
Journal of Information Technology Education Volume 2, 2003

Editor: Lorraine Staehr

Empirical Evidence Justifying the Adoption of a Model-
Based Approach in the Course Web

Applications Development

Borislav Roussev
Susquehanna University, Selinsgrove, PA, USA

roussev@susqu.edu

Executive Summary
With the ever- increasing role of business people in software development there is a growing need for
business schools to offer courses in e-business and e-commerce applications development.

This paper presents the results of a student survey evaluating the applications development skills ac-
quired by business students exposed to two different approaches to teaching the course E-business appli-
cations development. The first group was taught using a model-based approach, while the second one
was taught using a traditional code-based approach. In the model-based approach the environment
model of evaluation was used to introduce the basic programming constructs. The UML Web Modeler
profile and statecharts were employed to abstract from the intricacies and the distributed nature of Web-
based information systems. A major constituent of this approach was the development of a system
model. The underlying assumption was that adopting a model-based approach would enhance students'
ability to think and reason formally about, develop rigorously, and program better E-business applica-
tions. The contention was that learners would perceive coding as yet another view in the system model.
It was believed that having defined the components' interfaces, students would be bound to experience
fewer difficulties when writing the code. In the code-based approach students are exposed to Web pro-
gramming without being required to develop a system model.

The two groups of students had to develop an e-commerce application using the auction model. To de-
termine if there is a predictive relationship between teaching method and applications development
skills a regression analysis was performed. It was considered whether other factors, such as student
abilities and academic standing, would have any effect on applications development skills. When appli-
cations development skills was regressed on five independent variables, the equation was found to be
statistically significant (F=4.92, p value=.000). When the regression coefficients for the individual pre-
dictors were examined, only teaching method was statistically significant.

The quantitative results and the qualitative analysis showed that teaching using a model-based approach
has brought about tangible changes in students' modeling and programming skills. The enhanced growth
in critical thinking and synthesis skills is attributed to the interrelatedness and interdependence of mod-

eling and abstraction whose conjoint teaching and
practice proves very fruitful.

Keywords: e-business applications development,
learner-oriented approach, model-driven design,
web-engineering, web-programming

Introduction
Current trends in software development exert an
enormous influence on both end users and IS de-

Material published as part of this journal, either on-line or in
print, is copyrighted by the publisher of the Journal of Informa-
tion Technology Education. Permission to make digital or paper
copy of part or all of these works for personal or classroom use is
granted without fee provided that the copies are not made or dis-
tributed for profit or commercial advantage AND that copies 1)
bear this notice in full and 2) give the full citation on the first
page. It is permissible to abstract these works so long as credit is
given. To copy in all other cases or to republish or to post on a
server or to redistribute to lists requires specific permission and
payment of a fee. Contact Editor@JITE.org to request redistribu-
tion permission.

Empirical Evi dence Justifying the Adoption of a Model-Based Approach

74

velopers. As software becomes ubiquitous, the relationship between business people and software de-
velopers is undergoing fundamental changes. For a system to be of value to its users, it has to reduce the
user's entropy, i.e. level of uncertainty (Shannon & Weaver, 1949, Cohen, 1999). In this respect, the role
of business people has become crucial. To reduce the system’s entropy, adequate and precise user re-
quirements have to be elicited. This can only happen when all stakeholders are actively engaged in the
software process. Modern software development processes, e.g. the Unified Process (UP), engage bus i-
ness people and are driven by user requirements (Jacobson et al., 1999). Another reason for end users to
understand better software development is the ever-growing trend toward software reuse and customiza-
tion. At present, software is commonly adapted, composed from reusable components and frameworks,
and created by business people rather than IS developers (Shaw, 2000). Modern software processes are
also architecture-centered (Jacobson et al., 1999). The basic promise of the software architecture ap-
proach is that better software systems can result from modeling their important architectural aspects
early on in the development lifecycle (Medvidovic et al., 2002). Object-oriented modeling, dominated
by UML (Booch et al., 1999), has become the de-facto and de-jure standard in software development
(Johnson, 2000). Though object-oriented modeling is supported by object abstraction, this device alone
cannot capture aspects bigger than objects. As a result, the gain from reusability at object/class level is
insignificant (Johnson, 2000). The real benefit from reusability comes at component level, and even
more so at architecture level (Gamma et al., 1994).

To sum up, the days of the closed workshop model, where developers work in isolation from end users,
are over (Shaw, 2000). Modern software practices call for the active involvement of business people in
the software process and the comprehensive understanding of the enterprise’s business processes by IS
developers (Nuseibeh & Eastserbrook, 2000). Are these new requirements reflected adequately in the IS
and Business curricula and in particular in the E-business applications development course (a.k.a. Web-
based programming, E-commerce systems), the basic hands-on-experience course, where students de-
velop Web-based e-commerce applications?

E-business applications development is part of the IS component of the core curriculum at our business
schools. It is the first programming course for IS majors and minors and the only such course mandatory
for all business students. The IS core of the business curriculum offers four courses: (1) Using data-
bases; (2) Systems analysis and design; (3) E-business applications deve lopment; and (4) Management
support systems. The typical organization of E-business applications development is shown in Table 1.

Each programming language taught in the course is based on a different programming paradigm.
JavaScript and VBScript are imperative, loosely typed, scripting languages enhanced with object-
oriented features. SQL is a declarative 4GL language, and HTML is a markup language. In addition,
students have to learn the client-side extension of JavaScript (or VBScript) and the server-side extension
of VBScript. Finally, students have to master the client-server model, networking with HTTP, and the
document object model (DOM) event model.

Course material assimilation and practical skills acquisition become difficult tasks. The consequences of
this course organization are negative. E-business applications development is mainly a code-based
course. Business and IS students learn little about software development, nor can they gain a better un-
derstanding and appreciation of the power and limitations of E-business applications, i.e. how e-

Topics
1. Intermediate HTML (formatting, hyperlinks, tables, forms).
2. Network-centric computing (client-server model, Internet and HTTP protocol).
3. Client-side JavaScript (or VBScript).
4. Server-side VBScript with Embedded SQL

Table 1: Topics in E-business applications development.

 Roussev

 75

commerce systems function, since they struggle with coding every step of the way. As a result, the
broad-brush picture of e-business is blurred.

This paper presents results from the evaluation of a new approach to teaching E-business applications
development. The aims of the new approach are to teach students how e-commerce applications operate
and how such applications are built using modeling and abstraction. To assess the knowledge and skills
acquired in this course, we conducted a formal experiment with two groups of students at the end of the
semester. The treatment group, consisting of sixty five students, was taught E-business applications us-
ing a model-based approach. The controlled group, consisting of forty seven students was taught E-
business applications using a code-based approach. The experiment yielded interesting and positive re-
sults.

The rest of the paper is structured as follows. Section 2 presents the new course structure, and reviews
the topics covered in the course. Next, Section 3 describes the study conducted to evaluate the proposed
approach and discusses the way the course was assessed. Then, Section 4 attends to the statistical analy-
sis of the study’s outcome. Section 5 discusses the results and presents important observations made.
The final section summarizes the experience gained and concludes.

Model-Based Approach to Teaching E-Business
Applications

In the previous section we discussed the ever-growing role of business people in software deve lopment.
We can reverse-engineer the analyzed trends to obtain the course aims and objectives. An important
guideline in this endeavor will be the ladder of cognitive skills (Bloom, 1956, Huba & Freed, 2000,
Gersting et al. 2001, Machanick, 1998).

The aims of our E-business applications development course are summarized in Table 2, ordered from
more general ones to more specific ones. Note, that we do not advocate a software engineering perspec-
tive such as explicit consideration of the software development process. We want our students to experi-
ence the added power of abstraction resulting from modeling in order to understand better how Web-
based information systems function. We try to make clear the distinction between the “analysis” per-
spective and the “implementer” perspective, thus supporting learners in the creation of a sound and con-
sistent mental model for developing and reasoning about e-business systems. It is important to observe,
that unless learners develop effective analytical and synthesis skills, the course aims and objectives are
unattainable.

We developed and gave a course on E-business applications development employing a model-based ap-
proach. A major constituent of this approach is the development of a system model. The system model
abstracts from (in the sense of suppress) irrelevant real world details as well as from implementation de-

Aims
1. Appreciation of the power and limitations of E-business applications.
2. How Web-based information systems and e-commerce systems function.
3. To expose learners to the whole software development lifecycle.
4. See clearly the relations between user requirements and software architecture.
5. See the relation between software architecture and program code.
6. Acquire skills to develop software architectures using a subset of Web modeler

UML profile (Conallen 1999).
7. Implement successfully software architecture components, inc luding user inter-

faces, controllers, and persistent entities, using Web technology and RDBMS.
8. To understand that software must be designed before it is programmed.

Table 2: Intended learning outcome.

Empirical Evi dence Justifying the Adoption of a Model-Based Approach

76

tails. The underlying assumption is that adopting a model-based approach will enhance students’ ability
to think and reason formally about, develop rigorously, and program better E-business applications. We
contend that learners will perceive coding as yet another view in the system model. A clear-cut asset is
that students, having first defined the components’ interfaces, are bound to experience fewer difficulties
when writing the code. We want learners to embrace the idea that software can be designed before it is
programmed, and even that software need not be programmed at all, at least not by humans (Mellor &
Balcer, 2002). Another upshot we are hoping for is that students will feel lost if asked to code before
designing a model. We aim at liberating students’ thinking from the constraints of programming lan-
guages. The material in E-business applications is structured as follows:

Topics # weeks
1. Environment model of evaluation and core JavaScript 3 weeks
2. UI in HTML: formatting, tables, forms, hyperlinks and HTTP 3 weeks
3. Relational databases and SQL 1 week
4. Analysis/Design system model, Web Modeler UML profile,

Server-side JavaScript with UML, and embedded SQL
7 weeks

Client-side scripting with JavaScript is completely missing from the topics covered. The rationale be-
hind this decision is that client-side scripting gives little insight into the workings of enterprise informa-
tion systems.

Models are used to introduce the basic programming constructs. To this end, we use the environment
model of evaluation (Baber, 1987) as a virtual machine interpreting the programs written in JavaScript,
and UML class diagrams (Booch et al., 1999) and statecharts (Booch et al., 1999, Harrel, 1987) to ab-
stract from the intricacies and the distributed nature of Web-based enterprise information systems. The
environment model of evaluation is a notation used in formal proofs of program correctness. The model
was simplified to suit the learners’ level and needs (Roussev, 2003).

Modeling program execution: Environment model of evaluation
To introduce the notion of state and thus help students appreciate the environment model of evaluation,
we begin by modeling with labeled transition systems, a subset of the statecharts model. Our experience
confirmed the findings of (Davis 1988) that the introduction of this model takes an hour on average.
This model is a prelude to use case scenarios and program state.

For practice, a JavaScript interpreter developed by Nombas, called ScriptEase (Script Ease 2003), is
used. The availability of a JavaScript interpreter decreases the complexity of the course radically. With-
out the interpreter, students have to write programs based on two different paradigms and in two differ-
ent languages—HTML and JavaScript. The former is declarative while the latter is imperative enhanced
with object-oriented features. To make matters worse, the snippets of code written in the two different
languages have to interact through the event model defined by DOM.

The semantics of the assignment statement, the sequence of statements (block), the if statement, and the
iterator for/in are defined operationally by specifying the effect of their execution on an environment.
The programming constructs are practiced using the JavaScript interpreter. Functions as computational
objects expressing named compound computations, collections, and objects as software analogs of real-
world objects are introduced without defining their semantics in the environment model of evaluation.

The exercises given are mainly to test students’ skills in applying the material rather than asking them to
synthesize programs. Synthesis is one of the highest order cognitive skills. By the end of the first three
weeks, students are able to apply mechanically the environment model of evaluation to predict the be-
havior of a program of any size. Tasks on object-oriented problems are restricted to using the String,
Array, Math, and Date objects and their respective methods. This organization of the material is in ac-
cordance with the ladder of cognitive skills (Bloom, 1956), where factual knowledge, theory compre-

 Roussev

 77

hension and theory application come before analysis and synthesis. The negative impact of reversing the
skills order in the computer science curriculum is discussed in (Machanick, 1998, Gersting et al., 2001).

Modeling Web applications: Web modeler UML profile
A Web system is a system that uses Web server, network, HTTP, and browser. A Web application is a
Web system in which user input changes the system state. What distinguishes a Web application from a
Web site or from a database driven Web system is that a Web application executes business logic to
modify the business state of a system. The emphasis of the modeling efforts in a Web application, there-
fore, is on business logic and business state.

Web applications are based on the client-server paradigm. A Web application’s principal communica-
tion protocol is the connectionless HTTP. It is assumed that business logic is executed only on the appli-
cation server (embedded in a Web server). Business logic and business objects are implemented in
JavaScript. The server-side extension to JavaScript provided by the Active Server Pages scripting envi-
ronment (ASP, 2003) is used.

In E-business applications development we focus on analysis and design of Web applications. Analysis
is primarily concerned with conceptual decomposition into components in terms of their meaning to the
users of the system (Jacobson et al., 1992). The analysis level class model is the “first cut” at the system
architecture. The design model defines the realization of the conceptual components, identified during
analysis, as collaborations among subsystems, classes and interfaces. For small- and middle-scale pro-
jects, there is no compelling reason to keep around two models (especially if a CASE tool is not used),
so we work with one analysis/design model (A/DM).

The UML models employed are class diagrams, occasionally sequence diagrams, and statecharts dia-
grams (already introduced in the environment model of evaluation).

The architecturally significant components of Web applications need to be modeled. These components
are pages, hyperlinks and dynamic content creating the pages. To map these artifacts to modeling ele-
ments a subset of the UML profile presented in (Conallen, 1999) with a few simplifications is used.

In Web modeler profile, each web page is modeled with a UML class, and its relationships to other
pages represent hyperlinks. However, this abstraction breaks down for server-scripted pages. These
pages exhibit one behavior on the server and a completely different behavior on the client (browser).
Conallen proposes that the principle of “separation of concerns” be used. He suggests that the server
side aspect of a server page be modeled with one class and the client side aspect with another. In Figure
1, Clock.asp and Time.html represent respectively the server-side and client-side view of one and
the same server-scripted page.

We enrich gradually core JavaScript by introducing the server-side API classes: Request, Response,
Session and Application. Finally, we cover embedded SQL with basic select, insert, update
and delete queries.

Students create applications from all major e-commerce models: business-to-customer (e-store using a
virtual shopping cart and ticket booking); customer-to-customer (payment service); peer-to-peer (chat

GetServerTime Time

(from Clock)

Clock

<<Link>> <<Build>>

Figure 1: Generic client -server interaction in Web applications.

Empirical Evi dence Justifying the Adoption of a Model-Based Approach

78

room); business-to-business (integration of a payment service with an e-store).

Learners are given tasks described in natural language as seen by end users. Then, they have to formal-
ize the informal description, build the system architecture and subsequently create an implementation. A
sample task, a customer sign-up/register module, is given next. Figure 2 shows a behavioral specifica-
tion of the module. This is the first step in converting an informal description into a more formal, not
necessarily complete, specification. The module’s A/DM is presented in Figure 3.

Student Survey
A study was conducted to determine if there is a predictive relationship between teaching method and
applications development skills. The study was based on two samples of 65 and 47 students, each drawn
from our business student body. The treatment group with 65 students was exposed to the model-based
approach described in Section 2, while the controlled group with 47 students was taught using a tradi-
tional code-based approach described in Section 1. The two groups were taught by the same instructor.

In both groups, students were asked to develop a Web-based e-auction, called eBid, given a textual
specification of the application. The system goal of eBid is as follows.

eBid acts as a forum for registered members, through which Internet users can log-on and assume the
role of either bidder or seller. Sellers post items. When a seller enters an item to be auctioned, the seller
provides a description of the item, keywords, initial price, date and personal information. This data is
used to create the item profile seen by potential buyers. As a bidder, a user may search the site for avail-

Home

Authenticate

reject Access
granted

accept

Register

email_password

register
enter information

add missing information

Figure 2: Sign up and Register statechart diagram.

Session
account

Home

(from auth)

SignUpForm

(from Home)

Authenticate

(from auth)

<<Submit>>

RegisterForm

(from Home)

Catalog

(from auth)

<<Redirect>>

Account

+looks up

<<sql>>

Register

(from auth)

<<Submit>>

<<Redirect>> +creates

<<sql>>

Figure 3: Sign up and Register class diagram.

 Roussev

 79

ability of the item s/he is seeking, view the current bidding activity and place a bid. The flows of the use
case scenarios are as follows.

Register as Member

1. To sign up as a member a customer needs to fill out the Personal Contact Information form.
2. A confirmation message is sent to the customer’s email address.
3. The customer goes to their email program and clicks the blue underlined link to complete their registra-

tion.
Bid on Item

The bidder must be registered as a member
1. The use case starts when the bidder finds the item s/he is interested in by browsing the catalog of available

items.
2. The bidder enters the bid in the bid box.
3. The bidder enters his/her email and password and then clicks the "Place Bid" button.
4. If the bidder wins the auction, s/he is notified by email. Then, the bidder goes to their email program and

clicks the underlined blue link in the eBid’s message to make a credit card payment.

Register as Seller
1. The seller must be registered as a member.
2. To create an online payment account allowing bidders to pay by a credit card, the seller fills out the Create

Account form indicating a bank account.

Sell Item
1. Click on the Sell button at the top of any page. This will bring you to Sell Your Item form.
2. Choose the category under which to list the item (e.g., antiques? coins?).
3. Enter member's User ID and Password.
4. The seller enters the item title, description and photos and how long the seller wants the auction to last.
5. The seller enters the start price and the reserve price.

Glossary and Business Rules
Personal Contact Information form: The required fields for the form are email, confirm email, password, con-
firm password, street address, city, state, zip code, and telephone.
Create Account form: The required fields bank account, bank routing number, account holder.
Start price: Bidding for an auction will start at this price. The start price is used to generate bidding activity.
Catalog: A nonempty set of items.
Reserve price: The reserve price is a hidden amount that only the seller knows. This is the lowest price the
seller is willing to sell the item for.
Business rule BR1: Reserve price should be higher than the start price.

The survey tasks given to the students in the two groups are shown in Figure 4. Part of the intended out-
come from Task 1 is shown in Figure 5. We take into account the fact that there is not only one right an-
swer. There are five important subsystems in the Web application that had to be taken into considera-
tion: (1) Register Member; (2) Authenticate Member; (3) Bid on Item; (4) Register
Seller; and (5) Sell Item. For task 1, a design is graded with 100%, if it realizes all of these five
subsystems and shows how the subsystems interact. For task 2, an implementation of a server (asp) page
is graded with 100% if its program logic complies entirely with the specification of the server page
given in the answer to task 1. For task 2, how server-side JavaScript objects are used, how students
combine html tags and server-side JavaScript scripts, how database queries are made, and how database
query results are processed are taken into consideration. Then, the average of the two grades is taken to
get the final grade for a student.

Empirical Evi dence Justifying the Adoption of a Model-Based Approach

80

Statistical Analysis
The study described in the previous section was designed to measure the strength of the relationship be-
tween teaching method and applications development skills. The question arose whether other factors,
such as student abilities or academic standing, would have any effect on applications development skills.
Four key factors were considered: student scores on the verbal section of the scholastic achievement test
(vSAT), student scores on the mathematical section of the scholastic achievement test (mSAT), student
grade point average (GPA), and student rank in class (Rank). vSAT and mSAT are discrete variables in
the range of 410 to 790, GPA is a continuous variable in the range of 1.5 to 4.0, and Rank is a discrete
variable in the range of 0 to 1.

Task 1 (Develop the software architecture for eBid).

List the names of and/or depict graphically the html pages, asp pages, and database ta-
bles of eBid. Describe in one sentence the responsibility (goal) of each page and data-
base table. For each page show the other pages and/or database tables it interacts with.

Task 2 (Implement an asp page in JavaScript)

Choose one of the asp pages you created for Task 1 and implement it in server-side
JavaScript. Show all html pages that submit or link to this asp page. Show also the asp
pages that forward to this asp page, if any.

Figure 4: Survey tasks.

Session

loginName

Application
winner
price

Application()
Lock()

LoginNameForm

(from Signin)

Signin

(from auction)

Authenticate

(from auction)

<<Submit>>

BidForm

(from Bid.html)

Bid.html

(from MakeBid)

MakeBid

(from auction)

<<Redirect>>

<<Submit>>

<<Build>>

Figure 5: Auction class diagram.

Factor Mean Std. dev. SE 95% Confidence
vSAT 549.68 51.69 2.25 545.27 ÷ 554.09
mSAT 51.69 63.66 2.77 565.96 ÷ 576.84
GPA 2.97 .55 .02 2.92 ÷ 3.02
Rank .5 .29 − −

Table 3: Descriptive statistics for the student population.

 Roussev

 81

Applications development skills are measured on a 100-point discrete scale. Descriptive statistics for the
factors captured in this research are set out in Tables 3 and 4.

First, the student population was studied for normality. Then, the treatment and the controlled groups
were proven representative samples of the student population. Next, whether the treatment and the con-
trolled groups were of similar ability was investigated. Finally, a multiple regression analysis was under-
taken to determine if there is a statistically significant relationship between applications development
skills and teaching method, and to assess the impact of vSAT, mSAT, GPA and Rank on applications
development skills.

Evaluating the Student Population for Normality
First, we tested whether the population’s vSAT, mSAT, and GPA scores, each conforms to a normal dis-
tribution. We want to determine whether the set of vSAT frequencies, fo

vSAT, matches a set of expected
vSAT frequencies, fe

vSAT, that conforms to a normal distribution. The student population mean vSAT is
549.68, and standard deviation is 65.44. The data was partitioned into 23 categories. We combined the
first three and the last two data partitions, since there were cells having less than six values. Part of the
frequency distribution is shown in Table 5. Column 2 shows the observed frequencies and column 4 the
expected frequencies. The null and the alternative hypotheses are:

H01: The vSAT frequency distribution follows a normal distribution (µ=549.68, σ=65.44).
H11: The vSAT frequency distribution does not follow a normal distribution.

This hypothesis was tested using χ2-goodness-of-fit test. Since the mean and the standard deviation of
the hypothetical normal distribution are known, the degrees of freedom is equal to the number of data
partitions minus one, 19. The critical value of χ2 at the .05 significance level is 30.14. The computed χ2
is 14.22, indicating that the null hypothesis cannot be rejected. We conclude that the vSAT distribution
follows a normal distribution.

We ran analogous tests of hypothesis for mSAT and GPA, the other two important factors whose distri-
butions we do not know. In both cases, the null hypotheses that the frequency distributions follow nor-
mal distributions were not rejected. To sum up, we determined that the variables (vSAT, mSAT, and
GPA) describing the student population follow normal distributions. To get a deeper insight for each
variable of interest, we depicted its normal probability plot and inspected it for deviations from the ex-
pected trajectory. The plot in Figure 6 is in support of the analysis made above.

 Treatment group Controlled group
Factor Mean Std. dev. Mean Std. dev.

vSAT 545.85 51.69 536.6 58.69
mSAT 553.72 67.73 568.34 64.31

GPA 2.82 0.52 2.92 .48
Rank 0.61 0.27 .57 .26

Appl.dev.skills 76.35 23.17 62.98 19.73

Table 4: Descriptive statistics for the treatment and controlled groups.

No BinRange fo
vSAT % fe

vSAT
1 440 27 5.09% 25
2 477 34 6.42% 34
3 490 46 8.70& 37
 … … … …

20 791 20 3.77% 12
Table 5: vSAT frequency distribution of the student population.

Empirical Evi dence Justifying the Adoption of a Model-Based Approach

82

Comparing the Treatment and the Controlled Groups to the Student
Population
Next, we prove that the treatment and the controlled groups are representative samples of the student
population. We carried out tests to compare the mean and the standard deviation of each sample’s vSAT,
mSAT, GPA and Rank with the corresponding population ones. For all tests, the sample size is large (65
or 47), the population mean and standard deviation are known, the population is considered normally
distributed, and the level of significance is .05.

To determine if there is any difference in the verbal SAT scores between the treatment group and the
student population, we defined the following null and alternative hypotheses:

H02: There is no difference between the mean vSAT scores for the treatment group and for the stu-
dent population.

H12: The treatment group mean vSAT is different from the population mean vSAT.

The hypothesis was tested with a two-tailed Z test. The test revealed a z statistic=−.06 (p−value>.55),
indicating that there is no significant deference between the sample mean and the population mean, thus
the null hypothesis was not rejected.

A two-tailed ANOVA was run to test if the variance in vSAT of the student population is equal to the
variance in vSAT of the treatment group. The null and the alternative hypotheses are expressed as fo l-
lows:

H03: There is no difference in the variation in the vSAT scores for the treatment group and the stu-
dent population (s1

2=s2
2).

H13: The treatment group variance is different from the population variance (s1
2≠s2

2).

The alternative hypothesis does not state a direction. The F distribution employed to test this hypothesis
revealed an F statistic=0.73 (p-value=0.08), indicating no significant difference between the two vari-
ances, therefore the null hypothesis was not rejected. The outcomes from all Z and F tests for the treat-
ment group and the student population are reported in Table 6 and Table 7. It is important to note that
the Z tests for GPA and Rank are one-tailed tests (Table 6 columns “GPA” and “Rank”). The alternative
hypotheses for GPA and Rank state that students in the treatment group do not outperform students in
the population.

The tests comparing the parameters of the controlled group and the student population are not included
since they are identical to the tests for the treatment group and the student population. The results from
the tests lead to the conclusion that the two samples are representative of the student population.

0

200

400

600

800

1000

-4 -2 0 2 4

Z value

V
er

b
al

 S
A

T

Figure 6: vSAT normal probability plot for the student population.

 Roussev

 83

Comparing the Treatment and Controlled Groups
Our next objective is to compare the scholastic abilities of the two sample groups. We are interested in
discovering whether the mean vSAT for the treatment group is different from the mean vSAT for the
controlled group. The null and alternative hypotheses are:

H04: There is no difference in the mean vSAT scores for the two groups.
H14: The mean vSAT scores for the two groups are different.

We conducted a two-tailed t test to test the null hypothesis H04. At the .05 significance level, the critical
values are ±1.98. The computed t test statistic=.81 (p-value=.42) is a strong evidence that there is no dif-
ference between the two means, thus the null hypothesis cannot be rejected.

In addition to comparing the central tendencies in the abilities of the two groups, we want to compare
their variation. This is expressed by the following null and alternative hypotheses:

H05: There is no difference in the variation in the vSAT scores for the two samples (s1
2=s2

2).
H15: One of the groups has more variation than the other (s1

2≠s2
2).

 vSAT mSAT GPA Rank
Sample size 65 65 65 65

Sample meanX 545.85 557.72 2.82 .61
Sample std. dev. S 60.4 67.63 0.52 .27

Population mean µ 549.68 571.4 2.97 .5
Population std. dev. σ 51.69 63.66 0.55 .29

Significance level α .05 .05 .05 .05
H02 X=549.68 X=571.4 X=2.97 X=.5
H12 X≠549.68 X≠571.4 X<2.97 X>.5

Critical value ±1.96 ±1.96 -1.64 1.64
Z test statistic -.6 -1.73 -2.2 3.06

P-value .55 .08 .01 1.0
H02 decision Accept Accept Reject Reject

Table 6: Z tests for difference in means between the treatment
group and the population.

 vSAT mSAT GPA Rank
Population size (df) 529(528) 529(528) 529(528) 529(528)

Std. deviation s1 51.69 63.66 0.55 0.29
Controlled group size (df) 65(64) 65(64) 65(64) 65(64)

Std. deviation s2 60.4 67.73 0.52 0.27
H03 s1

2=s2
2 s1

2=s2
2 s1

2=s2
2 s1

2=s2
2

H13 s1
2≠s2

2 s1
2≠s2

2 s1
2≠s2

2 s1
2≠s2

2
Lower critical value .71 .71 .71 .71
Upper critical value 1.49 1.49 1.48 1.49

F-test statistic .73 .88 1.12 1.15
P-value .08 .47 .59 .48

H03 decision Accept Accept Accept Accept

Table 7: F tests for variance for the treatment group and the student population.

Empirical Evi dence Justifying the Adoption of a Model-Based Approach

84

We ran a two-tailed F test for variances. The calculated F-test statistic=1.05 (α=.05, p-value=.85)
strongly indicates that the null hypothesis cannot be rejected. The tests comparing the two samples are
summarized in Table 8 and 9. Based on their outcome, we conclude that the two sample groups are of
similar abilities.

Multiple Regression Model
Multiple regression was run to determine if there is any predictive relationship between teaching
method, vSAT, mSAT, GPA, and Rank and applications development skills. The multiple regression
model we developed is defined as:

Applications development skills = a + b1(Teaching method) + b2(vSAT) +
 b3(mSAT) + b4(GPA) + b5(Rank)

Teaching method is a dummy variable taking two values: 1, if the model-based approach was employed;
and 0, otherwise. The overall regression statistics is set out in Table 10. We wish to verify that the coef-
ficient of multiple determination, R2, is statistically significant, to evaluate the individual net regression
coefficients to see which are not equal to zero, and to verify that the regression assumptions are met.

 vSAT mSAT GPA Rank
Treatment group size (df) 65(64) 65(64) 65(64) 65(64)

X1 545.85 553.72 2.82 0.61
s1 60.4 67.63 0.52 0.27

Controlled group size (df) 47(46) 47(46) 47(46) 47(46)
X2 536.6 568.34 2.92 0.57

s2 58.69 64.31 .48 .26
H04 X1 =X2 X1 =X2 X1 =X2 X1 =X2
H14 X1 ≠X2 X1 ≠X2 X1 ≠X2 X1 ≠X2

Lower critical value -1.98 -1.98 -1.98 -1.98
Upper critical value 1.98 1.98 1.98 1.98

t-test sta tistic .81 -1.4 -1.04 .79
P-value .42 .16 .3 .43

H04 decision Accept Accept Accept Accept

Table 8: t tests comparing the means of the treatment and controlled groups.

 vSAT mSAT GPA Rank
Treatment group size (df) 65(64) 65(64) 65(64) 65(64)

s1 60.4 67.63 .52 .27
Controlled group size (df) 47(46) 47(46) 47(46) 47(46)

s2 58.69 64.31 .48 .26
H05 s1=s2 s1=s2 s1=s2 s1=s2
H15 s1≠s2 s1≠s2 s1≠s2 s1≠s2

Lower critical value .59 .59 .59 .59
Upper critical value 1.74 1.74 1.74 1.74

F-test statistic 1.06 1.11 1.17 1.08
P-value .85 .72 .57 .8

H05 decision Accept Accept Accept Accept

Table 9: F tests comparing the variances of the treatment and controlled groups.

 Roussev

 85

In the test we conducted, there are 112 observations, so the total degrees of freedom is 111. The number
of independent variables is 5, so the degrees of freedom in the “Residual” row of the analysis of vari-
ance table is 106, see Table 11.

Global Test: Testing Whether the Multiple Regression Model is Valid
The ability of the independent variables—teaching method, vSAT, mSAT, GPA, and Rank—to explain
the behavior of the dependent variable applications development skills was tested with a global test. The
null and alternative hypotheses are:

H06: All independent variables have zero coefficients (β1 = β2 = β3 = β4 = β5 = 0).
H16: Not all coefficients are zero.

When application development skills was regressed on these five variables, the equation was statistically
significant (F=4.92, p-value=.000), therefore the alternative hypothesis is accepted.

Evaluating Individual Regression Coefficients
We found out that some, but not necessary all, of the regression coefficients are not equal to zero and
thus useful for prediction. Next, we test the variables individually to determine which regression coeffi-
cients may be zero and which are not. The null and alternative hypotheses for teaching method are:

H07: Teaching method is not statistically significant in predicting applications deve lopment skills,
i.e. the coefficient for teaching method, β1, is zero.

H17: Teaching method is of value in predicting applications development skills (β1≠0).

The test statistic is the t distribution with 106 degrees of freedom. Teaching method was found signifi-
cant (t=3.31, p-value=.001) when all other factors were held constant.

Evaluating the individual regression coefficients with PHStat produced the output shown in Table 12.
When the regression coefficients for the individual predictors were examined, only teaching method was
statistically significant.

Verifying the Regression Assumptions
To check the residuals distribution for normality, the residuals were plotted against the Z values. The
plot shown in Figure 7 confirms that the residuals follow a normal distribution. To check for homosce-
dasticity, the residuals were plotted against the fitted values of the dependent variable. The plot in Figure
8 confirms that the homoscedasticity assumption is met.

Multiple R .434
R2 .189

Adjusted R2 .15
Standard Error 20.915

Observations 112
Table 10: Regression statistics.

 Df SS MS F Prob. F
Regression 5 10770.99 2154.2 4.92 .0004

Residual 106 46366.5 437.42
Total 111 57137.49

Table 11: Analysis of variance table.

 Coefficients SE T stat. P-value Lower 95% Upper 95%
Intercept -59.12 102.34 -.58 0.565 -262.02 143.78

Teaching method 13.83 4.18 3.31 0.001 5.54 22.11
vSAT .03 .03 1.01 0.317 -.03 .1
mSAT .02 .04 .58 0.566 -.05 .1
GPA 25.45 26.66 .95 0.342 -27.39 78.3
Rank 31.04 49.66 .63 0.533 -67.42 129.5

Table 12: Evaluating individual regression coefficients.

Empirical Evi dence Justifying the Adoption of a Model-Based Approach

86

Interpretation of the Survey Results and Qualitative Observations
In this section, we discuss the results from the study and present important observations about deficien-
cies encountered in the survey papers of both groups.

A different cross-section of the study results is shown in Table 13. Among those students in the treat-
ment group, 90% designed correct class diagrams. Seventy one percent of this group converted one of
the client-server interactions to code, easily and generally fault- free. Only 29% of the students in the
controlled group wrote text descriptions, and almost the same number of students, 27%, created correct
diagrams that show important structural elements of the e-commerce application.

Several deficiencies emerging in the survey papers of the controlled group, which are not present in
those of the treatment group, are summarized in Table 14. Findings about the group exposed to model-
ing are listed in Table 15.

It is interesting to note that the combined number of students in the controlled group who attempted to
create diagrams (whether correct or incorrect), 58%, is far greater than those who wrote only a text de-
scription, 29%. We could explain this fact with the need students feel for a notation to define the struc-
ture of the designed system.

-80

-60

-40

-20

0

20

40

60

-3 -2 -1 0 1 2 3

Z Value

R
es

id
u

al
s

-80

-60

-40

-20

0

20

40

60

0 20 40 60 80 100

Fitted values Y'

R
es

id
u

al
s

(Y
-Y

')

Figure 7: Normal probability plot. Figure 8: Homoscedasticity plot.

 Treatment group Controlled group
Class diagram models 90% 7%

Textual description 5% 29%
Non-satisfactory models 5% 12%

Correct Diagrams, Storyboards 0% 27%
Incorrect diagrams 0% 12%

Process oriented diagrams 0% 5%
Isolated client-server interactions 0% 7%

Satisfactory implementation 71% 52%
Table 13: Detailed view of the survey.

 Roussev

 87

Turning to the deficiencies listed in Table 14, it should first be noted that item 2 is not necessarily a de-
ficiency. It merely illustrates the need for a graphical modeling language, while at the same time demon-
strating how intuitive and appealing graphs are to learners. Although students in the controlled group
have not been taught how to stereotype associations, it was expected that at least a few of them would be
able to indicate the types of relationships existing between the pages forming the system. Item 5 attests
to the fact that students in this group cannot define the high- level system organization. Item 6 enhances
further the confidence in the conclusion from the previous topic. It is common in Web-based applica-
tions for subsystems to communicate indirectly through the Session and Application objects. One
reason students do not have thorough understanding of the server-side object model is the lack of time
available to practice it. A second reason, probably more significant than the first, is the lack of skills in
application logic modeling. The observations presented in items 7 and 8 (directly related to item 6) are
inevitable consequences of the low-level code approach used in that class. Item 9 shows a lack of syn-
thesis skills. Since use case scenarios are not covered in this class, students cannot decompose logically
a system into subsystems as suggested by item 10.

This leads to the conclusion that the analysis skills developed by the students are not at a satisfactory
level. Learners in the controlled group tend to overemphasize the role of GUI at the expense of business
logic (item 11). This result springs from teaching client-side scripting. It is for the same reason that stu-
dents do not distinguish well between the major responsibilities of client pages, server pages, and data-
base tables (item 12). Teaching client-side form validation in JavaScript is the main culprit for blurring

Deficiency
1. Process-oriented (behavioral) descriptions where structural ones are ex-

pected.
2. Use of graphs with free text nodes.
3. The types of the interactions between the structural elements are not shown

(in UML parlance-no stereotyped associations).
4. Database elements, e.g. tables, are either missing or if present are considered

active objects building HTML pages or forwarding to asp pages.
5. Isolated client-server interactions. Interactions among subsystems rarely

shown.
6. The server-side object model not well understood. Session and Application

objects are missing from the system descriptions.
7. Failure to identify important application logic and business rules
8. Failure to allocate application logic and business rules to structural elements.
9. Inappropriate reuse of previously seen elements.
10. Lack of the notion of subsystem, package in UML.
11. Overemphasizing the role of UI at the expense of business logic
12. Students cannot distinguish well between the major responsibilities of client

and server pages.
Table 14: Deficiencies in the works of the group exposed to a

code-based approach.

Deficiency
1. Students tend to gloss over the association stereotypes.
2. The number of students who have developed correct CD models exceeds by

19% the number of students who have written correct implementations.
3. Not a single student has developed a correct implementation without creat-

ing a correct model.
Table 15: Important observations from the works of the group

exposed to modeling.

Empirical Evi dence Justifying the Adoption of a Model-Based Approach

88

the boundaries of these concepts. The Boundary-Controller-Entity design pattern (Jacobson et al., 1992)
is not acquired by the learners. Most of the deficiencies described in Table 14 stem from the inadequacy
of natural language as a modeling and design notation.

Turning to Table 15, we noted that students exposed to modeling do not realize the importance of label-
ing and stereotyping associations in their models. Precision is of utmost importance because the basic
advantage of modeling is the possibility to capture subtle nuances before they have turned into bugs dif-
ficult to track down and debug in the vast code view. Item 2 in Table 15 suggests that business students
exposed to modeling could acquire good understanding of how Web-based information systems function
without possessing comprehensive coding skills. Item 3 in Table 15 is the contra-positive of item 2. No
coding skills are possible without modeling skills.

The data suggests that students in the controlled group do not have an in-depth understanding of the no-
tion of component interface (Table 14, items 3, 4, 5, 10) and in addition lack application modeling skills
(Table 14, items 4, 6, 7, 11, 12). Not being able to define precisely the responsibility of a server page
and its collaborations results in a poor implementation of that server page. This would account for the
inferior results on implementation, 52%, obtained by the controlled group as compared to the results,
71%, obtained by the treatment group. This is particularly interesting, since one would have expected
the controlled group to show better results on implementation than the treatment group because of the
longer time they spent on topics related to programming. However, as these findings suggest, the pro-
gramming skills become immaterial if students cannot clearly define what they are implementing.

It was again quite interesting to find several correct class diagrams in the works of the controlled group.
Further exploration revealed that there had been a cross-class transfer (root-grass transfer) of expertise.
While working on similar projects, students from the treatment group, unable to think in low-level
(code) terms had taught their colleagues from the controlled group how to think abstractly and how to
specify components and interfaces. This offers strong support for the initial hypothesis put forth in this
paper. Students exposed to modeling felt lost without models. This fact further corroborates the proposi-
tion that a model-based approach is intuitive and natural, and should therefore be taught at an early stage
in the curriculum.

Human mind actively creates what it knows (Gardner, 1991). The model-based approach is more conge-
nial to the creating of strong learner-centered environment that promotes in-depth learning and under-
standing essential to problem-solving. In the code-based approach, on the other hand, students encounter
predominantly well-defined problems, which have right answers. Since this type of problems do not re-
flect the ambiguity of real life, they do not enhance students' knowledge as to when and how the ac-
quired skills should be used, that is students tackling well-defined problems fail to develop analysis and
synthesis skills. Programming problems require perfect performance. A misplaced comma or semicolon
makes the whole effort futile. Errors in programming are perceived as failures. However, errors are an
indispensable part of problem solving and therefore learning. As Louis Pasteur has powerfully observed,
"If you shut your door to all errors truth will be shut out." In this respect, high- level models are more ill-
defined than code-base ones. There is usually more than one correct solution. Students are involved in
lively discussions weighing alternative solutions (i.e. evaluation, the highest-order cognitive skill). The
inhibition barrier of being perfect does not exist. Students are enabled to capitalize on mistakes rather
than desperately trying to avoid mistakes. The environment fostered is one of "honesty without fear"
(Deming, 1986).

In the model-oriented approach, skills such as analysis, design and implementation are taught as an inte-
grated whole. Programming is not learned in isolation. In contrast, in the code-based approach, students
do not have the opportunity to apply their programming skills in different settings. Research shows that
without the opportunity to use knowledge to achieve a goal, such knowledge is recalled only in the con-
text in which it has been learned (Huba & Freed, 2000). This might help explain why students who have

 Roussev

 89

spent more time doing programming are unable to use their skills effectively when tackling the survey
task. We may well say with Huba that their knowledge is inert (Huba & Freed, 2000).

Conclusion
This paper set out to present the results of a survey evaluating the skills acquired by two groups of bus i-
ness students in a course on E-business applications development. Two different approaches to teaching
this course have been analyzed. In teaching this course, the first group of students had been exposed to a
model-based approach, while the second one had been exposed to a traditional code-based approach.

Compared with the code-based approach, in which modeling was not used at all, the proposed model-
based approach not only allows for a more comprehensive coverage of material in e-commerce models,
Web-based e-business applications, and modeling business logic, but also proves conducive to bringing
students’ cognitive skills onto a higher level of complexity. The upshot is a qualitative breakthrough in
students’ performance.

The quantitative results show that teaching using a model-based approach has brought about tangible
changes in students’ modeling and programming skills. The enhanced growth in critical thinking and
synthesis skills is attributed to the interrelatedness and interdependence of modeling and abstraction
whose conjoint teaching and practice proves very fruitful.

Students who have been exposed to modeling outperform not only in high- level modeling skills but also
in programming skills. The difference of almost 20% in programming skills in favor of these students
confirms our hypothesis that interface specification and component modeling must precede implementa-
tion.

Quantitative and qualitative results obtained from the survey call for a change in approach in teaching E-
business applications development to business students. The confidence that abstraction can be taught
before programming, and very successfully at that, springs from experiential results. It is evident, both
from the conducted experiment and observations gleaned throughout this research, that students become
receptive to the potential and merits of abstraction, which they get to use methodically and more confi-
dently in their work.

Knowledge is bound to remain quiescent unless it is something active, discriminating and critical. The
proposed model-based approach has proved instrumental in creating this much needed new condition for
learning, without which inert knowledge can never become active.

References
ASP home page. (2003). http://msdn.microsoft.com.

Baber, B. (1987). The spine of software: Designing provably correct software - theory and practice. Chichester: John Wiley
& Sons.

B. S. Bloom, B. S. (ed.) (1956). Taxonomy of educational objectives: Book 1 Cognitive domain. London: Longman.

Booch, G., Rumbaugh, J. and Jacobson, I. (1999). The unified modeling language. Addison-Wesley.

Cohen, E. (1999). Reconceptualizing information systems as a field of transdiscipline informing science. Journal of Comput-
ing and Information Technology, 7 (3), pp. 213-219.

Conallen, J. (1999, Oct.). Modeling web application architecture with UML. Communications of the ACM, 42(10), pp. 63-70.

Davis, M. (1988, Sept.). A comparison of techniques for the specification of external system behavior. Communications of
the ACM, 31(9).

Deming, W. E. (1986). Out of the crisis. Cambridge, MA: MIT Center for Advanced Engineering Study.

Gamma, E., Helm, R., Johnson, R. and Vlissides, J. (1994). Design patterns. Elements of reusable object-oriented software.
Addison Wesley Professonal Computing Series.

Empirical Evi dence Justifying the Adoption of a Model-Based Approach

90

Gardner, H. (1991). The unschooled mind: How children think and how schools should teach. New York: Basic Books.

Gersting, J., Henderson, P. B., Machanick, P. and Patt, Y. N. (2001, Feb.). Programming skills as an outcome in panel dis-
cussion: Programming Early Considered Harmful. Proceedings of SIGCSE-2001. Charlotte, NC.

Harel, D. (1987). Statecharts: A visual formalism for complex systems . Science of Computer Programming, 8, New York.

Huba, M. E. and Freed, J. E. (2000). Learner-centered assessment on college campuses. Allyn and Bacon.

Jacobson, I., Christerson, M., Jonsson, P., and Overgaard, G. (1992). Object-oriented software engineering: A use case
driven approach. Addison-Wesley.

Jacobson, I., Booch, G. and Rumbaugh, J. (1999). The unified software development process. Addison-Wesley.

Johnson, R. A. (2000, Oct.). The ups and downs of object-oriented systems development. Communications of the ACM,
43(10), pp. 69-73.

Medvidovic, M., Gruenbacher, P., Egyed, A. and Boehem, B. W. (2002). Modeling software architectures in the UML. ACM
Transactions on Software Engineering and Methodology, 11(1).

Mellor, S. J. and Balcer, M. J. (2002). Executable UML: A foundation for model driven architecture. Addison Wesley Profes-
sional.

Nuseibeh, B. A. and Easterbrook, S. M. (2000). Requirements engineering: A roadmap, 22nd Int’l Conference on Software
Engineering, Limerick, Ireland.

Roussev, B. (2003, June). Teaching introduction to programming as part of the IS component of the business curriculum. To
appear in Informing Science + Information Technology Education Joint Conference, Pori, Finland.

ScriptEase (2003). http://www.nombas.com, JavaScript interpreter home page.

Shannon C. E., and Weaver, W. (1949). The mathematical theory of communications. Urbana: University of Illinois Press.

Shaw, M. (2000). Software engineering education: A roadmap. 22nd Int’l Conference on Software Engineering, Limerick,
Ireland.

Biography
Borislav Roussev is an Assistant Professor of Information Systems at Sus-
quehanna University. He was educated in Bulgaria, and previously was a
faculty member in higher education in South Africa. Dr. Roussev’s research
interests are in the areas of object-oriented modeling and software engineer-
ing.

