

Volume 19, 2020

Accepting Editor Athanassios Jimoyiannis │Received: March 2, 2020│ Revised: May 8, June 16, 2020 │
Accepted: June 17, 2020.
Cite as: Fronza, I., Corral, L., & Pahl, C. (2020). End-user software development: Effectiveness of a software
engineering-centric instructional strategy. Journal of Information Technology Education: Research, 19, 367-393.
https://doi.org/10.28945/4580

(CC BY-NC 4.0) This article is licensed to you under a Creative Commons Attribution-NonCommercial 4.0 International
License. When you copy and redistribute this paper in full or in part, you need to provide proper attribution to it to ensure
that others can later locate this work (and to ensure that others do not accuse you of plagiarism). You may (and we
encourage you to) adapt, remix, transform, and build upon the material for any non-commercial purposes. This license does
not permit you to use this material for commercial purposes.

END-USER SOFTWARE DEVELOPMENT: EFFECTIVENESS
OF A SOFTWARE ENGINEERING-CENTRIC

INSTRUCTIONAL STRATEGY
Ilenia Fronza* Free University of Bozen/Bolzano,

Bolzano, Italy
ilenia.fronza@unibz.it

Luis Corral ITESM Campus Queretaro,
Queretaro, Mexico

lrcorral@tec.mx

Claus Pahl Free University of Bozen/Bolzano,
Bolzano, Italy

claus.pahl@unibz.it

* Corresponding author

ABSTRACT
Aim/Purpose This work aims to introduce and evaluate an instructional strategy that aids

end-users with developing their software products during intensive project-
based events.

Background End-users produce software in the labor market, and one of the challenges
for End-User Software Engineering (EUSE) is the need to create functional
software products without a formal education in software development.

Methodology In this work, we present an instructional strategy to expose end-users to Ag-
ile-based Software Engineering (SE) practices and enhance their ability to de-
veloping high-quality software. Moreover, we introduce a SE approach for
the collection of metrics to assess the effectiveness of the instructional strat-
egy. We conducted two case studies to validate the effectiveness of our strat-
egy; the comprehensive analysis of the outcome products evaluates the strat-
egy and demonstrates how to interpret the collected metrics.

Contribution This work contributes to the research and practitioner body of knowledge by
leveraging SE centric concepts to design an instructional strategy to lay the
foundations of SE competencies in inexperienced developers. This work pre-
sents an instructional strategy to develop SE competencies through an inten-
sive and time-bound structure that may be replicated. Moreover, the present

https://doi.org/10.28945/4580
https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/
mailto:ilenia.fronza@unibz.it
mailto:lrcorral@tec.mx
mailto:claus.pahl@unibz.it

End-User Software Development During Intensive Project-Based Events

368

work introduces a framework to evaluate these competencies from a prod-
uct-centric approach, specialized for non-professional individuals. Finally, the
framework contributes to understanding how to assess software quality when
the software product is written in non-conventional, introductory program-
ming languages.

Findings The results show the effectiveness of our instructional strategy: teams were
successful in constructing a working software product. However, participants
did not display a good command of source code order and structure.

Recommendations
for Practitioners

Our instructional strategy provides practitioners with a framework to lay
foundations in SE competencies during intensive project-based events. Based
on the results of our case studies, we provide a set of recommendations for
educational practice.

Recommendations
for Researchers

We propose an assessment framework to analyze the effectiveness of the in-
structional strategy from a SE perspective. This analysis provides an overall
picture of the participants’ performance; other researchers could use our
framework to evaluate the effectiveness of their activities, which would con-
tribute to increasing the possibility of comparing the effectiveness of differ-
ent instructional strategies.

Impact on Society Given the number of end-user developers who create software products
without a formal SE training, several professional and educational contexts
can benefit from our proposed instructional strategy and assessment frame-
work.

Future Research Further research can focus on improving the assessment framework by in-
cluding both process and product metrics to shed light on the effectiveness
of the instructional strategies.

Keywords intensive project-based events, bootcamp, end-user software engineering,
EUSE, instructional strategy, assessment framework

INTRODUCTION
Computer programming is a widespread practice; in consequence, not only specialists in Software
Engineering (SE) or Computer Science (CS) but also end-users produce software for the labor mar-
ket. The term end-user was initially introduced to distinguish those who purely use software systems
from professional developers. Now, it refers to people (such as secretaries, accountants, teachers)
who develop software as part of their professional practice, without having either a degree in CS/SE
or extensive experience in software development (Burnett & Myers, 2014; Costabile et al., 2008; Ko
et al., 2011; Ye & Fischer, 2007). In 2005, there were about three million professional programmers
in the U.S. (Scaffidi et al., 2005), and over 12 million more people said they were programming at
work even though it was not their job description. In 2015, 7 (out of 26) million U.S. online job post-
ings valued coding as a technical skill (Burning Glass Technologies, 2016). In 2018, a survey found
that end-users play a critical role in creating customer-facing (24%) and enterprise apps (22%) (War-
ren, 2018).

The downside is the overall low quality of end-user-created software, in part due to the lack of spe-
cific training in SE (Scheubrein, 2003). Even if the errors are non-catastrophic, their effects can have
an impact on a production environment. For example, web applications created by small-business
owners to promote their businesses can result in loss of revenue and credibility if they contain pages
that are displayed incorrectly (Burnett, 2009).

Fronza, Corral, & Pahl

369

In 2000, Shaw claimed that software development should be treated from an engineering perspective
for all students who learn software development. Afterwards, SE and Education have been the focus
of extensive research, especially at the undergraduate level (Kastl et al., 2016). Moreover, End-User
Software Engineering (EUSE) has been established as an area of interest within SE to increase the
quality of end-user-created software, by focusing on the entire software lifecycle (Burnett, 2009). The
challenge of EUSE is incorporating SE activities into end-users’ existing workflow by taking into ac-
count the factors that determine diversity, including learning styles, profiles, interests, situations
(Chimalakonda & Nori, 2013), and cultural factors (Frieze et al., 2006).

People outside SE see the benefits of coding for the creation of their app startups, and many are
looking for intensive project-based experiences (e.g., bootcamps, hackathons, summer schools),
which are getting more and more popular (Decker et al., 2015). A survey on the rise of coding
bootcamps found a 175% growth rate for the programming bootcamp market in 2014 alone (Cham-
pagne, 2016). EUSE challenges are also present during these events. For example, participants focus
on their domain-specific goals and not on learning SE (Chimalakonda & Nori, 2013). Moreover,
since EUSE addresses software quality issues, a challenge is posed to understand how to assess soft-
ware quality, in particular, when using introductory (e.g., block-based) programming languages.

In this paper, we first describe an instructional strategy to lay foundations in SE competencies during
bootcamps. The goal is to foster eXtreme Programming (XP) practices, which are the right candidate
for end-users (Fronza et al., 2019), without changing the existing workflow or the participants’ priori-
ties (Fronza & Pahl, 2018a). Moreover, we propose an assessment framework to analyze the outcomes
from a SE perspective; the framework provides an overall picture of the participants’ performance
and helps instructors/researchers learn from individual cases. Finally, we describe the results of two
case studies that demonstrate the effectiveness of the proposed instructional strategy and show how
to interpret the collected metrics.

The remaining of the paper is organized as follows: Section Background and Related Work reviews back-
ground literature and current state of the art in the subject matter; Section Research Methodology outlines
our strategy to provide answers to the posed questions. Section Instructional Strategy details our strategies
to promote SE practices during bootcamps; Section Assessment Framework describes the strategy to an-
alyze the outcome of the bootcamps from a SE perspective. Section Case Studies describes two observed
populations, and Section Results reports the outcome of the two case studies. Section Discussion provides
a complete elaboration of the findings and limitations of this study. Finally, Section Conclusions closes
this work, provides recommendations for educational practice and directions for further research.

BACKGROUND AND RELATED WORK
Software Engineering and Education have been the focus of extensive research, especially on the
value that can be acquired in a classroom setting toward enabling practitioners to develop successful
products. Shaw (2000) established challenges and aspirations for educators in SE, including fostering
current practices in an ever-changing arena and having a clear focus on practical skills. Since then,
classroom experiences efficient in mapping software processes to course sessions and deliverables
have been published, as well as research that discusses practices, behaviors, and interactions among
students (Liebenberg et al., 2015).

Curriculum design on SE is a frequent object of study, analyzing the timeliness and relevance of
courses and practical education, particularly at the undergraduate level. This body of research focuses
on developing professional competence on the necessary skills to abstract real-world problems and
deliver solutions in the form of software products. The professional segments to which these efforts
are directed are software engineers, computer scientists, and information technology experts.

From a practitioner’s perspective, it is not uncommon that people need to develop software during
their work activities without having a CS/SE degree or even experience in software development
(Fronza & Pahl, 2019; Paternò, 2013; Scaffidi et al., 2005). They are called end-users and have different

End-User Software Development During Intensive Project-Based Events

370

intent respect to professional software developers (Burning Glass Technologies, 2016): they write
programs to support their work (Ko et al., 2011) and do not consider quality as a primary concern.

This merge between roles is not new. For instance, in the late 2000s, the term DevOps was coined to
represent a SE practice, where software development and software operation work together to de-
liver software continuously. Thanks to this combination, the business can seize emerging and existing
market opportunities and reduce the time required for including the client’s feedback (Kamuto &
Langerman, 2017). The term DevOps defines software development professionals who expanded
their role to include the actual software operation. They take the role of the end-user and put the
proficiency of software development to the service of better understanding the software product in
its real context of use. Therefore, DevOps extends the software development skills to a level of un-
derstanding of the domain, which involves knowledge of business, market, science, and others.

End-users take the opposite approach. Professionals in a specific domain of business (market, science,
technique, and others) expand their knowledge to gain skills in software development to personally
develop software tools (of different levels of complexity) for the daily execution of their jobs, regard-
less of the discipline or context.

End-user software development takes advantage of a series of standard tools. For instance, Microsoft
Office offers the capacity of automating repetitive tasks using macros that can be recorded directly
from the user interface, i.e., without coding. The users who need more complex features can write
simple code using the Visual Basic language. Many other products enable users to start developing
simple software pieces without formally learning software development. For example, a survey of
129,130 App Inventor users found that 73% of respondents used App Inventor at home, not in a
formal learning environment (Xie et al., 2015).

In the early 2010s, initiatives to attract interest and talent to software development became very pop-
ular. The approach of hackathons, bootcamps, and crash courses is hands-on, that is, focused on prac-
tical aspects of programming languages and working software. Facilitators rarely invest time in ex-
plaining fundamental principles of software design, implementation, and validation. Concepts like ex-
ample centric programming or copy-paste programming have become popular, and researchers investigated
their impact on the practice and quality of the final products (Hou et al., 2009). More recently, re-
searchers have tried to define how hackathons should be organized and structured to obtain the best
out of these experiences (Gama et al., 2018; Lara & Lockwood, 2016). Moreover, they investigated
more deeply the educational advantages of hackathons and similar experiences when teaching SE
concepts (Gama, 2019; Uys, 2019).

EUSE also spans domain-specific applications. For instance, control systems engineers create closed-
loop systems to keep control of several parameters in physical systems. As a consequence, control
engineers become software engineers when they implement control algorithms in the form of em-
bedded software products thanks to development tools like LabView or Simulink, in which signal or
data flow diagrams eventually turn into C code.

Moreover, with the rise of open-community programming camps, such as hackathons or bootcamps,
the opportunity to implement software to solve a given challenge is brought to an open community
(Decker et al., 2015; Porras et al., 2005, 2018). Hackathons are events in which teams spend a limited
number of hours to accomplish a given goal through software development; however, their scope
spans in several other fields, such as electronic design, robotics, or maker culture.

The initiative of empowering any user to develop working software is praiseworthy and may contrib-
ute to the accomplishment of countless business objectives; nonetheless, it poses a relevant challenge
to the research and practice of SE and software quality assurance. The approach of EUSE involves
systematic and disciplined activities that address software quality issues, but these activities are sec-
ondary to the goal that the program is helping to achieve. EUSE aims at finding ways to incorporate

Fronza, Corral, & Pahl

371

SE activities into end-users’ existing workflow, respecting the nature of their work and their priori-
ties. Diversified contexts, backgrounds, needs, and cultural factors (Frieze et al., 2006) take a toll on
the instructional strategy and the quality characteristics of the outcome products (Chimalakonda &
Nori, 2013). A challenge is understanding how to achieve these goals during intensive project-based
events (e.g., bootcamps), which usually attract audiences with different backgrounds and needs.

Hence, the following research questions are raised:

• RQ1: How to adapt a Software Engineering instructional strategy to a diversified set of audi-
ences with different backgrounds and needs during intensive project-based events?

• RQ2: How should we assess Software Quality, especially when considering non-conven-
tional (e.g., block-based) development tools? What metrics apply in this case?

The democratization of software development via integrated development tools, graphic user inter-
faces, and block-based programming languages, as well as the prominence of intensive and practical
training experiences, open a promising arena of end-user-created products in the short- and mid-run.
Moreover, as far as the underlying research of the present paper can be, there is a lack of scholarly
literature that assists in the process of developing and appraising high-quality end-user-created prod-
ucts. With this motivation, our research questions aim to shed light on an emerging yet highly rele-
vant research subject matter. In the next section, we outline a research methodology to provide an-
swers to the posed questions.

RESEARCH METHODOLOGY
Since we aim to answer questions that relate directly to the learning and developmental practice, we
opt to go with an applied research methodology, in which we take principles of SE and put them in
practice towards the design of an instructional strategy that builds on top of solid SE practices. To do
this, we will review instructional strategies, documented practices, and implementation environments.

Our research is quantitative as we aim to propose an assessment framework for evaluating software qual-
ity. Assessing the software product in its different characteristics implies the collection and interpre-
tation of metrics that support the understanding of a product and deliver insightful information
about its nature. Having quantitative information permits as well to relate characteristics of the prod-
uct with the SE instructional strategy outlined first. To accomplish it, we investigate and implement
well-grounded metric collections, data interpretation, and visualizations that can deliver the necessary
information to understand the software product. The conjunction of an applied and quantitative re-
search practice will result in an explanatory study that, on top of a case study involving different pop-
ulations participating in a project-based software development event, provides the necessary elements
to understand better the proposed strategy, the assessment framework, and the software products
delivered after working in different contexts. Our goal is to observe two independent heterogeneous
groups of participants with relatively limited knowledge in software development, which represent a
typical intensive project-based event, i.e., participants of our case studies come from a variety of ages,
cultures (Frieze et al., 2006; Sammut-Bonnici & McGee, 2015), and backgrounds. Therefore, as we
will detail in the Instructional Strategy section, we observe separate groups, with the independence of
placement, age, and background.

INSTRUCTIONAL STRATEGY
One of the challenges in the EUSE field is understanding how to incorporate SE activities into inten-
sive project-based events (e.g., bootcamps), which usually attract audiences with different back-
grounds and needs. Hence, our instructional strategy is based on an intensive project-based event
that simulates a professional environment in which participants develop applications for mobile de-
vices (e.g., cellular phones or tablets) operated by the Android OS (Fronza et al., 2016). The event
consists of 20 hours of activity, divided into five sessions (Table 1). We provide each team/person

End-User Software Development During Intensive Project-Based Events

372

with a table, one computer per person, at least one mobile device (some participants bring their own
devices), materials for project management, such as whiteboards, pens, paper, and post-its.

Table 1. Timetable of the proposed intensive project-based event.

SESSION HOURS ACTIVITIES

1 4 Foundations of logical thinking, structured sequencing, and data abstraction;
Preparatory activities (e.g., setting of the programming environment).

2 - 4 12 Development of a mobile app by iterations: problem definition; design of a so-
lution; development iterations.

5 4 Completing and polishing the product towards a final presentation

Our goal (RW1) is understanding how SE instructional strategies can be adapted to different audi-
ences during intensive project-based events. In particular, we consider two types of populations (Ta-
ble 2), namely High School students (HS) and University Postgraduate students (UP).

Table 2. Characteristics of the two considered audiences.

PARTICIPANTS CHARACTERISTICS

High school stu-
dents (HS)

• 15-18 years old
• little or no previous knowledge of software development
• attending different schools, from non-vocational to computer science
• they want to choose their future career

University post-
graduate stu-
dents (UP)

• 25-50 years old
• no previous knowledge of software development
• they need to develop code as part of their career (e.g., to create web pages)
• they have a specific idea that they want to develop during the activity

Agile methods accommodate end-users’ working style (Fronza, et al., 2017; Kastl et al., 2016;
Meerbaum-Salant & Hazzan, 2010), which is preferably collaborative (Costabile et al., 2008), oppor-
tunistic, incremental, and by trial-and-error phases (Burnett & Myers, 2014). Thus, we select the fol-
lowing XP practices by considering participants’ characteristics and activities focus (i.e., program-
ming, process, team) (Fronza et al., 2019):

• HS: In the K-12 context, it is advisable to emphasize the process by which students arrive at
the product (Steghöfer et al., 2016). Thus, we focus more on practices related to process and
team, i.e., user stories, small releases, system metaphor and coding standard, collective own-
ership, testing, pair programming, continuous integration, and on-site customer.

• UP: Each participant has a specific idea that she/he wants to develop (e.g., to address a par-
ticular customer’s need). Thus, we prefer individual work, and we focus on process and pro-
gramming practices, i.e., user stories, small releases, metaphor, and coding standard, simple
design, refactoring, testing, and on-site customer.

Under consideration of the underlying EUSE principles, we neither try to impose practices nor add
specific lessons. Instead, we adopt a set of strategies/activities to let participants reflect and reason
action courses when there is a need for planning, managing, or empowering. Participants heuristically
mix these activities as needed, depending on the SE phase they are working on (e.g., design, testing).
Our learn-by-playing approach differs from gamification (Becker, 2015) in the aspect that participants do
not follow a game-like journey to accomplish the goal of the bootcamp. Games are proposed to the

Fronza, Corral, & Pahl

373

group in selected segments of the bootcamp, to exemplify or drive a specific behavior that will be
beneficial for the rest of the activities; for this reason, we dedicate 5-10 minutes to reflecting on the
takeaway messages. Table 3 maps each strategy to the corresponding XP practices. Some strategies
are used only with a specific audience. For instance, System Metaphor and Simple Design are used with
the UP participants to leverage their previous knowledge about several stages in the creative process,
which are relevant for the software development processes.

Manipulatable examples. Participants are generally open to expanding their software development
skills, but they do not expect a programming course. For this reason, we help them explore their de-
sign ideas by using manipulatable examples (Burnett & Myers, 2014), from the perspective of learn-
ing-by-doing. Moreover, we let them create new configurations and designs by tailoring software
components in their software environments.

Focus on the problem-solving activity. We support an opportunistic and incremental working
style (Burnett & Myers, 2014), and we focus on the problem-solving activity rather than on the SE
lifecycle. This way, participants can heuristically mix reverse engineering, reuse, programming, test-
ing, and debugging, mostly by trial-and-error (Burnett & Myers, 2014).

Alert without imposing. Participants are usually not concerned with dependability problems. Thus,
we alert them to dependability problems, and we assist them with their explorations into those prob-
lems to whatever extent they choose to pursue such explorations to refactor their solutions. We pre-
sent comments on product quality to the participants during the final presentation of the project,
along with some suggestions for further quality improvement.

We are here to help. Participants can ask for our support whenever needed by first showing their
intermediate product (current release) and describing their issue together with the solutions that they
already tested. Using this strategy, we aim at fostering teams’ self-organization on their projects by
reducing their dependence on the instructor’s assistance (Kastl et al., 2016).

Block-Based Programming Language (BBPL). MIT App Inventor (Wolber et al., 2011) is a
BBPL for mobile app development, which counts over 11 million users and 48 million created apps

(MIT App Inventor, 2020). App Inventor allows problem-driven learning (Morelli et al., 2011) and
can be used to foster XP practices (Fronza et al., 2019), such as a) continuous integration, as it forces us-
ers to integrate the new features on top of the existing ones, and b) refactoring and testing because each
functionality gets immediately tested to see if the added blocks work correctly.

Table 3. A mapping between strategies, XP practices, and participants.

STRATEGY PRACTICE PARTICIPANTS

Manipulatable examples User stories HS, UP

Focus on the problem-solving ac-
tivity

Small releases, testing HS, UP

Alert without imposing Refactoring, Testing HS, UP

We are here to help Small releases, teamwork, on-site customer HS, UP

Block-Based Programming Continuous integration, refactoring, testing HS, UP

Teamwork Collective ownership, pair programming,
metaphor and coding standard

HS

Marshmallow challenge Prototyping and iterating, quick collabora-
tion, simple design, teamwork

HS

Tell me how you make toast Simple design, teamwork, user stories HS

End-User Software Development During Intensive Project-Based Events

374

STRATEGY PRACTICE PARTICIPANTS

Letters with our bodies User stories, teamwork, simple design HS

User Persona and User Journey System Metaphor UP

Point of View Simple design UP

Teamwork. We let HS participants work in teams (of three), formed by the instructors (Oakley et
al., 2004), as they enjoy communicating with friends and performing collaborative activities (Costa-
bile et al., 2008). Each team represents an independent ‘company’ (Figure 1). Teams choose their
name to build team coherence (Millis & Cottell, 1997); then, teams choose their projects following a
challenge-based learning framework (Nichols et al., 2016). At their discretion, team members can de-
cide to collaborate on the same code or to develop software parts individually and then integrate
them. In this case, to foster collective ownership and pair programming, we frequently suggest pair-
ing up to work on the same piece of code. Moreover, we encourage the adoption of coding standards
to facilitate the integration of portions of code developed individually.

Figure 1. The organization of the room during our events.

Marshmallow challenge. During session 1, each team builds a structure in 18 minutes using 20
sticks of spaghetti, one yard of tape, one yard of string, and one marshmallow (Wujec, 2010). The
winning team is the one that constructs the tallest freestanding structure with the marshmallow on
top (Figure 2). The takeaway messages of this activity regard: prototyping and iterating can help
achieve success, the importance of collaborating very quickly, and the value of cross-functional
teams.

Tell me how you make toast. During session 2, each person sketches a diagram of how to make
toast, one step per post-it (Wujec, 2013). Then, the participants combine all the individual solutions
in one solution (Figure 2); to do that, they identify the common steps, discard the unnecessary ones,
and so on. The takeaway message of this activity is about the importance of working together toward
a solution by identifying small steps, those that ideally should be on an Agile task board.

Fronza, Corral, & Pahl

375

Figure 2. “Marshmallow challenge” and “tell me how you make toast” game.

Letters with our bodies. During session 3, team members use their bodies to construct letters that
form the announced word. With no further instructions, they need to decide who will represent each
letter, and in some instances (e.g., a letter “M”), how to set it up with more than one participant (Fig-
ure 3). Participants learn the importance of understanding ambiguous requirements, and team self-
organization with little or no guidance from facilitators.

Figure 3. “Letters with our bodies” game.

User persona and user journey. An Agile system metaphor is a description of the system that can
be understood by different stakeholders. To promote the adoption of this practice, we ask UP partic-
ipants to create a User Persona and a User Journey. The aggregation of these two concepts has a sim-
ilar purpose to the Agile system metaphor. A User Persona encloses an archetypical description of the
user (such as actor or customer) who participates in the system’s operation. A User Journey represents
a standard language description of the process the system deals with. In this way, our instructional
strategy takes advantage of processes and practices that are usual in other fields (in this case, the crea-
tive world) and put them to service a relevant stage of the software development process.

Point of view. A Point of View chart has the same information of a User Story used in Agile software
development: As (user), I need to (feature) In order to (goal) Because of (added value). Thus, participants need
to identify strictly who will be interacting with the feature, what is the goal at hand, and what is the
value that such feature delivers. If they experience difficulties identifying a goal or justifying an even-
tual added value, it means that the user story is not worthwhile to be developed, narrowing the scope
of the system, motivating focus, and overall simplifying the design of the system.

End-User Software Development During Intensive Project-Based Events

376

ASSESSMENT FRAMEWORK
The goal of our instructional strategy is to expose participants to Agile-based SE practices to enhance
their ability to developing high-quality software. For this reason, we developed a framework that in-
cludes both product and process assessment, which we detail in this section. Under consideration of
the underlying principles of Project-Based Learning (PBL) (Romeike & Göttel, 2012), we did not
hand out tests, and we preferred critique and revision, supported by observation and code inspections
(Fronza et al., 2017).

PRODUCT ASSESSMENT
This part of the assessment framework analyzes, from a SE perspective, the software products devel-
oped by participants when adopting our instructional strategy. Using a BBPL prevents us from apply-
ing professional metrics and tools (Fronza & Pahl, 2018b). Indeed, in our case, source artifacts con-
sist of blocks sorted and matched to follow a flow, execute a sentence, or evaluate a condition.
Therefore, our assessment framework defines an appropriate set of metrics to analyze App Inventor
projects by capitalizing on existing experiences (mainly for Scratch). Of note is the project called Dr.
Scratch, which assigns a Computational Thinking (CT) score to a Scratch project and detects bad
programming habits or potential errors (Moreno-Leon et al., 2015). Another project called Ninja
Code Village (Ota et al., 2016) automatically assesses CT concepts in Scratch. Some research work
focused on mapping the professional metrics to the BBPLs environment (Hermans & Aivaloglou,
2016). S. Grover (2017) described several difficulties novice programmers exhibit in introductory set-
ting (e.g., assigning meaningful names to variables). Waite (2017) explored code smells in BBPLs.
Hermans and Aivaloglou (2016) pursued the same goal for the specific case of Scratch. Focusing on
the specific context of App Inventor, Xie et al. (2015) extracted several metrics from project data to
compare App Inventor learnability and capability. Xie & Abelson (2016) adapted computational con-
cepts for assessing CT in Scratch for use with App Inventor.

Our assessment framework capitalizes on the existing experiences. It extracts five groups of metrics
to analyze App Inventor projects, from a SE perspective, namely, component metrics, computational
concepts blocks, code smells, complexity metrics, and size. We use these metrics to evaluate the qual-
ity of each product and the overall software quality capacity reached by the entire group.

Component metrics. Four metrics are part of this set:

• Number of screens of the application;
• Number of components by functionality, based on the categories in the App Inventor pal-

ette (i.e., user interface, media (sound is disregarded), drawing, sensors, social, storage, con-
nectivity) (Xie et al., 2015);

• Total Number of Components (TNC), the sum of all the components by functionality;
• The total Number of Unique Blocks (NOUB) is an indicator of the project’s sophistication:

a greater NOUB correlates with the ability to use App Inventor to create apps that have
more advanced functionality (Xie et al., 2015).

Computational concepts blocks. As shown in Figure 4, we count six types of blocks to represent
six computational concepts (Brennan & Resnick, 2012; Xie & Abelson, 2016).

Fronza, Corral, & Pahl

377

Figure 4. Computational concepts: an example of a block for each category.

Code smells. As shown in Table 4, we define code smells for App Inventor by adapting the defini-
tions for Scratch (Grover, 2017; Hermans & Aivaloglou, 2016; Waite, 2017).

Table 4. Code smells.

METRIC DEFINITION REF.

Names Percentage of components that have not been renamed (Waite, 2017)

Superfluous stuff Code blocks left lying around (in part/yes/no) (Waite, 2017)

Duplication App Inventor code suffers from the duplication smell (in
part/yes/no) when similar computations or events occur
in multiple places in the program (could be implemented
more elegantly, for example by using a loop)

(Hermans & Ai-
valoglou, 2016;
Waite, 2017)

Long method App Inventor code suffers from the Long Method smell
(in part/yes/no) if a group of blocks grows very large (im-
ply a lack of decomposition and design)

(Hermans & Ai-
valoglou, 2016;
Waite, 2017)

Variables Variables have a meaningful name (in part/yes/no) (Grover, 2017)

Complexity metrics. We extract two metrics as indicators of complexity: (a) Cyclomatic Complexity
(CC), the number of decision points in the code (e.g., repeat until, if then) plus one (Moreno-Leon et
al., 2016); and (b) the number of when blocks (e.g., when a button is clicked) (Fronza et al., 2020).

Size. Software size can be measured by counting the number of lines in the text of the source code.
This metric is typically used as a way to judge the productivity of individual developers. However,
this approach has been largely criticized. Indeed, skilled developers can develop the same functional-
ity with far less code; in contrast, inexperienced developers often resort to code duplication, increas-
ing the number of code lines. The two major approaches to counting lines of code are (a) physical
LOC, a count of lines in the source code, including comment line, and (b) Logical LOC (LLOC) that
counts the number of ‘statements’ and for this reason is less sensitive to formatting and style conven-
tions (Fenton & Bieman, 2014). The distinction between LOC and LLOC also applies to App Inven-
tor. For example, the code snippet in Figure 5 has LOC = 2 and LLOC = 1: the second line of the
join block is in a separate line for the sake of clarity, but it is just a logical continuation of the previous
line (i.e., ‘set global greet to join(hola and textbox1.text)’).

End-User Software Development During Intensive Project-Based Events

378

Figure 5. An App Inventor code snippet with LOC=2 and LLOC=1.

PROCESS ASSESSMENT
Our instructional strategy suggests a collaborative, iterative process in which participants can take
control of the working pace, under the instructors’ supervision, with the time boundary of a relatively
short bootcamp. Instructors do not dictate a process as it is but instead suggest several activities and
recommendations to follow, as described widely in Section Instructional Strategy. For process assessment,
we observe process-relevant traits focusing on XP practices (e.g., small releases and Iterations, refac-
toring, testing), namely, user stories and metaphor, small releases and iterations, refactoring/testing,
teamwork, on-site customer, continuous integration, collective ownership, pair programming, coding
standards. For instance, we observed if teams started using post-its (user stories) to guide the produc-
tion process and decide when a prototype (small releases and testing) was ready for the on-site customer
meeting.

CASE STUDIES
We set two case studies in the form of software development bootcamps with a segmented non-soft-
ware population. Selected audiences were high school students (HS), and university postgraduate stu-
dents of Arts (UPA).

High School students (HS). We held the bootcamp targeted to a class of high school seniors in It-
aly. We did not impose restrictions on the type of high school to create a more stimulating and multi-
disciplinary environment. The participants were 28 students (6 F and 22 M, aged 15-19) from a range
of high school types: computer science (1), scientific (22), vocational (1), and non-vocational (4).
Most of the participants had little or no previous knowledge of software development. They took
part in the bootcamp to live the first software development experience and choose a future career.
Thus, we focused on the process by which they arrived at the product (Steghöfer et al., 2016). The
activities started on Monday afternoon and concluded on Friday afternoon, four hours per day.

University Postgraduate Students of Arts (UPA). The second case study took place in Mexico.
Participants were a segmented population of seven adults (aged 28-47), studying a master’s degree
program on Hypermedia Design in the Faculty of Fine Arts of a state-funded university. They
needed to acquire a specific skill set that enables an Arts professional to mesh in an Engineering en-
vironment contributing with the visual aspects and user experience of software products (such as
web pages and mobile applications). This class did not have previous knowledge of software devel-
opment or CS background and included Graphic Designers, Industrial Designers, Visual Arts profes-
sionals. We used the same training material as in the HS case study, translated to Spanish. Partici-
pants worked alone on personal projects (i.e., we omitted team-building games). Indeed, the size of
the class was considerably smaller than the other case study, and each student had a specific idea that
she/he wanted to develop.

RESULTS
This section illustrates the results of the case studies and demonstrates how to interpret the collected
metrics to obtain an overall picture of the participants’ performance. Moreover, we show how the
selected metrics can help to find particular successful (or unsuccessful) cases as targets to be achieved
(or avoided) using our instructional strategy (Gladwell, 2008). We use descriptive statistics to prevent
concerns in the analysis that could be caused by the limited dimension of this quantitative data set
(Wohlin et al., 2012; Zelkowitz & Wallace, 1998).

Fronza, Corral, & Pahl

379

Product assessment (overall). In total, we collected 17 projects (10 HS and 7 UPA). The HS pro-
jects are larger (Figure 6), have higher complexity (Figure 7), more screens (which implies higher vis-
ual complexity), and higher TNC (Figure 8). It is important to recall that the HS participants worked
in teams: the joint effort of several people, while introducing possible coordination and management
issues, may have contributed to developing larger and more complex projects.

Figure 6. Project size in the two case studies.

Figure 7. Project complexity in the two case studies.

The HS projects have a higher degree of variability (e.g., NOUB in Figure 8). The User Interface (UI)
and media blocks are used a few times in both case studies, and some components (i.e., connectivity
and social) have not been used at all, or just in one case. We will consider the corresponding projects
as possible excellent products in the following analysis of individual projects.

End-User Software Development During Intensive Project-Based Events

380

Figure 8. Components per type in the projects of the two case studies.

Loops and lists are used just in a few cases as well (see computational concept blocks in Figure 9). Moreo-
ver, HS projects contain a higher number of variables respect to the UPA ones (Figure 9).

As shown in Figure 10, some HS projects suffer from duplication, and long method smells. How-
ever, we should take into account that they are also more prominent in terms of size (Figure 6),
which might increase the possibility of forgetting some blocks around. Moreover, UPA projects have
lower complexity, which might help maintain a cleaner code and avoid long methods. We can ob-
serve the opposite behavior for the percentage of not-renamed components. UPA projects suffer
from these smells more than the HS ones: the need for managing bigger and more complex projects
might have pushed HS participants to start renaming components. These observations also explain
the number of smells per project. Some HS projects concentrate a higher number of smells (60% of
the project suffers from two smells, and 20% from three). None of the UPA projects suffers from
three smells, and almost 60% suffer from one smell.

Fronza, Corral, & Pahl

381

Figure 9. Computational concept blocks in the two case studies.

Figure 10. Code smells in the projects of the two case studies.

End-User Software Development During Intensive Project-Based Events

382

Product assessment (individual). Figure 11 highlights the presence of four projects with more pe-
culiar characteristics than the other projects. The project HS9 and HS10 are larger (LLOC) respect to
the others and, at the same time, present higher complexity (CC) and NOUB. Moreover, these pro-
jects contain computational concept blocks (i.e., social, connectivity, and logic) that are not present in
other projects. The specific type of system has prompted the choice of these blocks: HS9 was a quiz
and required to handle more conditions (i.e., logic), while HS10 included some features that required,
for example, to send text messages. However, it is notable that these teams did not give up on adding
these features, although it needed exploring the use of new blocks. The downside is the higher num-
ber of smells respect to the other projects. Since they had to handle size, complexity, and new blocks,
these teams might have neglected other aspects (i.e., removing duplicate code and renaming some
components).

Another interesting project is the HS4. Even if it is smaller and less complex than HS9 and HS10,
the HS4 project has high NOUB, and it includes peculiar blocks (i.e., storage). The presence of
smells is higher than the rest of the projects also in this case. A more balanced (thus ideal) situation
can be found in HS2. This project shows average size and complexity; it includes a higher number of
unique blocks (NOUB) and specific blocks (i.e., loops and lists). However, no smells are present.

Figure 11. In this heatmap, lines and columns represent the 17 products and the set of met-
rics that show outliers in Figures 7-10, respectively. Larger values are represented by darker

squares and smaller values by lighter squares.

PROCESS ASSESSMENT
Most of the case studies participants implemented a spontaneous software development process that
used a collaborative and iterative approach and embodied many principles and values described in
the suggested practices. When working in teams (HS case study), the participants defined a project

Fronza, Corral, & Pahl

383

goal and organized themselves in a way in which everybody could collaborate. Most of the partici-
pants did not have sufficient knowledge to propose themselves to lead the team; thus, the efforts
were federated and distributed evenly among participants. In a few cases, previous experience, previ-
ous tool usage, or affinity with the topic facilitated that a specific student took the lead orchestrating
the efforts and working personally on the most complex part of the project. For the observed case
that involved individual work (i.e., UPA), goals were also set, and milestones for the day were estab-
lished, so the process was also spontaneous and hand-crafted. Participants that acquired a more ro-
bust command of the tools served as technical aid to other individuals.

The limited amount of time allotted to develop the project prevents our instructional strategy to
deepen inside each phase of the software development process; nonetheless, participants used all the
resources at hand to walk the path from conceptual design to implementation. Intermediate delivera-
bles (like drawings) place evidence of design activities that provide a notional idea about how the fi-
nal product should look and feel. When participants reached the phase of software implementation,
the BBPL provided an invaluable addition to developing software with little or no experience.

As detailed in Table 5, specific examples of process-relevant traits observed in the case studies are:

• A team implemented an effort of development and testing features, following involuntarily a
continuous integration framework, in which each new feature developed was immediately
tested to “ensure that the previous product still works”.

• Several teams conducted independent online searches for features and tools to implement
requirements that were not directly translated to block functionalities.

• Some participants attempted to create a single mobile application using different computers
and different accounts. A team found out that merging the independent projects could rep-
resent an issue, and spontaneously converged to work in a pair programming-like setting.

• A team solved the same problem autonomously using an App Inventor-supported merger
tool (MIT App Inventor, n.d.), which was searched and discovered independently by the
team.

Considering that the UPA case study did not involve teamwork, it is relevant to list several traits that
were observed in such context:

• The goals and topics of the developed applications were distinct and independent.
• Even though the work was individual, and the product delivered was submitted inde-

pendently, the interaction between participants was strong.
• Participants were interacting, asking questions, and sharing experiences among themselves.

When an individual sorted out a technical problem, that problem was shared with others.
• As a consequence, we could observe the rise of the figure of improvised “technical experts”

who acted both as technical aid and as “peer reviewers”.

In both the case studies, the validation efforts to assure product correctness were somewhat limited.
Occasionally, groups did cross-checks with other teams, inviting them to use their app and provide
comments about the features, functioning, and overall experience, or using the applications with the
clear intent to crash it. However, no formal product assurance activity was required or recommended
by instructors, other than looking for feedback and rework accordingly.

End-User Software Development During Intensive Project-Based Events

384

Table 5. Assessment of Agile Software Engineering Practices.

PRACTICE OBSERVATIONS

User stories and Metaphor Teams and individuals identified users, typically a target population
of their same age and interests.

Small releases and Iterations Software products had specific functionalities developed incremen-
tally.

Refactoring, Testing Some team members focused their efforts to find ways to crash the
product, assuring as a consequence that the application worked as
expected.

Teamwork Each team identified the structure and amount of work to be done,
created assignments and tasks, and distributed and executed them.
Spontaneous technical experts provided support taking the role of
peer reviewers.

On-site customer Course instructors took the role of final customers, provided feed-
back, and refined requirements.

Continuous integration Software products were developed and tested incrementally.

Collective ownership Each team member created and explained a personal contribution.
In individual work, ownership is intrinsically related to the creator,
but the knowledge was collectively growth.

Pair programming Since products were to be developed in a single project, teams typi-
cally were sitting down around a computer, so the roles of drivers
and observers were quickly taken.

Coding standard The block-programming tools enforced a single coding style that was
mandatory.

ELABORATION OF A GENERAL STRATEGY FOR QUALITY ASSESSMENT
We found a significant (p-value < 0.05; adjusted R-squared = 0.90) linear relationship between the
two metrics LOC and LLOC. Given the limited size of our sample, we cannot generalize this result,
but this could suggest choosing LOC as a better metric for size because its calculation is usually eas-
ier (Khan et al., 2016) in respect to other metrics. However, considering that LOC is programmer-
and language-dependent, and it does not take into consideration the code functionality, we interpret
this result as an indicator that LLOC can be used instead of LOC. Indeed, in the specific case of App
Inventor (and of BBPLs in general), LLOC might be preferable to recognize higher development ef-
fort. Consider a scenario of two programs P1 and P2 with the same LOC, while P2’s LLOC is lower
than in P1. This could mean that the P2’s developer used a higher number of multi-line blocks (Fig-
ure 6), which represent more complex instructions. Therefore, to set up multi-line blocks, organize
the parameters, and ensure that the block works, the developer needed more effort and more com-
plex knowledge.

In our assessment framework, we consider the number of when blocks as an indicator of complexity
specifically thought for BBPLs (Fronza et al., 2020). The regression model between When and Cy-
clomatic Complexity (CC) indicates a real relationship (p-value < 0.05), but the adjusted R-squared
value is low, which tells us that the points are pretty scattered around the regression line. We cannot
generalize this result due to the limited sample size. However, since we do not need precise predic-
tion, we believe we can still interpret this result as a further confirmation that the When metric can
be used as a complexity metric instead of CC.

Fronza, Corral, & Pahl

385

DISCUSSION

With the experience gained in the presented case studies, and after the in-depth analysis executed in
the outcome products, we discuss several insights. By the results observed in separate groups, with
the independence of placement, age, and backgrounds, we can argue that our instructional strategy,
powered by flexible practices and ad-hoc development tools, facilitates the teaching/learning process
of SE. Moreover, it sets on participants the capacity to understand the science behind working soft-
ware, the effort that requires to produce it, and the practical implications that shape and polish such
products. To better understand this assertion, we can decompose it (based on the central parts of our
intervention, i.e., instructional strategy and assessment framework) and provide analysis and discus-
sion on distinct fronts.

Instructional strategy. Our instructional strategy does not start directly from a hands-on approach.
First, we direct the discussion to principles of logic, clear thinking, and organization that is required
to understand the functioning of a generic software product. Using examples that are easily under-
stood by the target populations, we underline the importance of abstracting a problem in terms of its
inputs, steps, and outcomes, and with this mindset, develop a general approach to problem-solving.
Due to time limitations, we do not claim that all the introduced principles are entirely understood
and put into practice. However, these preparatory parts lay a foundation that eases the learning pro-
cess when the structural and logical sections of the applications, and the associated development
tools, are later explained.

Through teamwork and collaboration activities, participants walk the path of a creative and practical
process that seldom is executed alone. Co-located and globalized software development teams usu-
ally work in close collaboration across or within different development phases. The application of
our instructional strategy during the case studies, through games, activities, and team dynamics,
demonstrates that teamwork and collaboration are a cornerstone of a successful product. The soft-
ware development process is to be conducted once a team is focused on the development of the
product, and its members have assembled a collaboration mechanism.

Due to the constraints of a minimal timeframe, it is challenging to evaluate with complete certainty
how the participants embraced a comprehensive software development process. Nevertheless, we
observed several traits that are common (and recommended) in software development: setting goals,
breaking down high-level objectives in shorter activities, spontaneous planning, lookup of productiv-
ity tools, and informal testing.

Assessment framework. Our assessment framework capitalizes on the existing research to create a
general strategy for App Inventor product quality assessment, from a SE perspective. In particular,
the results of our case studies show how the framework can support the evaluation of the overall
software quality capacity reached by the entire group of participants. We should bear in mind that
this framework is a first approach to appraise the quality of the outcome software product. Even in
its infancy, the framework has attributes and conditions that can be measured as software quality
characteristics, and in specific contexts, such attributes may be relevant. Moreover, the framework
can be used to understand if outliers (Osborne & Overbay, 2004) represent particular successful or
unsuccessful cases (Gladwell, 2008) that could be of great interest as targets to be achieved (or
avoided) using our instructional strategy.

LIMITATIONS
We discuss the limitations based on a checklist by Runeson & Höst (2009). For internal validity, we
acknowledge that we cannot exclude the possible effect of factors that we did not control. For exam-
ple, we did not collect information on participants’ usual performance at school/university; there-
fore, we may not exclude the possible effects of their inclination to study. Furthermore, we do not

End-User Software Development During Intensive Project-Based Events

386

call for a particular participant’s background or profile so that a group could be systematically repli-
cated. Regarding external validity, it is well known that the results of case studies are difficult to gener-
alize to other situations (Wohlin et al., 2012). Therefore, the results of our study can be extended to
cases which have common characteristics and, hence, for which the findings are relevant.

Moreover, we acknowledge that the event proposed by our instructional strategy may attract students
particularly interested in programming. Thus, further research that would look into the generalizabil-
ity of these results in other situations is needed. To improve the reliability of our study, a detailed
case study protocol was maintained and reviewed by two authors of this paper.

CONCLUSIONS

INITIAL QUESTIONS, REVISITED
We propose here a more insightful, directed discussion using as a starting point the questions left
open in the first part of this work:

RQ1: How to adapt a Software Engineering instructional strategy to a diversified set of audi-
ences with different backgrounds and needs during intensive project-based events?

With the lessons learned after our case studies, we can outline several modifications to adapt regular
SE formation and obtain an instructional strategy for non-expert or non-specialized audiences:

• Vocabulary. It is of utmost importance to adapt vocabulary and narratives to the context of
non-technical participants.

• Customized examples. It is required to find examples that are familiar to the target audience.
• Teaching sequence. The teaching sequence of the pure SE concepts cannot be traded or jeop-

ardized: it is necessary to build a foundation of logical thinking, structured sequencing, and
data abstractions before starting with coding practices.

• A comprehensive view. Other principles of SE, such as project management and team collabora-
tion, cannot be forsaken or left apart: those are fundamental principles that complement the
technical aspects and permit a healthy succession of tasks and organization of activities that
translate into progress and delivery.

Table 6 highlights the importance of each component of our instructional strategy.

Table 6. Components of the instructional strategy: importance.

STRATEGY WHY THE STRATEGY IS IMPORTANT

Manipulatable examples Helps participants to have a clearer notion to understand
the point of view of relevant actors of their products.

Focus on the problem-solving activ-
ity

Aids students to abstract tasks at a granular level; gives the
notion of feasibility and feeling of accomplishment.

Alert without imposing Creates awareness about implementing small changes with
notable effects in the final product, discussing and sharing.

We are here to help Empowers participants to raise questions, not holding back,
but reaching out.

Block-Based Programming Allows for the structure and practice of a programming lan-
guage, with an approach that is friendly for novices.

Teamwork An underlying principle of a professional experience that
enables successful project development.

Fronza, Corral, & Pahl

387

STRATEGY WHY THE STRATEGY IS IMPORTANT

Marshmallow challenge Cultivates a mindset of understanding the goal, assessing re-
sources, and anticipating unexpected problems.

Tell me how you make toast Fosters a goal-based vision, identification of simple solu-
tions and abstraction in ordered steps.

Letters with our bodies Consolidates teamwork, promotes agility on creating fast
and efficient solutions.

User Persona and User Journey Develops a sense of empathy upon the actors that are rele-
vant or will interact with the product.

Point of View Relates the human aspects of the User Persona and User
Journey with the technical aspects of a User Story.

RQ2: How should we asses Software Quality, especially when considering non-conventional
(e.g., block-based) development tools? What metrics apply in this case?

The applicability and usefulness of regular software metrics (e.g., McCabe, Halstead, LLOC) remain
very valuable for block programming, as they permit the understanding of the software product in
terms of size, complexity, and other SE relevant aspects. Depending on the type of software product
and its functionality, other metrics might better describe the software products developed using
BBPLs. For instance, the number of features utilized by the application (e.g., number of sensors or
number of antennas), the number of components visible in the user interface, the number of compo-
nents not visible in the user interface.

RECOMMENDATIONS FOR EDUCATIONAL PRACTICE
Based on our results and lessons learned reported by instructors, in Table 7 we highlight a set of rec-
ommendations for educational practice concerning the understanding of the process and the prod-
ucts developed by inexperienced developers during the intensive project-based events.

Table 7. Recommendation for educational practice.

PRACTICE LESSON LEARNED

Craftmanship Instructors should influence students to incept the idea of crafting a product,
from its conceptual design to the release of a working product.

Teamwork There is value in identifying a high-level goal and break it down in clear objectives
to be shared by team members. Instructors should be effective in facilitating the
identification of the high-level goal and distributing objectives.

Technical
Command

Technical accomplishment is king in the process of walking the line set by the
bootcamp. Excellent command of the tools at hand enables instructors to facili-
tate the learning process of students and being effective in providing alternatives.

Accountability Instructors should be careful about supervising that each team member responds
to the team’s needs by delivering to their commitments to avoid only one team
member sustaining the workload.

Product Pride Instructors should require that teams deliver a working product that goes beyond
an anecdotal experience. Installed applications in personal mobile phones deliver a
sense of accomplishment in participants.

Product quality Instructors should suggest that teams pay attention to the quality of their code be-
fore increasing complexity and functionality.

End-User Software Development During Intensive Project-Based Events

388

In conclusion, we observed that teams with little or no background in software development could
create a functional product using basic SE principles and ad-hoc development tools.

The case studies lay the foundation for interesting convergences: the proposed instructional strategy
guarantees that all participants have sufficient knowledge of all software concepts through the resolu-
tion of examples and joint exercises. However, during the independent work, we noticed that the
participants experienced problems working autonomously in their context.

The set of metrics included in the assessment framework represent a first approach to product evalu-
ation for EUSE development; however, due to the small number of projects, it is difficult to find a
single trend that we can associate to a particular profile of age or technical experience. Critical trends
like duplicated code or generic code smells also deliver insights on the relationship between func-
tional code and top-quality code. Participants are encouraged to deliver working solutions, yet in the
internal solution, the quality metrics are naturally slightly down compared to a professionally devel-
oped product.

From the software process point of view, the observation of games and group activities suggests that
it is valuable to incorporate experiences that help participants to identify roles that are critical in SE
and that could eventually be associated to typical roles such as Scrum Master, Product Owner, Soft-
ware Tester, and others. Participants are empowered to define a path towards a successful product.

The present work offers a complementary and deeper view with respect to the scholarly literature
produced to the date. In particular, in addition to the structural and instructional strategies already
proposed, this paper works deeper in providing a framework to assess the quality of intermediate and
final products. More work is needed to cover a profound implementation of an assessment frame-
work for process and product that sheds light on the effectiveness of the instructional strategy and
delivers a quantitative approach to determine courses of action, activities that should be continued,
and practices that can be done differently.

Our instructional strategy lets participants identify a problem, select the most effective solution based
on the introductory part, and finally, create the solution. Our instructional strategy collaborates to
cultivate and benefit from software development skills and put them at the service of subjects of dif-
ferent fronts of their studies (in light that web technologies can be approached from the commercial,
communication, visual design, and software development viewpoints).

FUTURE WORK
Further in-depth research is worthwhile to understand if our instructional strategy is effective also
with other types of audiences, besides those considered in this work (i.e., high school and undergrad-
uate students). For example, it would be interesting to evaluate the effectiveness of the strategy with
professionals in different fields having little or no CS/SE background.

Moreover, further research can focus on improving the assessment framework by including both
process and product metrics to shed light on the effectiveness of the instructional strategies. In par-
ticular, process assessment would benefit from the inclusion of specific metrics that would need to
be collected during the activities. Still, we think that that observation should remain the main assess-
ment tool for the process side, to avoid interrupting participants’ activities (i.e., asking specific ques-
tions for assessment), which would slow down the dynamic rhythm of the event and bring it back to
a more typical educational environment.

REFERENCES
Becker, K. (2015, 14-16 Oct.). Gamification: How to gamify learning and instruction. Proceedings of the 2015

IEEE Games Entertainment Media Conference (GEM), Toronto, ON, Canada (p. 1-3).
https://doi.org/10.1109/gem.2015.7377207

https://doi.org/10.1109/gem.2015.7377207

Fronza, Corral, & Pahl

389

Brennan, K., & Resnick, M. (2012). New frameworks for studying and assessing the development of computa-
tional thinking. Proceedings of the 2012 Annual Meeting of the American Educational Research Association
(AERA’12), Vancouver, Canada (p. 1-25). Vancouver, Canada: AERA. http://scratched.gse.har-
vard.edu/ct/files/AERA2012.pdf

Burnett M. (2009). What is end-user software engineering and why does it matter? In V. Pipek, M. B. Rosson,
B. de Ruyter, & V. Wulf (Eds.), End-User Development. IS-EUD 2009. Lecture Notes in Computer Science, 5435,
15-26. Springer. https://doi.org/10.1007/978-3-642-00427-8_2

Burnett, M., & Myers, B. A. (2014). Future of end-user software engineering: beyond the silos. In Proceedings of
the on Future of Software Engineering (pp. 201–211). https://doi.org/10.1145/2593882.2593896

Burning Glass Technologies. (2016). Beyond point and click: The Expanding demand for coding skills.
https://www.burning-glass.com/research-project/coding-skills/

Champagne, J. (2016). Are coding bootcamps worth it? https://blog.capterra.com/are-coding-bootcamps-worth-it/

Chimalakonda, S., & Nori, K. V. (2013). What makes it hard to teach software engineering to end users? Some
directions from adaptive and personalized learning. Proceedings of the 2013 26th International Conference on
Software Engineering Education and Training (CSEE&T), San Francisco, CA (pp. 324–328). IEEE.
https://doi.org/10.1109/cseet.2013.6595270

Costabile, M. F., Mussio, P., Parasiliti Provenza, L., & Piccinno, A. (2008). End users as unwitting software de-
velopers. In Proceedings of the 4th International Workshop on End-User Software Engineering (pp. 6–10). New York,
NY, USA: ACM. https://doi.org/10.1145/1370847.1370849

Decker, A., Eiselt, K., & Voll, K. (2015). Understanding and improving the culture of hackathons: Think global
hack local. Proceedings of the 2015 Frontiers in Education Conference (FIE) (pp. 1–8). IEEE.
https://doi.org/10.1109/fie.2015.7344211

Fenton, N., & Bieman, J. (2014). Software metrics: A rigorous and practical approach. CRC press.

Frieze, C., Hazzan, O., Blum, L., & Dias, M. B. (2006). Culture and environment as determinants of women’s
participation in computing: revealing the women-cs fit. ACM SIGCSE bulletin, 38, 22–26.
https://doi.org/10.1145/1124706.1121351

Fronza, I., Corral, L., & Pahl, C. (2020). An approach to evaluate the complexity of block-based software prod-
uct. Informatics in Education, 19(1), 15-32. https://doi.org/10.15388/infedu.2020.02

Fronza, I., El Ioini, N., & Corral, L. (2016). Blending mobile programming and liberal education in a social-
economic high school. MOBILESoft ‘16: Proceedings of the International Conference on Mobile Software Engineering
and Systems, Austin, TX, USA, pp. 123-126. https://doi.org/10.1145/2897073.2897096

Fronza, I., El Ioini, N., & Corral, L. (2017). Teaching computational thinking using agile software engineering
methods: A framework for middle schools. ACM Transactions on Computing Education (TOCE), 17(4),19.
https://doi.org/10.1145/3055258

Fronza, I., El Ioini, N., Pahl, C., & Corral, L. (2019). Bringing the benefits of agile techniques inside the class-
room: A practical guide. In D. Parsons & K. MacCallum (Eds.), Agile and lean concepts for teaching and learning:
Bringing methodologies from industry to the classroom (pp. 133–152). Springer. https://doi.org/10.1007/978-981-
13-2751-3_7

Fronza, I., & Pahl, C. (2018a). End-user software engineering in K-12 by leveraging existing curricular activi-
ties. ICSOFT 2018 - Proceedings of the 13th International Conference on Software Technologies, pp. 249-255.
https://doi.org/10.5220/0006846702830289

Fronza, I., & Pahl, C. (2018b) Envisioning a computational thinking assessment tool. CEUR Workshop Proceed-
ings, Vol. 2190. http://ceur-ws.org/Vol-2190/TACKLE_2018_paper_2.pdf

Fronza, I., & Pahl, C. (2019) Teaching software engineering principles in non-vocational schools. CSEDU 2019
- Proceedings of the 11th International Conference on Computer Supported Education, 1, pp. 252-261.
https://doi.org/10.5220/0007672702520261

http://scratched.gse.harvard.edu/ct/files/AERA2012.pdf
http://scratched.gse.harvard.edu/ct/files/AERA2012.pdf
https://doi.org/10.1007/978-3-642-00427-8_2
https://doi.org/10.1145/2593882.2593896
https://www.burning-glass.com/research-project/coding-skills/
https://blog.capterra.com/are-coding-bootcamps-worth-it/
https://doi.org/10.1109/cseet.2013.6595270
https://doi.org/10.1145/1370847.1370849
https://doi.org/10.1109/fie.2015.7344211
https://doi.org/10.1145/1124706.1121351
https://doi.org/10.15388/infedu.2020.02
https://doi.org/10.1145/2897073.2897096
https://doi.org/10.1145/3055258
https://doi.org/10.1007/978-981-13-2751-3_7
https://doi.org/10.1007/978-981-13-2751-3_7
https://doi.org/10.5220/0006846702830289
http://ceur-ws.org/Vol-2190/TACKLE_2018_paper_2.pdf
https://doi.org/10.5220/0007672702520261

End-User Software Development During Intensive Project-Based Events

390

Gama, K. (2019). Developing course projects in a hack day: An experience report. In Proceedings of the 2019
ACM Conference on Innovation and Technology in Computer Science Education (pp. 388-394).
https://doi.org/10.1145/3304221.3319777

Gama, K., Alencar Goncalves, B., & Alessio, P. (2018). Hackathons in the formal learning process. In Proceed-
ings of the 23rd Annual ACM Conference on Innovation and Technology in Computer Science Education (pp. 248–253).
https://doi.org/10.1145/3197091.3197138

Gladwell, M. (2008). Outliers: The story of success. Hachette UK.

Grover, S. (2017). Tackling novice learners’ naive conceptions in introductory programming. Hello World, 2.

Hermans, F., & Aivaloglou, E. (2016). Do code smells hamper novice programming? A controlled experiment
on scratch programs. Proceedings of 2016 IEEE 24th International Conference on Program Comprehension (ICPC)
(pp. 1–10). https://doi.org/10.1109/icpc.2016.7503706

Hou, D., Jablonski, P., & Jacob, F. (2009). CNP: Towards an environment for the proactive management of
copy-and-paste programming. In Proceedings of 2009 IEEE 17th International Conference on Program
Comprehension (pp. 238–242). https://doi.org/10.1109/icpc.2009.5090049

Kamuto, M. B., & Langerman, J. J. (2017, May). Factors inhibiting the adoption of DevOps in large organisa-
tions: South African context. In 2017 2nd IEEE International Conference on Recent Trends in Electronics, Infor-
mation Communication Technology (RTEICT) (p. 48-51). https://doi.org/10.1109/rteict.2017.8256556

Lara, M., & Lockwood, K. (2016) Hackathons as community-based learning: A case study. TechTrends, 60, 486-
495. https://doi.org/10.1007/s11528-016-0101-0

Kastl, P., Kiesmüller, U., & Romeike, R. (2016). Starting out with projects: Experiences with agile software de-
velopment in high schools. In Proceedings of the 11th Workshop in Primary and Secondary Computing Education
(pp. 60–65). https://doi.org/10.1145/2978249.2978257

Khan, A. A., Mahmood, A., Amralla, S. M., & Mirza, T. H. (2016). Comparison of software complexity metrics.
International Journal of Computing and Network Technology, 4(1). https://doi.org/10.12785/ijcnt/040103

Ko, A. J., Abraham, R., Beckwith, L., Blackwell, A., Burnett, M., Erwig, M., Scaffidi, C., Lawrance, J., Lieber-
man, H., Myers, B., Rosson, M. B., Rothermel, G., Shaw, M., & Wiedenbeck, S. (2011). The state of the art
in end-user software engineering. ACM Computing Surveys (CSUR), 43(3), 21.
https://doi.org/10.1145/1922649.1922658

Liebenberg, J., Huisman, M., & Mentz, E. (2015). The relevance of software development education for stu-
dents. IEEE Transactions on Education, 58(4), 242-248. https://doi.org/10.1109/te.2014.2381599

Meerbaum-Salant, O., & Hazzan, O. (2010). An agile constructionist mentoring methodology for software pro-
jects in the high school. ACM Transactions on Computing Education, 9(4), n4.
https://doi.org/10.1145/1656255.1656259

Millis, B. J., & Cottell, P. G., Jr. (1997). Cooperative learning for higher education faculty. Series on higher education.
Oryx Press.

MIT App Inventor. (n.d.). AI2 Project Merger Tool: Combine two App Inventor projects into one. http://appinven-
tor.mit.edu/explore/resources/ai2-project-merger.html

MIT App Inventor. (2020, June 9). MIT App Inventor stats http://ai2.appinventor.mit.edu/stats

Morelli, R., de Lanerolle, T., Lake, P., Limardo, N., Tamotsu, E., & Uche, C. (2011). Can android app inventor
bring computational thinking to K-12? In Proceedings of the 42nd ACM Technical Symposium on Computer Science
Education. ACM. https://doi.org/10.1145/2157136.2157437

Moreno-Leon, J., Robles, G., & Román-Gonzalez, M. (2015). Dr. scratch: Automatic analysis of scratch pro-
jects to assess and foster computational thinking. RED-Revista de Educacion a Distancia, 46, 1–23.
https://doi.org/10.6018/red/46/10

Moreno-Léon, J., Robles, G., & Román-González, M. (2016). Comparing computational thinking development
assessment scores with software complexity metrics. In Global Engineering Education Conference (EDUCON),
2016 IEEE (pp. 1040–1045). https://doi.org/10.1109/educon.2016.7474681

https://doi.org/10.1145/3304221.3319777
https://doi.org/10.1145/3197091.3197138
https://doi.org/10.1109/icpc.2016.7503706
https://doi.org/10.1109/icpc.2009.5090049
https://doi.org/10.1109/rteict.2017.8256556
https://doi.org/10.1007/s11528-016-0101-0
https://doi.org/10.1145/2978249.2978257
https://doi.org/10.12785/ijcnt/040103
https://doi.org/10.1145/1922649.1922658
https://doi.org/10.1109/te.2014.2381599
https://doi.org/10.1145/1656255.1656259
http://appinventor.mit.edu/explore/resources/ai2-project-merger.html
http://appinventor.mit.edu/explore/resources/ai2-project-merger.html
http://ai2.appinventor.mit.edu/stats
https://doi.org/10.1145/2157136.2157437
https://doi.org/10.6018/red/46/10
https://doi.org/10.1109/educon.2016.7474681

Fronza, Corral, & Pahl

391

Nichols, M., Cator, K., & Torres, M. (2016). Challenge based learner user guide. Digital Promise.

Oakley, B., Felder, R. M., Brent, R., & Elhajj, I. (2004). Turning student groups into effective teams. Journal of
Student-Centered Learning, 2(1), 9–34.

Osborne, J. W., & Overbay, A. (2004). The power of outliers (and why researchers should always check for
them). Practical Assessment, Research & Evaluation, 9(6), 1–12. https://doi.org/10.7275/qf69-7k43

Ota, G., Morimoto, Y., & Kato, H. (2016). Ninja code village for scratch: Function samples/function analyser
and automatic assessment of computational thinking concepts. 2016 IEEE Symposium on Visual Languages
and Human-Centric Computing (VL/HCC), (pp. 238–239). https://doi.org/10.1109/vlhcc.2016.7739695

Paternò, F. (2013). End user development: Survey of an emerging field for empowering people. International
Scholarly Research Notices, 2013, Article 532659. https://doi.org/10.1155/2013/532659

Porras, J., Ikonen, J., Heikkinen, K., Koskinen, K., & Ikonen, L. (2005). Better programming skills through
code camp approach. In 16th EAEEIE Annual Conference on Innovation in Education for Electrical and Infor-
mation Engineering (pp. 6–8).

Porras, J., Khakurel, J., Ikonen, J., Happonen, A., Knutas, A., Herala, A., & Drögehorn, O. (2018). Hackathons
in software engineering education-lessons learned from a decade of events. In Proceedings of the 2nd Interna-
tional Workshop on Software Engineering Education for Millennials (pp. 40-47). ACM.
https://doi.org/10.1145/3194779.3194783

Romeike, R. & Göttel, T. (2012). Agile projects in high school computing education: Emphasizing a learners’
perspective. In Proceedings of the 7th Workshop in Primary and Secondary Computing Education, pages 48–57.
ACM. https://doi.org/10.1145/2481449.2481461

Runeson, P., & Höst, M. (2009). Guidelines for conducting and reporting case study research in software engi-
neering. Empirical Software Engineering, 14(2), 131. https://doi.org/10.1007/s10664-008-9102-8

Sammut-Bonnici, T., & McGee, J. (2015). Case study. In C.L. Cooper, J. McGee, & T. Sammut-Bonnici (Eds.),
Wiley Encyclopedia of Management (Vol 12). John Wiley & Sons.
https://doi.org/10.1002/9781118785317.weom120012

Scaffidi, C., Shaw, M., & Myers, B. (2005). Estimating the numbers of end users and end user programmers.
2005 IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC'05 (pp. 207–214).
https://doi.org/10.1109/vlhcc.2005.34

Scheubrein, R. (2003). Elements of end-user software engineering. INFORMS Transactions. on Education, 4(1),
37–47. https://doi.org/10.1287/ited.4.1.37

Shaw, M. (2000). Software engineering education: A roadmap. In Proceedings of the Conference on the Future of Soft-
ware Engineering (pp. 371–380). https://doi.org/10.1145/336512.336592

Steghöfer, J.-P., Knauss, E., Alégroth, E., Hammouda, I., Burden, H., & Ericsson, M. (2016). Teaching agile:
Addressing the conflict between project delivery and application of agile methods. In Proceedings of the 38th
International Conference on Software Engineering Companion (pp. 303–312).
https://doi.org/10.1145/2889160.2889181

Uys, W. F. (2019). Hackathons as a formal teaching approach in information systems capstone courses. In An-
nual Conference of the Southern African Computer Lecturers’ Association 2019 (pp. 79-95). Springer.
https://doi.org/10.1007/978-3-030-35629-3_6

Waite, J. (2017). Smelly code. Do we pass on best practice when we teach block-based programming to primary
school pupils? Hello World, 3.

Warren, N. (2018). What is citizen development? And, how can you govern citizen developers more effectively?
https://www.outsystems.com/blog/posts/citizen-developer/

Wohlin, C., Runeson, P., Höst, M., Ohlsson, M. C., Regnell, B., & Wesslén, A. (2012). Experimentation in software
engineering. Springer.

Wolber, D., Abelson, H., Spertus, E., & Looney, L. (2011). App Inventor. O’Reilly Media.

https://doi.org/10.7275/qf69-7k43
https://doi.org/10.1109/vlhcc.2016.7739695
https://doi.org/10.1155/2013/532659
https://doi.org/10.1145/3194779.3194783
https://doi.org/10.1145/2481449.2481461
https://doi.org/10.1007/s10664-008-9102-8
https://doi.org/10.1002/9781118785317.weom120012
https://doi.org/10.1109/vlhcc.2005.34
https://doi.org/10.1287/ited.4.1.37
https://doi.org/10.1145/336512.336592
https://doi.org/10.1145/2889160.2889181
https://doi.org/10.1007/978-3-030-35629-3_6
https://www.outsystems.com/blog/posts/citizen-developer/

End-User Software Development During Intensive Project-Based Events

392

Wujec, T. (2010). Build a tower, build a team [Video]. TED Conferences. https://www.ted.com/talks/tom_wu-
jec_build_a_tower_build_a_team

Wujec, T. (2013). Got a wicked problem? First, tell me how you make toast [Video]. TED Conferences.
https://www.ted.com/talks/tom_wujec_got_a_wicked_problem_first_tell_me_how_you_make_toast

Xie, B., & Abelson, H. (2016). Skill progression in MIT App Inventor. In 2016 IEEE Symposium on Visual Lan-
guages and Human-Centric Computing (VL/HCC) (pp. 213–217).
https://doi.org/10.1109/vlhcc.2016.7739687

Xie, B., Shabir, I., & Abelson, H. (2015). Measuring the programmatic sophistication of app inventor projects grouped by
functionality. http://web.mit.edu/bxie/www/thesis.pdf

Ye, Y., & Fischer, G. (2007). Designing for participation in socio-technical software systems. In C. Stephanidis
(Ed.), Universal Access in Human Computer Interaction. Coping with Diversity. UAHCI 2007. Lecture Notes in Com-
puter Science, 4554, 312-321. Springer. https://doi.org/10.1007/978-3-540-73279-2_35

Zelkowitz, M. V., & Wallace, D. R. (1998). Experimental models for validating technology. Computer, 31(5), 23–
31. https://doi.org/10.1109/2.675630

BIOGRAPHIES
Ilenia Fronza is an assistant professor in software engineering at the
Free University of Bozen-Bolzano, Italy. She received a M.Sc. degree in
Mathematics from the University of Trento, Italy, and a PhD in Com-
puter Science from Free University of Bozen-Bolzano. Her research in-
terests lie in the software engineering field, specifically on software engi-
neering training and education. This endeavor shall provide a better un-
derstanding, innovative techniques and tools for teaching software engi-
neering, technology enhanced learning, and product assessment (also in
non-conventional programming languages). Ilenia Fronza is guiding the
Software Engineering Training Education research group, which aims at

proposing educational techniques and tools to improve software development in production and ed-
ucational ecosystems. Over the years, she has engaged a large number of students and educators in
various projects.

Luis Corral completed his Ph.D. at the Free University of Bozen-Bol-
zano, Italy, and his Master of Computer Science at the Autonomous Uni-
versity of Guadalajara, Mexico after a Bachelor of Science in Computer
Systems Engineering at the Technological Institute of Queretaro, Mexico.
Luis Corral has strong industrial experience. Through his career, he has
held positions as Software Engineer in General Electric Aviation, leading
globalized Quality Assurance processes for certifiable airborne software.
He has a full commitment with education, training and development,
serving as research fellow of the Faculty of Computer Science of the Free

University of Bozen-Bolzano, Italy. Currently, he lectures Computer Science in the School of Infor-
mation Technology and Electronics of ITESM, Campus Queretaro, and leads the Technical Educa-
tion Programs at GE Infrastructure Queretaro. He is member of the Mexican National Research Sys-
tem, in the area of Engineering. His areas of interest are computational thinking, software quality as-
surance, mobile software engineering and energy aware mobile systems.

https://www.ted.com/talks/tom_wujec_build_a_tower_build_a_team
https://www.ted.com/talks/tom_wujec_build_a_tower_build_a_team
https://www.ted.com/talks/tom_wujec_got_a_wicked_problem_first_tell_me_how_you_make_toast
https://doi.org/10.1109/vlhcc.2016.7739687
http://web.mit.edu/bxie/www/thesis.pdf
https://doi.org/10.1007/978-3-540-73279-2_35
https://doi.org/10.1109/2.675630

Fronza, Corral, & Pahl

393

Claus Pahl is a professor of computer science and vice-dean of research
at the Free University of Bozen-Bolzano, Italy. His research interests in-
clude software engineering in service and cloud computing, specifically
migration, architecture specification, dynamic quality, performance engi-
neering, and scalability. Software engineering has been a continuous,
cross-cutting concern. He received a Ph.D. in computing from the Uni-
versity of Dortmund and has held academic positions in Germany, Ire-
land, Denmark and Italy.

	End-User Software Development: Effectiveness of a Software Engineering-Centric Instructional Strategy
	Abstract
	Introduction
	Background and Related Work
	Research Methodology
	Instructional Strategy
	Assessment Framework
	Product Assessment
	Process Assessment

	Case Studies
	Results
	Process Assessment
	Elaboration of a General Strategy for Quality Assessment

	Discussion
	Limitations

	Conclusions
	Initial Questions, Revisited
	Recommendations for Educational Practice
	Future Work

	References
	Biographies

