-35)

5B KIBO Hard-
ware/Software

The Sound Recorder module, like any other sensor, can be inserted
into any of the four ports on the KIBO body. (Lesson 6, KIBO
Sound Recorder, p. 36)

6B KIBO Hard-
ware/Software

The Sound Recorder module has three different buttons—square,
triangle, and circle—which correspond to three orange Sound Re-
corder blocks: “Play ▢”, “Play △”, and “Play ◯”. (Lesson 6, KIBO
Sound Recorder, p. 36)

1C Evaluate the KIBO
Program

Parameters are used to tell the robot how many times to repeat, or
when to stop repeating. In this program, the red light repeats
twice. (Lesson 8, KIBO Repeat with Number, p. 42)

2C Identify the KIBO
Program

KIBO will only repeat commands that are placed inside of the
“Begin Repeat” and “End Repeat” blocks. (Lesson 8, KIBO Repeat
with Number, p. 42)

3C Programming Con-
cept

Before exploring repeat loops, students examine different KIBO
programs and identify repeating patterns. In this question, the pat-
tern is that each program has one additional “Beep” block than the
program before it. (Lesson 8, KIBO Repeat with Number, p. 41)

4C Evaluate the KIBO
Program

The “Play △” block is placed inside a loop that repeats twice. An-
other “Play △” block is placed after the repeat loop, so KIBO
plays the sound a total of three times. This question assesses stu-
dents’ understanding that each block, even if repeated, corre-
sponds to a single action. (Lesson 8, KIBO Repeat with Number, p. 41)

5C Evaluate the KIBO
Program

KIBO will only repeat commands that are placed inside of the
“Begin Repeat” and “End Repeat” blocks. The “Play ◯” block is
placed after the repeat loop, so KIBO will not play the sound for-
ever. (Lesson 8, KIBO Repeat with Number, p. 42)

6C KIBO Syntax A repeat loop is comprised of the “Begin Repeat” and “End Re-
peat” blocks. (Lesson 8, KIBO Repeat with Number, p. 42)

1D KIBO Hard-
ware/Software

KIBO uses the Distance Sensor (which is shaped like a telescope)
to sense how near or far KIBO is from other objects. (Lesson 9,
KIBO Repeat with Light/Distance Sensor, p. 44)

If You Can Program You Can Write

84

ITEM
NUMBER

TYPE OF QUES-
TION CURRICULAR CONCEPT & REFERENCE

2D Identify the KIBO
Program

This question assesses students’ understanding of repeat loops, in
which the repeated action is placed inside the “Begin Repeat” and
“End Repeat” blocks, and their understanding of the Light Sensor
parameter (“Until Dark”). (Lesson 9, KIBO Repeat with Light/Distance
Sensor, p. 44)

3D Identify the KIBO
Program

A sensor used with a repeat loop will continuously check for a
change in its environment, but a sensor used with an if statement
will check only one time. This scenario requires the use of an if
statement. (Lesson 10, KIBO If Statements, p. 47)

4D KIBO Syntax

A nested statement is a repeat/if statement inside of another re-
peat/if statement. The inner loop refers to the set of instructions
bound by a “Begin Repeat/If” and “End Repeat/If”. (Lesson 10,
Extended Activity: Nested Statements, p. 48-49)

5D Identify & Evaluate
KIBO Programs

This question assesses students’ understanding of repeat loops
with number and nested loops. (Lesson 10, Extended Activity: Nested
Statements, p. 48-49)

6D Identify & Evaluate
KIBO Programs

This question assesses students understanding of if statements and
nested if statements. (Lesson 10, Extended Activity: Nested Statements,
p. 48-49)

Hassenfeld, Govind, de Ruiter, & Bers

85

BIOGRAPHIES
Dr. Ziva R. Hassenfeld earned her doctorate in curriculum and teacher
education from Stanford University in 2016. She is currently a post-doc-
toral fellow at the DevTech Research Group of Tufts University. Her re-
search focuses on the tools and reading strategies young children employ
when reading texts, as well as the pedagogies teachers use to support stu-
dent textual interpretation, fluency, and comprehension.

Madhu Govind, MA is a doctoral student at the DevTech Research
Group in the Eliot-Pearson Department of Child Study & Human Devel-
opment at Tufts University. Madhu received her BS in Child Studies and
Neuroscience from Vanderbilt University and her MA in Child Study &
Human Development at Tufts University. Madhu's research interests in-
clude collaborative family programming and teacher perceptions of ro-
botics and coding education in early childhood.

Professor Laura de Ruiter is a Research Assistant Professor at the Dev-
Tech Research Group at Tufts University. She holds an MSc. in Develop-
mental Linguistics from the University of Edinburgh (UK) and a PhD in
Linguistics from the Max Planck Institute for Psycholinguistics in Nijme-
gen (The Netherlands). Laura is a quantitative researcher who studies how
children learn language. Her research ranges from topics such as how chil-
dren use intonation in storytelling to how they understand complex sen-
tences in different languages. Recently, she is investigating the relationship
between children's coding skills and their language abilities.

Professor Marina Umaschi Bers is Professor and Chair, Eliot-Pearson
Department of Child Study and Human Development; with a secondary
appointment in Computer Science Department; Director, DevTech Re-
search Group, Tufts University; Director, Early Childhood Technology
(ECT) Graduate Certificate Program, Tufts University; Co-Founder and
Chief Scientist at KinderLab Robotics; and Author of Coding as a Play-
ground: Computational Thinking in the Early Childhood Classroom (2018), Design-
ing Digital Experiences for Positive Youth Development: From Playpen to Play-
ground (2012), and Blocks to Robots: Learning with Technology in the Early Child-
hood Classroom (2007).

	If You Can Program You Can Write: Learning Introductory Programming Across Literacy Levels
	Abstract
	Introduction
	Conceptual Framework
	The CAL Approach: Beyond Integration

	The CAL-KIBO Curriculum
	KIBO Programming Language
	Research Question

	Method
	Participants/Classroom Context
	Teacher Training and Support

	Data Sources
	Phonological Awareness and Literacy Screening (PALS)
	KIBO Mastery Challenges (KMC)

	Data Analysis
	Literacy and Programming

	Results
	Descriptives
	Inferential Statistics

	Discussion
	Conclusion
	References
	Appendix A
	Appendix B
	Biographies

