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Executive Summary  
Feedback is an essential element of learning. Students need feedback on their work and their solutions to 
assignments both when they work manually and while they use a computer. A number of tools have 
been implemented to automatically assess and give feedback, for example, on programming exercises 
and algorithmic exercises. However, one problem of the provided feedback is that in most cases its 
scope is too narrow to support the needs of different types of learners. For example, many systems pro-
vide purely verbal feedback. 

In this paper we consider how exercises with automa tic feedback should be designed to support a 
broader scope of learners. We discuss the Felder-Silverman learning model, which we use as the frame-
work for our discussion. The model categorizes learners with four different axes: sensing vs. intuitive 
learners, visual vs. verbal learners, active vs. reflective learners, and sequential vs. global learners. We 
discuss how all dimensions of the model can be taken into account when designing assignments and 
automatic feedback. Moreover, we use two modern automatic assessment systems, PILOT and 
TRAKLA2, as example systems to demonstrate our ideas. 

We strongly believe that incorporating analysis of learners' preferences into design of courses, automatic 
feedback systems, and learning environments leads to better learning. As teachers, we should better sup-
port the needs of our students, and also train their skills to process information in more versatile ways. 

Our discussion concentrates on algorithmic assignments. However, in the conclusion we briefly illumi-
nate how similar approach could be used to design better assignments and feedback for programming 
exercises, as well. 

Keywords: computer science education (CSE), algorithm animation, algorithm simulation, automatic 
assessment, learning models, visualization 

Introduction 
What I hear, I forget. What I see, I remember.  What I do, I understand.   

                      Confucius 

In this paper we discuss different learning styles 
in the context of studying in virtual learning envi-
ronments. The key idea of such environments is 
that learners construct their own mental models of 
knowledge (Norman, 1983) by studying course 
material, by interacting with the teacher, other 
learners or the system only, and by solving exer-
cises. An essential aid for carrying out such a con-
struction process successfully is getting feedback 
while the mental model is applied to solve prob-
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lems. Based on the feedback the learner can verify the correctness of his or her mental model or tune it 
to better match the observations. 

Feedback is a concept with a wide range of interpretations, ranging from simple confirmation of suc-
cessful commands to critical comments and explanations given by an expert human tutor. In this paper, 
however, our focus lies on giving automatic feedback on non-trivial assignments. In many institutions 
basic computing courses have hundreds of students, and providing feedback on exercises that support 
the mental model construction is a very laborious process. Therefore many automatic assessment sys-
tems have been developed during the last 10 years to aid assessing exercises in large courses. Areas of 
interest include checking programming exercises (Vihtonen & Ageenko, 2002; Benford, Burke, Foxley, 
Gutteridge, & Zin, 1993; Jackson & Usher, 1997; Saikkonen, Malmi, & Korhonen, 2001), assessment of 
algorithm simulation exercises (Bridgeman, Goodrich, Kobourov, & Tamassia, 2000; Hyvönen & 
Malmi, 1993; Korhonen & Malmi, 2000), and analyzing object-oriented designs and flowcharts (Hig-
gins, Symeonidis, & Tsintsifas, 2002). All the example systems can provide non-trivial specialized as-
signments. Therefore general purpose virtual learning environments and online training systems that can 
only provide structurally simple exercises such as fill-in forms or multiple choice questions are left out 
of the scope of this study. 

Compared to human instructors, however, the feedback provided by automatic assessment systems can 
be very limited. In its simplest form, the feedback may include only textual descriptions. For example, in 
program analysis systems such as Ceilidh (Benford et al., 1993) and SchemeRobo (Saikkonen et al., 
2001), the systems test submitted programs against test data, and report correct or incorrect functioning 
of the program. In addition, an evaluation of the program structure may follow, again in textual form. 
Another example is the TRAKLA system (Hyvönen & Malmi, 1993; Korhonen & Malmi, 2000) that is 
used for solving algorithm simulation exercises by showing how the given algorithm changes the given 
data structure. The system compares the solution to the correct model solution and tells how many 
points the student got from the exercise. Moreover, even though the students are able to simulate the al-
gorithms in graphical form, most of the feedback received, including the model solutions, is still in tex-
tual form. 

As pointed out by Felder and Silverman (1988), most people are able to grasp information in graphical 
form better than in textual form. Therefore in many occasions, graphical feedback supported by more 
advanced systems, is more useful than textual feedback. For example, the VIOPE (Vihtonen & 
Ageenko, 2002) system analyses C/C++/Java programs and gives graphical hints of the problematic ar-
eas in the target program. PILOT (Bridgeman et al., 2000) allows the user to simulate graph algorithms 
by clicking the nodes and edges on the screen. Incorrect selections are highlighted in a different color. 
TRAKLA2, which is the successor of TRAKLA, can provide model solutions also in a graphical form 
(see http://www.cs.hut.fi/Research/TRAKLA2/ ). The model solution for each simulation exercise can 
be viewed as an algorithm animation. 

Different students are different types of learners, and we should design the exercises and feedback to 
match the variety of learners. In this paper we approach this problem using a rigorous learning model as 
the framework for our discussion. Felder and Silverman (1988) presented a model in which they catego-
rized the different learning styles with expressions like visual, verbal, active, reflective, sensing, intui-
tive, sequential and global. We discuss each of these categories separately and point out by examples 
and reasoning how we could design assignments and feedback to support people with different learning 
styles. We limit our discussion to the context of algorithmic exercises. However, the principles covered 
can easily be extended to programming exercises. 

As a case example we present the TRAKLA2 system, which is based on the Matrix application frame-
work (Korhonen & Malmi, 2002). TRAKLA2 is a learning environment that supports both algorithm 
animation and algorithm simulation tasks where the user directly manipulates data structures through a 
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graphical user interface. The old TRAKLA environment has been in production use over ten years 
(Malmi, Korhonen, & Saikkonen, 2002). The new TRAKLA2 was launched in spring 2003 on our 
course of data structures and algorithms, where some 500 students used it to solve 15 different automati-
cally assessed exercises. Both systems are capable of assessing simulation sequences and giving several 
different kinds of feedback for the learners. Our prior experimental studies (Korhonen, Malmi, 
Myllyselkä, & Scheinin, 2002a; Malmi et al., 2002) show that such learning environments based on 
automatically assessed exercises can be valuable tools for large-scale courses. One of the main results in 
the research was that there was no significant difference in learning results between groups exercising 
on the Web and groups solving the same exercises in a classroom situation with human tutors giving 
feedback. This is a significant result, since for large courses classroom learning requires a lot more re-
sources than web-based learning environments. 

As another example system we use PILOT. Even though the current system covers only graph algo-
rithms, the system demonstrates several interesting dimensions of learning styles that are relevant here. 
We also discuss some programming assessment systems briefly. 

We start by presenting different learning styles in the second section. In the third section we briefly ana-
lyze some of the automatic assessment systems in the light of the Felder-Silverman learning model. In 
the fourth section we more thoroughly discuss assignments and feedback that support different types of 
learners in the context of learning algorithms and data structures. The final section concludes the obser-
vations, suggests briefly how to apply our ideas to programming exercises, and points out future re-
search in the area. 

Learning Models  
The purpose of learning models is to identify and classify different learning styles. A learning model can 
be used for designing a course to meet the needs of different students better. For example, some students 
prefer facts and hard data before theories. Others prefer visual information, i.e., pictures and animation, 
before written or spoken information. Some like individual studying and others might prefer interactive 
learning in groups. 

Students could be categorized in numerous ways. A learning model provides a framework for categoriz-
ing different learners. The model attempts to represent the whole spectrum of actual learning styles with 
a specified multidimensional space with named axis. Two well-known learning models are Kolb's expe-
riential learning (Kolb, 1984) and the Felder-Silverman learning model (Felder & Silverman, 1988). 

Ideally a learning environment should support students in all categories. Therefore, we face the question 
of which model we should choose as the basis of our design. Fortunately this is not a real problem, be-
cause the results are very similar regardless of the model used (Felder, 1996). We have decided to use 
the Felder and Silverman (1988) model, since it has dimensions, which can easily be adapted to evaluat-
ing science education, including automatic assessment. 

Felder - Silverman Learning Model  
The Felder-Silverman model characterizes students' learning styles by using the following dimensions, 
each of which has two extremes. 

1. Sensory vs. Intuitive, i.e., what type of information does the student preferentially perceive. 
 
Sensing learners are practical and oriented toward facts. They typically like straightforward 
things like working with details or memorizing data. Methodologically they like experimentation 
and problem solving by standard methods. Assignments supporting these things include simple 
questions, fill-in forms, multiple-choice questions or connecting related pairs. Adequate feed-
back of such questions is typically just correct/incorrect. All of these are easy to automate and 
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the key problem is designing good questions, not analyzing the answers. Experimentation, on the 
other hand, requires working with real gadgets or at least simulation tools, which allow the user 
to manipulate data in a realistic way. 
 
Intuitive learners like conceptualization. They often prefer theories, principles, innovations, 
complications and grasping new concepts. All these issues include assignments, analysis and 
feedback of solutions such that require complicated reasoning. 

2. Visual vs. Verbal, i.e., what sensory information is most effectively perceived. 
 
Visual learners prefer visual information like pictures before verbal information. In the other ex-
treme verbal learners like written or spoken language. 
 
This dimension is fairly obvious for everybody but still interesting. Some students can most ef-
fectively perceive information presented in verbal form - as written text, speech, or mathematical 
formulas, while others are more comfortable with pictures, animations or diagrams. In automatic 
assessment it is desirable to have feedback designated toward both visual and verbal learners. 

3. Active vs. Reflective, i.e., how does the student prefer to process information. 
 
Active learners are group workers who learn by trying things out and prefer continuous interac-
tion. Reflective learners first think things through by themselves, i.e. they do reflective observa-
tion. The interaction should drive them to rethink their solution anew promoting their need for 
theoretical understanding. 
 
Simulation with continuous feedback fits active learners. The user can actively observe and di-
rectly manipulate the view. For example, the user can modify a data structure and the representa-
tion is changed immediately as a result. Reflective feedback, on the other hand, can be given as a 
summarizing analysis of simulation results. The system could also give descriptive feedback on 
mistakes during the simulation process. 

4. Sequential vs. Global, i.e., how does the student progress towards understanding. 
 
Sequential learners proceed linearly with small steps. They can be supported by designing se-
quences of tasks, analyzing results and giving directions to the next assignments based on the re-
sults. A typical example would be a questionnaire or a set of tasks, which has many different 
branches depending on how the student proceeds. 
 
Finally, global learners learn holistically in large steps. They like to get a holistic view of ac-
quired knowledge. This can be supported by open questions, creative exercises and interdiscipli-
nary assignments. In most cases, only human tutors can manage to give appropriate feedback, al-
though simulation tools can be of great value, since they allow exploration of complex models. 
The global learner can compare the overall dynamic behavior of the model with his or her own 
mental model. 

Initially, Felder had also a fifth dimension, the inductive/deductive dimension. Inductive learners prefer 
presentation from the specific to the general and deductive learners prefer vice versa. He, however, de-
cided to drop out this dimension (Felder, 2002), since most undergraduate students prefer inductive ap-
proach while teachers prefer deductive approach. If the model is used for designing courses and assign-
ments, it should not promote this conflict. 
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Finally we note that all the dimensions are continua - not discrete categories. A student's preference on a 
given scale may also change with time and may vary from one subject matter to another. 

Automatic Assessment  
By automatic assessment systems we denote software that is capable of analyzing and giving meaningful 
feedback on complicated static or dynamic structures or sequences of operations. We deliberately distin-
guish algorithmic exercises from programming exercises. The goal of programming exercises is to teach 
the fundamentals of programming in general or on a specific programming language. Data structures 
and algorithms, on the other hand, are generally higher-level concepts than most concepts related to in-
troductory programming. Thus, it is possible to design algorithmic exercises that work on a conceptual 
level, manipulating concepts instead of any specific implementation. We call such exercises algorithmic 
exercises. They may, of course, include pseudo code or real code as an element, but this is not neces-
sary. 

We will briefly introduce programming exercises; however, the main focus of this paper is on algo-
rithmic exercises discussed after the programming exercises. 

Assessing Programming Exercises  
In many institutions introductory programming classes are very large with hundreds of students. It is 
thus obvious that a number of systems have been developed to aid the grading process and give feed-
back for the students. Such systems are, for example, Ceilidh (Benford et al., 1993), its later version 
CourseMaster (Higgins et al., 2002), ASSYST (Jackson & Usher, 1997), SchemeRobo (Saikkonen et al., 
2001), and the VIOPE system (Vihtonen & Ageenko, 2002). ASSYST is a tutor's tool to aid the grading 
process. It does not give direct feedback for the student, and is therefore left out of this discussion. 

Ceilidh is able to analyze programs written in different languages. It executes the target program with 
test cases and compares the program output to model output. The student receives information about the 
tests passed, and number of points received. Additional language dependent program style and structural 
analyses can be added. The CourseMaster is a successor of Ceilidh. It has options to analyze also other 
kinds of objects than programs, such as flowcharts, OO designs and logical circuits. The feedback given, 
however, is quite similar to that of Ceilidh: points, reports of passed tests, and possibly additional 
teacher's comments. The level of given feedback can be regulated to match the purposes of the teacher. 

Scheme-Robo analyzes Scheme functions. Instead of comparing the actual output to model output, the 
system directly evaluates the Scheme expression returned by the target function. In addition, some struc-
tural analysis and coarse run time analysis are possible. The VIOPE system evaluates C, C++ or Java 
programs or SQL statements using quite similar methods as above. However, in syntax analysis it can 
point out problem areas in the code by highlighting them. 

If we consider these systems using the Felder-Silverman model, we observe that their feedback is almost 
solely textual and thus supports verbal learners better than visual learners. The other common character-
istic is that they analyze only complete solutions submitted by students, such as final programs, designs, 
or circuits. Little aid is given during the process itself. Such mode of working suits intuitive learners 
who already master, at least partially, the concepts and processes involved. Moreover, the summary 
feedback, such as points and reports of passed tests need reflective processing. The systems support 
global learners in the sense that the solution process is left open. The global learner can choose the solu-
tion method freely. 

In summary, we observe that these systems do not give much support for sensory, visual, and active 
learners, although such students form the majority of engineering students (Felder & Silverman, 1988). 
We must, however, recognize that programming is inherently an activity that requires intuitive, verbal, 
reflective and global approach. For example, there is no sequence of steps to write a program. Writing 
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program code, of course, is an active process but without a strong intuitive understanding of the goals 
and concepts used and an ability to reflect the results, it is very hard to solve a given programming exer-
cise. 

Assessing Algorithmic Exercises  
Algorithms and data structures are inherently abstract concepts. Most people grasp their idea better from 
a visual representation rather than from a verbal description or a formal definition. For this reason, there 
is a long tradition of research in algorithm animation. One common type of algorithmic assignment is to 
create algorithm animations from source code using an algorithm visualization system or using a spe-
cialized drawing program (Hundhausen & Douglas, 2002). Another often-used type of assignment is to 
view an algorithm animation and, possibly, to interact with it in some fashion, for example, by making 
predictions on how it evolves during a time period (Byrne, Catrambone, & Stasko, 1999). 

A fundamentally different approach is algorithm simulation. By this we mean an activity where the user 
directly investigates and manipulates the conceptual view of a data structure. He thus simulates opera-
tions a real algorithm would do, and the system records the actions performed and, possibly, gives ade-
quate feedback of the operations. Actual code is not necessarily needed at all. This approach provides an 
opportunity to automatically assess a user's actions on the conceptual level. However, very few systems 
exist for this purpose. 

PILOT (Bridgeman et al., 2000) and TRAKLA2 are modern algorithm simulation systems. They both 
provide automatic feedback for algorithmic assignments where the learner must manipulate data struc-
tures in order to simulate the operations an algorithm would perform. Both systems support the follow-
ing features: 

1. Individually tailored exercises - In both systems it is possible to generate random instances of a 
problem. Therefore it is possible to give each student a unique instance of the problem, prevent-
ing plagiarism. 

2. Direct manipulation - Using a graphical user interface it is possible to create a solution for the 
problem by manipulating graphical objects on the screen. 

3. Automatic assessment - It is possible to submit a solution to the system for assessment, and to get 
immediate feedback on the correctness of the solution. 

4. Model solution - The system is capable of creating a model solution for each problem instance. 
The solution is in the form of algorithm animation. 

The main focus of PILOT is on graph algorithms, such as breadth first search or Prim's algorithm. 
Moreover, the system allows for immediate visual and textual feedback. After each operation on the data 
structure, the system highlights changes and can tell the learner whether his action was correct. In the 
case of incorrect action, the system can explain what went wrong. It is also possible to use PILOT with-
out immediate feedback after each action. In this mode, the learner can submit his solution for automatic 
assessment, after which he is given summarizing feedback: grading, explanatory text, and the model an-
swer. 

TRAKLA2, on the other hand, supports a variety of different data structures, like arrays, trees and 
graphs. The system also contains implementations for abstract data types, such as dictionaries and prior-
ity queues. There are, for example, AVL-tree and binary heap and corresponding exercises implemented 
in the system. However, TRAKLA2 does not support immediate textual feedback. The system visualizes 
the changes in the data structure after each operation without printing any explanatory text. Furthermore, 
it is capable of grading each solution as well as creating the model solution. 
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Figure 1 is an example sequence from an algorithm simulation assignment. The assignment was to simu-
late the insertions of the keys from the input stream into an initially empty AVL-tree. Between the first 
three frames keys A, K and Q have been inserted. Finally, between the last two frames a rotation has 
been performed at the root. All operations were performed through the GUI. 

While considering systems assessing algorithmic exercises in terms of the Felder-Silverman model, we 
can see that they provide much more versatile feedback than programming assessment systems. Both 
PILOT and TRAKLA2 can create a visual model answer, and provide textual feedback. Furthermore, 
algorithm simulation through direct manipulation provides a way for visual learners to work in the way 
they prefer. They can manipulate the graphical objects to create the solution. The assessment systems 
also support both active and reflective learners. An active learner gets immediate feedback on his actions 
as the visualization changes according to his actions. A reflective learner, on the other hand, gets sum-
marizing feedback when she submits her solution. 

Designing Algorithmic Assignments for Different Learners 
In this section we discuss more thoroughly the dimensions of the Felder-Silverman learning model, and 
how they could be incorporated in designing algorithmic exercises. We will use PILOT and TRAKLA2 
as examples for demonstrating our ideas. 

Characterizing Exercises  
The Felder-Silverman model suggests that we could distinguish four independent axes for characterizing 
exercises. Since we are concentrating on computer-supported exercises, the classification is based not 
only on how the assignment is presented or solved, but also on the automatically gained feedback. The 
four axes are 

1. sensory vs. intuitive exercises  

2. visual vs. verbal exercises  

3. active vs. reflective exercises 

4. sequential vs. global exercises 

The problem in this classification is, however, that students can solve the same exercise in different 
ways depending on what kinds of learners they are. The following example clarifies this. One exercise in 

 
Figure 1: AVL Tree Simulation 
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TRAKLA2 deals with the Boyer-Moore-Horspool string matching algorithm (Korhonen, Sutinen, & 
Tarhio, 2002b). The user is given a fixed source text and a pattern presented in an array. The user can 
change the contents of the array containing the pattern. Moreover, he or she can see the skip table for 
characters and the pseudo code of the algorithm. When the pattern is drag&dropped on the source text, 
the algorithm starts its execution and each line of code is colored when it is covered during the execu-
tion. The assignment is to find such a pattern that all code lines are executed at least once. The user can 
try different patterns and browse the execution of the algorithm as an animation. 

We observed how a small number of test users, including students and teachers, solved the problem. At 
first we explained the assignment to each user and demonstrated how the system operates. Thereafter 
they were supposed to solve the problem independently. We observed very different approaches. Some 
test users did not use the system at all for a while. Instead, they remained pondering on the algorithm, 
even making some notes on a paper. After a while they had constructed a possibly correct pattern. At 
this point they executed the algorithm on the data. Usually the test users using this approach found a so-
lution after one or two iterations. One test user, on the other hand, immediately started exploring the be-
havior of the algorithm by testing different patterns and by observing the results. Pondering aloud he 
tried to infer how the algorithm (code) works. Finally, after several tests, he understood its working and 
produced the correct solution. Obviously in the first case people worked intuitively, whereas in the latter 
case the test person worked both using active experimentation and reflective observation. As a conclu-
sion, we can see that the same assignment applied well to different kinds of learners. 

We claim that in general we should prepare assignments that fit to different learners. However, we also 
recognize the need for training properties, which are weaker in our students. Such assignments should 
require certain kind of exercising. In the following text we discuss more closely each Felder-Silverman 
dimension, and give examples of exercises and feedback that support different types of learning in the 
given dimension. 

Sensory vs. Intuitive exercises  
Recall from the section on learning models that sensors are patient with details, data, and memorizing 
facts. They also like solving problems by standard methods and experimentation. Intuitors, on the other 
hand, prefer theories, principles, innovations, and complications. They are good at grasping new con-
cepts, and they are comfortable with symbols. 

A typical set of sensory assignments includes simple multiple-choice questions, fill-in forms or connect-
ing related pairs. Such exercises can be trivially assessed by any well equipped general purpose learning 
environment, and the feedback about them is simple. 

Consider the following exercise presented in TRAKLA2 (see Figures 2 and 3). The student is requested 
to drag the keys from the tree in preorder into the list below and thus simulate the preorder traversal al-
gorithm. Sensing learners have a practical approach to the exercise. They might apply a rule of thumb to 
solve the exercise without even looking at the actual algorithm. They could apply the simple mnemonic 
in which an outline of the tree is drawn (starting from the left side of the root) and each time the outline 
passes a node from its left side the value is printed. The visual feedback of the drag&drop operations, as 
well as the changing list, supports their working. More support is provided by the animation controller 
because they can browse their solution backwards and forwards to review and check it. 

For intuitors, this exercise may seem trivial and dull. However, we can easily transform the same exer-
cise into a new form that better suits for intuitors. We simply replace the text "Traverse the following 
binary tree in preorder" by text "Traverse the following binary tree using the algorithm below ...", and 
give the pseudo code of preorder traversal (see Figure 3). Now the student has to understand the algo-
rithm properly in order to solve the problem. Executing the code in one's mind is a task suitable for in-
tuitors, whereas sensors could find this difficult. The feedback provided by TRAKLA2 is a summary of 
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the correct steps. This suits for intuitors confirming the correctness of their thinking. If the answer is in-
correct, the information encourages them to reflect where they had made the mistake. 

Algorithm simulation provides an interesting method of experimentation for sensors. For example, in 
PILOT they can exercise how the algorithm works by a simple trial-and-error method with immediate 
visual feedback on how they proceed. TRAKLA2, on the other hand, supports experimentation by al-
lowing students to work with abstract data types (ADT). They can drag keys into a dictionary ADT and 
see visually how its structure is changed after each ADT operation (e.g. insert, delete). This allows 
"what if?" type questions and exploration on how the structure works in different cases. Automatic as-
sessment to gain feedback, however, is not needed here because the visual feedback itself aids learning. 
For intuitors, this approach allows setting and testing hypothesis, as we already me ntioned in the case of 
Boyer-Moore-Horspool algorithm. 

From the student's perspective there is a fundamental difference between the preorder traversal exercise 
and exploring the behavior of a dictionary ADT. In the first case, the student is allowed to drag the keys 
in any order to the target list. TRAKLA2 deliberately does not give any hint on what went wrong; only 
the summarizing result is provided. This forces students to work reflectively, since active exploration to 
find the correct solution is simply too laborious. However, when we allow ADT operations we can set 
up exercises where active exploration may lead to a solution. Consider the following assignment: "Insert 
the following keys A B C D E F G H I J K L in some order into an initially empty AVL tree so that the 
height of the resulting tree is 5". Here the solution can be reached by applying a simple trial-and-error 
method although intuitive approach is also possible. Actually it could be even faster (one solution is to 
create a Fibonacci tree). 

 
Figure 2: Example exercise supporting  

sensory learners 
Figure 3: Example exercise supporting  

intuitive learners 
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Visual vs. Verbal exercises  
A pure verbal exercise is commonly given in textual form and solved by paper and pencil or by typing in 
the answer. Finally, the feedback on performance is given in written or audio form. The role of the feed-
back is to provide general and/or specific context sensitive information about the evaluated submission. 
Typical examples are explanations of tests that were passed or failed, feedback on observed errors, and 
summaries on results. As verbal feedback is already used in most assessment systems, we should em-
phasize work to produce visual feedback in forms such as charts of results, visualizations of processed 
data, and animations. 

A visual exercise in its extreme is presented without any textual additions using only elements like pic-
tures and diagrams. Visual exercises and feedback apply well to working with conceptual understanding 
since they provide the opportunity to present concepts and their relations as graphical objects. Here the 
learner can compare his or her own mental model to this visual representation. Moreover, in such a rep-
resentation less important details can often be hidden. 

Let us reconsider our example of preorder traversal. The same assignment can be given and solved ei-
ther verbally or visually. In the TRAKLA system the preorder assignment is presented verbally. The 
student is given the adjacency list representation of the tree to be traversed, and he reports a list of trav-
ersed nodes. Feedback is sent by email and includes the grading points. In TRAKLA2 the same exercise 
is purely visual, as could be seen from Fig. 2. The feedback is partly visual (the GUI response to user's 
operations and the model solution presented as an animation) and partly textual (summary of points). 

Even though similar feedback on exercises can be given both visually and verbally, these forms have 
roles where each of them works better. Verbal feedback applies well to presenting numeric values (e.g. 
grading), explaining details, their meaning or reasoning behind them. Visual feedback, on the other 
hand, is good at providing conceptual overviews, highlighting changes and pointing out errors. More-
over, in interactive working such as algorithm simulation, the student can observe the effects of her ma-
nipulations on the data structure while solving the exercise. Both PILOT and TRAKLA2 use this 
method to support learning. Furthermore, because they actually understand the underlying concepts, 
they are capable of giving feedback also in the conceptual level. Thus, if the user performs operations 
that are not allowed for the structure, the GUI can alert the user about the misconception. 

In many cases, the best method is to combine both visual and verbal feedback. An error can be high-
lighted and its reason can be explained in words, as is the case in PILOT exercises. Or, a summary sta-
tistics is provided in a visual form (chart) added with numerical values of data. 

Active vs. Reflective exercises  
Active students prefer learning by trying things out, doing active experimentation, while reflective 
learners prefer examining and manipulating information introspectively. Their working can be described 
as reflective observation. 

For the first ones algorithm simulation is a natural way to delve into the world of algorithms. The user 
can actively observe and directly manipulate the view, i.e. the student can modify a data structure and 
the representation is changed immediately as a result. Explorative simulation using ADT operations ex-
tends his possibilities in a natural way. If we consider the feedback best supporting such working, we 
could characterize it as continuous feedback, i.e., every time the student does something, he can observe 
the results. Both PILOT and TRAKLA2 employ this approach. 

For reflective students we should provide forms of interaction that drive them to rethink their solution 
anew. As an example, the learning environment could provide summaries (as in TRAKLA2) or textual 
descriptions of the mistakes made by the learner during the exercise session (as in PILOT). However, it 
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might be better to refrain from pointing out the exact mistakes, and describe them on a more general 
level, instead. At least the teacher should be able to control the detail level of the feedback. 

A very important feature of most automatic assessment systems is that they allow resubmission of exer-
cises (Korhonen et al., 2002a; Malmi et al., 2002). The student can submit a solution several times and 
get feedback each time. This feature promotes learning both with active and reflective learners. Active 
learners get feedback on how they proceed, and they can experiment on things. However, if the problem 
is too simple or the solution space is too small, this may lead to using trial-and-error method without any 
actual purpose of understanding the problem. With more complicated exercises, resubmission with im-
mediate summative feedback strongly promotes reflection. Most programming assignments, as well as 
algorithmic exercises have this property. Our experience is that a small number of allowed submissions 
is better than large. If the student feels that there is no "cost" of using a submission, she will more likely 
do a small change and resubmit the solution in the hope of fixing the error. No actual reflection takes 
place compared to the cases where the student has, for example, only 3 or 4 submissions allowed. Loos-
ing one submission for a bad guess has then a high cost for her. 

Use of random data to personalize assignments is an important feature in TRAKLA2. It is used in two 
different ways. In some assignments, the student can resubmit the assignment with the same data for a 
small number of times. They can continue working with the exactly same assignment after getting the 
feedback. However, due to the tailored data they cannot copy any answers from their fellow students. 
The model solution is not shown before the deadline for submissions has passed. 

In other exercises randomization of data is used in a different way and the number of resubmissions is 
unlimited. The student can request the grading of his exercise or view the model solution at any time. 
However, he cannot continue the exercise, but has to start the whole assignment anew with new random 
data.  

We could characterize these two types of exercises in the following way. In the exercises with the same 
data the student reflects to identify the error in the particular assignment. In the exercises with always 
new data he reflects more on understanding the algorithm in general. So far, we do not have enough re-
sults to say, which method is better for learning, since the latter form of exercises were in use for the 
first time in spring 2003. 

Finally, we note that one important point promoting reflection is the comparison of user's solution and 
the model solution. If possible, this should be carried out side by side, optionally added with descrip-
tions or summaries about the differences such that force the learner to rethink his solution anew. 

Sequential vs. Global exercises  
The final dimension concerns sequential vs. global learners. Sequential learners progress linearly step-
by-step to the solution and each phase is logically connected to the previous and next phase. For global 
learners we should emphasize the big picture of the topic and allow the learner to jump between the 
phases. This applies also to the whole course. Extremely sequential courses follow strict program in 
which each subtopic is cumulatively dependent on the previous one. On the other extreme, there is no 
connection at all between different subtopics. 

Let us reconsider our binary tree traversal example again. For sequential learners we should provide a 
meaningful way to process one traversing algorithm after another and for each algorithm a way to solve 
it step by step until the whole task is completed. For global learners, however, the assignment could em-
phasize the generalized depth-first search algorithm that visits the nodes before the first recursive call 
(preorder), between the two recursive calls (inorder) and after the last recursive call (postorder). 

In a larger context, a learning environment should provide a way to proceed with the exercises either 
sequentially or globally. For example, in TRAKLA2 both approaches are supported. There exists a pre-



Interaction and Feedback 

252 

defined order for the exercises a sequential learner may follow. However, not all students prefer to fol-
low such a strict path. Therefore we allow all the exercises to be fully solvable from the very beginning 
of the course. The learner may proceed with the exercises in her own order. She may, for example, start 
by focusing on the exercises concerning linear data structures even though they do not appear consecu-
tively in the other course material. 

Conclusion  
Learning style models should be taken into account when designing virtual learning environments. In a 
classroom situation students with different learning styles can get almost immediate feedback from the 
teachers and from their fellow students. A distance learner working with a Web-based environment, 
however, is facing a very different learning situation. He lacks such multidimensional support of human 
tutors, and even if we count opportunities such as email, newsgroups and chat, the feedback is almost 
totally verbal. Moreover, the delay for getting the feedback is in most cases long. Therefore, we should 
deliberately design the environments so that they support multidimensional features of learning. We 
have found that the Felder-Silverman learning model is a useful framework for such a design process. 

We observed that many of the current automatic assessment systems provide feedback only for a narrow 
scope of learners. They seem to support verbal, intuitive, and reflective students best. Visual feedback is 
provided in some cases, but support for active and sensing learners is rare. Such systems, however, exist 
and we have presented PILOT and TRAKLA2 as example systems that support multiple learning di-
mensions. We hope that the examples and the related discussion promote the reader to think how to best 
support different learners. We should recognize, however, that these issues cannot be solved solely by 
developing more advanced assessment systems. The key question is how to design activities that pro-
mote learning, and thereafter design the feedback in such a way that it best supports these activities. 

Suggestions for Learning Programming  
As an example of applying our approach to a new subject, let us briefly consider programming courses. 
Several automatic assessment tools have been developed to support the learning process and speed up 
grading in such courses. However, programming is a skill that seems to have some inherent properties 
that match to certain kinds of learners. First, in practice, it is almost totally a verbal activity. Second, the 
run time execution of a program is a black box, which offers very little insight for sensors into what is 
going on. Thus understanding the execution requires strong intuitive skills. Third, debugging errors is a 
highly reflective activity, where active experimentation is a bad guideline. For sensing and active stu-
dents such a working method easily leads to dummy trial-and-error type testing, with no aim of truly un-
derstanding the program execution. Intuitive and reflective learners, on the other hand, can use experi-
mentation by setting hypothesis and interpreting the results to correct the program. Finally, program-
ming skill essentially needs global learning. There is no sequence of operations, or some standard pro-
cedure that leads to preparing a working program. 

The problem we face is that how could we support the other dimensions in learning programming. We 
suggest that program visualization tools, as well as visual debuggers should be used much more. They 
support sensing and visual learners by giving a better insight into what happens while the program is 
executed. In addition, we should design exercises where active experimentation plays a key role. These 
could include, for example, studying a working program and preparing data that produces the required 
output, added with a requirement to reason how the student proceeded to the solution. For sequential 
learners we could device a sequence of exercises, where they gradually develop a working program by 
preparing small incremental changes and additions. Automatic assessment tools can be used to support 
the process by giving the feedback on whether the program is working correctly. Even though such 
feedback would be totally summative and verbal, the learning process itself has been designed to support 
different learning styles. 
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More Aspects on Applying the Model  
We can use the Felder-Silverman learning style model to characterize different features of learning envi-
ronments. The discovery of different learning styles immediately raises the question whether we should 
emphasize the extremes that are peculiar to a learner or should we try to do just the opposite? A creative 
solution for this is to do both of them. On one hand, we could develop the environments to support a 
learner to choose the learning style because the assignments enable different approaches. On the other 
hand, we could design exercises that force the learner to behave in a way that is typical for students 
stressing one extreme of learning style. In any case, we have to make sure that both extremes are sup-
ported. 

Algorithm simulation seems to offer a valuable 
tool for allowing different kinds of algorithmic 
exercises. We could identify different aspects of 
algorithm simulation environments, for exam-
ple, by looking at the four categories implied by 
the two dimensions: visual-verbal and active-
reflective. These issues can be summarized as a 
two-dimensional plane with visual-verbal and 
active-reflective axis, as illustrated in Figure 4. 
Active learners are supported by immediate 
feedback and continuous interaction with the 
GUI in which both visual and verbal dimensions 
are represented. On the other hand, reflective 
learners are supported by providing more pre-
cise and detailed feedback on misconceptions. 
In addition, the detailed feedback can be offered 
automatically either verbally or even visually in 
terms of algorithm animation. 

Final notes  
According to Felder (1993) the teaching style on most lecture courses tilts heavily towards the few stu-
dents who are, at the same time, intuitive, verbal, deductive, reflective and sequential learners. Of 
course, the tools and methods available have also a role to play here. For example, the amount of accu-
rate feedback traditional teaching methods can provide simultaneously for a large number of learners 
may be very limited, thus forcing to design more reflective than active forms of exercises. However, the 
design of virtual learning environments should provide a broader vision, since we can use automatic as-
sessment tools to broaden the scope of activities. 

One step toward this direction is the work carried out in this paper. Many interesting examples have 
been identified such that can better support the different learning styles. However, we need further re-
search and results from the area of educational sciences to identify how the different modes of feedback 
actually affect the learning results. Further work should be based on such analysis. 

 
Figure 4: Examples of Visual-Verbal x  

Active-Reflective Categories 
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