
Journal of Information Technology Education Volume 2, 2003

Special Series Editor: Salvatore Valenti

Assessing Active Alternatives for Teaching Programming

Sandra Poindexter
Northern Michigan University, Marquette, MI, USA

spoindex@nmu.edu

Executive Summary
Active learning and cooperative learning are two alternatives to the traditional lecture/lab approach to
teaching software development. Evidence supporting use of these learning strategies in Computer In-
formation Systems (CIS) began to emerge in the mid-1990s as faculty sought ways to improve student
understanding of programming concepts, reduce the level of frustration, and better prepare students for
jobs based on teamwork.

Shifts in the competencies of incoming students have influenced the type of material covered in the stan-
dard class period. Though a higher percentage of students may enter knowing the basic mechanics of the
computer, it remains difficult for them to effectively apply that skill beyond their personal interests of
music, games, and surfing. Used to an advantage, these changes in student competencies can provide
more time for “why” topics in place of “how to” topics. Technology integration enables the shift to oc-
cur more efficiently, but alternatives to a pure lecture mode of course delivery may be worthwhile.

A study with active and peer learning strategies that was conducted at this mid-west USA institution in-
volving software development is reported here. The results of this study indicate that some lecture is
necessary, structure is critical, and careful attention to group processes and facilitation is needed. The
rewards are that active exercises shorten the learning cycle and improve problem-solving abilities, atti-
tude is significantly improved, and interpersonal skills are gained. Using literature and empirical re-
search this paper assesses the value of active and peer learning environments in programming courses.

Keywords: innovative teaching, active learning, cooperative learning, peer learning, problem-based
learning, programming, software development, teaching and learning, web-enhanced

Literature Review

History and Definitions
In the introductory chapter of their book on cooperative learning, Millis and Cottel present an excellent
history and rationale for learning as a social affair. In the early 1990s researchers, such as Slavin, Astin,
and the team of Johnson, Johnson and Smith, synthesized studies conducted during the 1980s (Millis &
Cottell, 1998). Their conclusions continue to ring true as cooperative learning has been soundly re-

searched across disciplines; learning within the
context of a group of peers is at least as effective
as lecture for content knowledge gain, attitudinal
changes are positive, and students gain important
interpersonal skills. The terms “collaborative” and
“cooperative” are often used interchangeably.
When a difference is noted, “cooperative” is usu-
ally considered a subset, or stepping stone, to the
broader “collaborative.” For this paper, coopera-
tive learning consists of a structured environment
wherein the instructor is a constant facilitator

Material published as part of this journal, either on-line or in
print, is copyrighted by the publisher of the Journal of Informa-
tion Technology Education. Permission to make digital or paper
copy of part or all of these works for personal or classroom use is
granted without fee provided that the copies are not made or dis-
tributed for profit or commercial advantage AND that copies 1)
bear this notice in full and 2) give the full citation on the first
page. It is permissible to abstract these works so long as credit is
given. To copy in all other cases or to republish or to post on a
server or to redistribute to lists requires specific permission and
payment of a fee. Contact Editor@JITE.org to request redistribu-
tion permission.

Assessing Active Alternatives for Teaching Programming

258

amidst student peer groups whose members work on group processing of specified problems, are re-
sponsible for preparation as individuals, and employ team skills. The term “peer learning” will be used
to mean the same. This definition does not insist upon group grading or prescribed group composition.

Active learning literature emerged as a specific subject heading in the early 1990s, often cross-
referencing earlier cooperative learning studies. However, the two are not the same. Though active
learning is often a component of cooperative learning when peer groups work together during class, ac-
tive learning can be conducted without groups. The most often quoted definition of active learning,
coined by Bonwell and Eison in 1991, is “anything that involves students in doing things and thinking
about things they are doing” (Bonwell & Eison, 1991). It can include short and frequent pauses in lec-
ture for reflection, sharing, summarizing, and extending, and works well in large lecture halls or small
classrooms. Entire class periods can be devoted to an active approach with students working individu-
ally or in groups. Structure of the environment (class meetings, the curriculum, and assessment) is a fac-
tor deemed critical to the success of active learning (Miller, Groccia, & Wilkes, 1996).

Evidence of Change in Computing Disciplines
In the disciplines of CIS and CS software development courses have traditionally been taught as lecture
or lecture + lab/discussion, using theory-based textbooks with examples, and assessed with individually
assigned programming problems and tests. In the mid 90s self-paced, highly annotated tutorials became
textbooks options. A variety of factors impact the learning environment of computer information sys-
tems (CIS) and computer science (CS) courses: subject complexity, student culture, faculty composition
and philosophy, technology integration, institutional infrastructure, a dynamic subject, and high industry
expectations. Given this setting, educators may be reluctant to risk change an instructional process in
place for years.

While student teams were sometimes used for out of class work on sizable projects, cooperative and ac-
tive learning, as defined in this paper, were generally not introduced until the mid 1990s. An early pres-
entation on teaching approaches in 1994 by Dutt described use of programming teams, a combination of
traditional lecture and group exercises, and group testing in a beginning programming course. Students
assessed it as a positive experience and realized team synergy (Dutt, 1994). In 1996 McConnell speaks
of active learning in CS using modified lectures (brief lectures interspersed with reflective questions or
sharing), algorithm tracing exercises, and physical activities to simulate computer processing. Results of
his controlled, multivariate experiments in an introductory programming course were that active learn-
ing students had higher exams scores. Students exposed to both active learning and group activities
seemed to be further helped by a marginal amount (McConnell, 1996). In the same year, Cordes and
Parrish described their software development classroom redesigned from a traditional lecture to a more
active learning environment. Using mini-lectures, active exercises, and peer learning they report that the
shift in student attitude was remarkably positive and performance on the in-class exercises was out-
standing (Cordes & Parrish, 1996). Later in the decade, Granger and Lippert documented the steps for,
and effects of, peer learning in an introductory programming course. They modified lecture/lab to incor-
porate a weekly peer learning session where students worked on exercises in groups of three. Earlier
student perceptions that programming was “dry, boring, and tedious” were replaced with enjoyment, en-
gagement, and participation in the class and subject. They found the exercises improved problem-
solving abilities and knowledge gain, and the teamwork fostered growth in communication and collabo-
ration skills (Lippert & Granger, 1997).

Granger and Lippert (1999) later expanded their use of peer learning across the IS curriculum and are
supported by other researchers in similar IS or related technical studies. Hyper-link teaching was docu-
mented in 1997 by Purao to foster active learning in a systems analysis course through modification of a
typical lecture slide presentation with non-linear anchor points for discussion. This approach retained the
positive factors of presentation slides and countered the passivity associated with sitting and watching

 Poindexter

 259

slides (Purao, 1997). Buffington specifically measured the effect of self-directed teams in a computer
literacy course, reporting in 1998 that students supported the value of working in teams (Buffington,
1998). To actively engage students in an MIS course Mukherjee used active, but not peer, learning and
found improved student attendance, less boredom, more critical questions, more motivation, and better
understanding. In addition, Mukherjee reports in 2000, students perceived the class sessions were more
productive than in a control group that did not use the active learning strategy. In 2001, Neufeld and
Haggerty concluded from an empirical study on collaborative team learning in a database management
course that team learning fostered high team performance that exceeded individual performance and
built team skills while concurrently conveyed technical knowledge.

A Quantitative Study: Introductory Programming

Study Description
The review of literature provides a history of variations in teaching programming that were singular (one
variation), anecdotal, or did not heavily use technology in the traditional classroom. To assess the com-
bined effectiveness of active and peer learning approaches in an introductory programming course, a
yearlong experiment was conducted in a controlled setting supported by a laptop environment. A related
question facing faculty is whether a threshold exists in the levels of learning strategy alternatives needed
to produce a satisfactory return on their preparation time investment. Is there a point at which a higher
investment of time and effort no longer produces significant additional gains in student learning or atti-
tude towards learning?

Varying the proportions of lecture, active, and peer learning over four offerings of a two-credit, eight-
week Visual Basic course enabled a more distilled look at impact. Consecutive offerings were logisti-
cally necessary in order to control for instructor. Taken by CIS majors during their late freshman or
early sophomore year, this course serves as a gateway to the upper division courses and has a diverse
group of students. The enrollments during the study were 23, 23, 24, and 24 students, respectively. In an
attempt to control variables between student groups and times offered, and to collect any potential corre-
lating data, pre-test and post-test knowledge data, demographics, pre-attitudinal information, learning
styles, and personality types were gathered from each group. The syllabi, scheduling book listing, and
rigor of the class were consistent across all sections. Methods of assessment were programming assign-
ments, written content exams, programming skills test, and participation. For all sections, a course web-
site posted a syllabus, outline, handouts, files, and assignment instructions. This paper presents a sum-
mary of the study. Complete details, statistical analysis, and limitations are available in an earlier report
(Poindexter & Allen, 2001).

The first phase reflected a traditional instructional delivery held in a room with rows of desks facing
forward. Though each desk had a computer, it was used for downloading presentation slides or handouts
rather than for programming instruction. Using large screen projections of prepared slides, class time
was 100% lecture unless a student asked a question or offered comments. The textbook tutorials and as-
signments were done outside of class with no student collaboration permitted – all work was done indi-
vidually.

In Phase II, a modified lecture approach of 50% lecture and 50% ungraded, active practice exercises was
used. Peer interaction in and out of class was encouraged, but it was not required nor were the benefits
of teamwork explained. The room was identical to that of Phase I, rows facing forward with each stu-
dent having a computer. During a typical class, there would be an introduction of the day’s topics fol-
lowed by a short lecture using presentation slides and sample Visual Basic programs to cover the most
complex portions of the textbook material or to give an overview to put the textbook items into a
broader perspective. Either during the presentation or after it, students would be told to download an ex-
ercise to be completed immediately. Typically, the exercise involved modifying or completing a pro-

Assessing Active Alternatives for Teaching Programming

260

gram shell according to general guidelines; specific steps to complete the work were not provided, rein-
forcing to students the need for preparation prior to class. Students chose to work alone or with a person
sitting next to them – there were no assigned pairs. Completed solutions were emailed as file attach-
ments to the instructor as a record of attendance and participation, but not graded. Preparation time in-
creased for two reasons. First, it was necessary to choreograph the mix of lecture, pause, and exercise to
fit the class time slot. Annotated presentation slides were added to the course website as outside lecture
in order to free class time for the active learning exercises. Second, lecture demonstration files had to be
converted for use as in-class exercises requiring careful naming, uploading to the server, and linking for
student access during class. General instructions had to be accurate to prevent student confusion. In-
structional energy required during class time increased to handle problems as students worked alone.
The emphasis in Phase II was active, rather than peer, learning.

Phase III was held in a group conference-room style classroom with tables seating four, facing each
other, and full network and electrical connections for a laptop computer at each seat. Class time con-
sisted of 40% lecture and 60% active exercises. Benefits of peer learning were explained to the class and
cooperative learning was expected during class time. The Phase II lecture and active learning mix was
supplemented with peer learning. Students worked with others at their table and participation included
evidence of helping peers in and out of class time, such as emails between students asking for help or
clarification. Collaboration was encouraged, but not required on graded assignments done outside of
class and “good” solutions were posted to the website for peer review. Some preparation time beyond
Phase II was required to refine lecture slides and in-class exercises to shift content coverage from the
former to the latter. Class time instructional energy decreased from Phase II as peer learning took hold
and students helped each other. The emphasis in Phase III was to blend active and peer learning.

The final Phase IV expanded interactivity and creativity with 30% lecture and 70% active, peer learning.
A casual learning environment was created where people felt free to talk and walk around to view the
progress of other groups. Assignment creativity and solution variation were encouraged. Students could
alter assignments or expand exercises by programming additional features or improving the look of the
program’s screens. Being creative earned more participation points, but did not add to the assignment
score. Students were expected to work on assignments in pairs to continue the peer learning outside of
class.

Study Outcomes
The letter grades, average overall grade percentage, and component scores are means of determining
student performance. In all four phases, students were individually given three tests. Two were written
exams on terminology, programming concepts, and syntax recognition and error resolution that did not
involve use of the computer. In the third test during the last week of class, students applied their knowl-
edge by programming a working solution for a new program specification. Table 1 provides the numeri-
cal results of letter grade distribution.

Grade I II III IV
A 1 7 7 6
B 8 6 6 6
C 4 1 4 4
D 2 1 5 5
F 4 3 1 1

Withdrew 4 5 1 2
Total # students 23 23 24 24

Table 1. Distribution of Overall Grades by Phase

 Poindexter

 261

In the Phase I traditional lecture, 39% of the students received an A or B while in all the other phases
using non-traditional learning the range was 50-56%. The data indicates that letter grades were higher as
more interactivity was added. The overall grade was broken down into its three components – assign-
ments (40%), participation (10%), and tests (50%) – and is graphed in Figure 1. Phase I has lower scores
across all three components with the other three phases similar to each other. Figure 2 indicates that
there was not a wide variation in learning terms and basic concepts (written tests) between the phases -
lecture worked equally as well as the active variations, confirming the findings in the literature review.
However, students in all phases with active learning and peer learning scored significantly higher on the
software skills test that involved active problem solving. It seems the extra practice and on-site assis-
tance made them better prepared for applying the content knowledge.

Retention data was kept initially as part of university record, however, the data appeared to form a pat-
tern related to the study. Fewer people withdrew as peer learning was added to the course. In Phases III
there was an 8% withdrawal rate and Phase IV had a 12% withdrawal versus 35% in Phases I and II.
The value of “W” measured the number of students who withdrew from the course after completing at
least ½ of the course’s duration. When these counts are added to the counts of failures, they become
more significant as active learning was increased.

Figure 1. Phase Comparison
by Average Grades

50.0%

60.0%

70.0%

80.0%

90.0%

100.0%

assign participation test

I

II

III

IV

Figure 2. Phase Comparison
by Test Scores

50%

60%

70%

80%

90%

100%

Written test avg. Skills test avg.

I

II

III

IV

Student perceptions were measured via an 11-question course evaluation instrument including satisfac-
tion with the course and satisfaction with their own contribution. While not statistically significantly dif-
ferent, the same pattern repeats from the grade outcomes – the traditional approach ranked lower in sat-
isfaction than the other three phases for both the course and participation. These numbers correlate with
the written comments. In Phase I, numerous comments were given such as “it was not very exciting and
did not hold my attention,” “needs better examples and showing how to do specific things,” “if there
was more time, maybe get into groups and do a simulation of a real business programming project,” and
“more student interaction needed.” Most students liked learning to program, but not the method of de-
livery. Comments from students suggested they were less motivated in lecture. Apathy, clock-watching,
boredom, and fatigue existed. Phase II was essentially void of written comment, however, class time
was more alive. Some students appeared uncomfortable and physically distanced themselves from others
to avoid having to pair up with another student. Phases III and IV, had numerous positive comments
such as “The class was fun and I learned a lot,” “I learned a lot in a short period of time,” and “learned
great organization skills in respect to the course.”

Discussion
The primary hypothesis being tested was that incorporation of active and peer learning has no effect on
grade. With the small sample sizes, the study lacked the statistical power to determine whether or not

Assessing Active Alternatives for Teaching Programming

262

variations in teaching methods between phases had an effect on overall grade percentage. However,
when looking at the letter grades and the problem-solving skills test, the case is more strongly in favor
of the active and peer learning strategies. This confirms the literature review that alternative active and
peer learning strategies are at least as good as lecture for content knowledge and is better for applying
knowledge to a new situation.

The distinctions between this study’s setting and the tutorial-based lab setting used for many computer
courses are the peer learning emphasis rather than independent lab work, and active computer exercises
integrated within every lecture rather than having a designated lab day. Programming requires practice
and students are not likely to spend time outside of class doing “extra” ungraded exercises. They are,
however, more apt to read and outline the text content and complete graded assignments. This model
played upon those tendencies by reversing the activities in and out of class. Students quickly realized
that they could not do the in-class exercises if they had not read the text – there would be no lecture to
make up for not doing so and they became accountable. This accountability confirms the literature find-
ings on the benefits of active learning. The elevated course evaluations confirm cooperative research
findings: it is attitude towards learning that is most positively impacted by peer and active learning, and
knowledge gain is at least as good.

The issue of retention was carefully analyzed. Is it better to retain marginal students or let them fail
early, forcing them to retake the course? The answer partly depends on the institutional GPA calcula-
tions for repeated courses, demand levels for the academic program and classes, whether the student
changes majors, or intends to stay at the institution. In the active, peer environment, students may have
felt more connected to the class, less singularly frustrated, and more academically confident. If a student
has enough motivation to persevere, s/he may reach a higher level of learning in the long run. When fu-
ture tasks prove difficult, a benchmark exists by which to measure the probability of success. If concern
for subsequent classes exists, a curriculum can force a repetition of a class if a student passes with a poor
grade. Encouraging struggling students to stay in a class will at least provide more contact with the sub-
ject matter in the event of a class repetition.

The group table setting for the last two phases significantly increased discussion and peer learning.
Physical movement increased – students got up to see how others were doing or to help someone else.
Noise level increased – students were more willing to ask one another a question, asking the instructor
after none of the peers knew the answer. Clock watching, particularly in the peer learning settings, de-
creased – students were not preoccupied with how much time was left. It is probable that by physically
facing their peers rather than the front of the room and verbal reminders to assist each other, students
were able to alter their solitary behavior. Since there was no difference between the phases in student
population for learning styles, personality types, or attitudes, it leads one to believe the learning envi-
ronment affected the outcomes.

The second hypothesis regarding a threshold of effort that a faculty member must make in the adoption
of active and cooperative learning for programming courses for success to occur seems to hold true on
the surface. There is a preparation cost to shift materials from lecture to active learning exercises to at
least the 50% level (Phase II). Once made, there may not be much to gain from additional efforts. At a
deeper level, shifting into peer learning (Phase III) required an effort in relinquishing control in order to
gain attitudinal improvement evidenced in written comment rather than scores. Phase IV did not seem to
raise either quantitative scores or attitudes significantly. It is left to instructors to find a measure for
themselves by retaining records of their effort and student outcomes. When a positive outcome becomes
evident, an instructor may find it worthwhile to pace at that level. One factor to include in this formula is
the perception of true success for both faculty and students. It is not easy to quantify, but easy to see and
feel.

 Poindexter

 263

In sum, this study confirms and enhances the literature reviewed for active and peer learning in technical
courses by McConnell, Cordes and Parrish, Granger and Lippert, and Mukherjee. Some lecture is still
needed, structure is critical, active exercises shorten the learning cycle and improve problem-solving
abilities, careful attention to group processes and facilitation is needed, attitude is significantly im-
proved, and interpersonal skills are gained.

Technology Supports Active Alternatives
Restricted to a once-a-week lab day, faculty are less apt to ask students to listen and try than if com-
puters are available for each student or student group at all times. The study documented here was con-
ducted at a mid-west, regional institution of approximately 8,000 students under a campus-wide laptop
policy. The mandatory program standardized a set of technology tools (laptop, software, and Internet
access) for all full-time students and faculty, provided all classrooms with a network port for an instruc-
tor workstation and 30 classrooms with electrical and network outlets at each student seat. Using their
own laptop gave students more confidence in computer operation. It opened the door for a significant
increase in active computer exercises during any and all class times, and ensured that all students had
total access to computing hardware and software to download slides, handouts, and complete assign-
ments without going to a lab. (Northern Michigan University, n.d.).

The new student generation enters college with a higher degree of computer literacy, albeit used for mu-
sic, games, communicating, and surfing the Web. Faculty can capitalize on this general knowledge to
move quickly to a higher level of programming by asking students to work out logic problems on the
computer, purposely entering a logic or syntax bug to experience the results. It is not the same for the
instructor to convey an event, or even for students to predict one, as it is for them to immediately test the
outcome on their computer. Technology integration enables the shift from facts to application to occur
more efficiently and effectively.

While individual laptops at every class section was an unquestionable asset to this study, active exer-
cises can be tailored to share resources that do exist, such as grouping students with one laptop available
per group. It is likely that computing students will opt to purchase them, or curriculum or grant funds
may be tapped to equip “active learning” classrooms. Increasingly, laptop use and laptop policies have
the potential to significantly alter the pedagogy in the programming classroom. The 2001 Campus Com-
puting Survey reports up to 20% of university and college students own a laptop computer (Green,
2001). A tracking of institutional laptop policies by Brown, Director of Associated Colleges of Central
Kansas, lists 186 colleges and universities with laptop initiatives as of May 2003 (Brown, 2003). Laptop
technology complements the cooperative and active learning environments so effectively, enhances the
technical knowledge of computing students, and takes advantage of campus technology initiatives that it
is a trend well suited to the computing discipline.

Risk Versus Rewards
Faculty may welcome the chance to improve the learning environment in their classrooms if they could
predict the return on their investment of their limited resources. It does not appear necessary to go to
elaborate lengths in setting the classroom environment – gains and attitudinal shifts can be derived from
modest introductions of active and peer learning strategies. The more students are engaged, the higher
the instructor self-fulfillment. Depending upon the personality of the instructor, fulfillment may be bene-
fit enough to cover the additional costs of preparing group activities and the change to a mentor/ con-
sultant role. Documented pitfalls are too little structure, lack of communication to students on the pur-
pose and procedures of the new learning environment, and student-student interpersonal problems that
go unresolved. A common error of faculty new to active learning is to forgo structure which ends in
chaos. For most faculty, it takes several semesters of trial to successfully shift paradigms and an initial

Assessing Active Alternatives for Teaching Programming

264

drop in student evaluations might occur. Research and this study show there is not a lot to lose, and defi-
nitely some to gain by incorporating alternative teaching strategies.

There is also reward on the side of industry who highly values the non-technical skills of new graduates
such as the ability to learn and teamwork. In a study comparing employer expected (desired) and actual
valuation of 19 technical and 18 non-technical skills of new IS graduates, Cappel found that the non-
technical skills had the most room for improvement. Problem-solving, oral communication, motivation,
initiative, and attention to detail were at the top of the deficiency list (Cappel, 2001). A related study by
Tang, Lee, and Koh measured the gap between educator’s perceived required skills and actual skills at-
tained by graduates. As with the employer assessment, more deficiencies were found in non-technical
skills than technical knowledge. Interpersonal communication and behaviors, critical and creative think-
ing, and motivation and independent learning all had significant gaps and all were in the top seven skills
desired by employer (Tang, Lee, & Koh, 2001). These non-technical traits are best addressed by active
classroom alternatives without the risk of foregoing the required technical skills.

Resources
Very detailed and practical suggestions are outlined by Buckenmyer for using teams with class activities
to overcome typical problems associated with teams (Buckenmyer, 2000). More guidelines and a student
handout on self-managed teams are provided by Van Slyke, Trimmer, and Kittner (1997). Edited books
by Foyle (1995) and Sutherland and Bonwell (1996) on active approaches for higher education combine
the theory and application. Felder from science and Brent from education have collaborated on numer-
ous practical articles on the road to student-centered environments, their procedures, pitfalls, and payoffs
(Felder &Brent, 1994, 1996). All these resources stress the importance of convincing students that the
team approach has value to them – buy in is critical to the success. Three websites provide assistance to
faculty in technical programs: McConnell’s Active Learning < http://www-
cs.canisius.edu/~mcconnel/active_learning.html >, Felder’s resources < http://www.ncsu.edu/felder-
public >, and National Institute for Science Education College Level One for collaborative learning <
http://www.wcer.wisc.edu/nise/cl1/ >.

References
Bonwell, C., & Eison, J. (1991). Active learning: Creating excitement in the classroom. ASHE-ERIC Higher Education Re-

port No. 1, Washington, DC: The George Washington University, School of Education and Human Development.

Brown, R. (2003, May). Universities and colleges with laptop and notebook initiatives. Retrieved May 2003, from
http://www.acck.edu/~arayb/NoteBookList.html

Buffington, J. (1998, December). Self-directed teams in the introductory information systems course: Lessons learned. Pro-
ceedings to the 13th International Academy for Information Management Annual Conference. Helsinki, Finland. (ERIC
Document Reproduction Service No. ED 431420)

Buckenmyer, J. (2000, Nov-Dec). Using teams for class activities: Making course/classroom teams work. Journal of Educa-
tion for Business, 76 (2), 98-107.

Cappel, J. (2001-2002, Winter) Entry-level IS job skills: A survey of employers. Journal of Computer Information Systems,
42 (2), 76-82.

Cordes, D., & Parrish, A. (1996, June). Active learning in technical courses. Proceedings of the 17 th Annual National Educa-
tional Computing Conference. Minneapolis, MI. (ERIC Document Reproduction Service No. ED 398884)

Dutt, J. (1994, December). A cooperative learning approach to teaching an introductory programming course. Proceedings of
the ninth International Academy for Information Management, Las Vegas, NV, 225-232.

Felder, R., & Brent, R. (1994). Cooperative learning in technical courses: Procedures, pitfalls, and payoffs. National Science
Foundation. (ERIC Document Reproduction Service No. ED 377038)

Felder, R., & Brent, R. (1996). Navigating the bumpy road to student-centered instruction. College Teaching, 44, 43-47.

 Poindexter

 265

Foyle, H. (Ed.) (1995). Interactive learning in the higher education classroom: Cooperative, collaborative, and active learn-
ing strategies. Washington, DC: National Education Association.

Granger, M., & Lippert, S. (1999) Peer learning across the undergraduate information systems curriculum. The Journal of
Computers in Mathematics and Science Teaching, 18 (3), 267-285.

Green, K. (2001, October). The 2001 campus computing survey. Proceedings of the EDUCAUSE 2001 Annual Conference.
Indianapolis, IN.

Lippert, S., & Granger, M. (1997, December). Peer learning in an introductory programming course. Proceedings of the 12th
International Academy for Information Management Annual Conference. Atlanta, GA. (ERIC Document Reproduction
Service No. 422924)

McConnell, J. (1996). Active learning and it use in computer science. Association for Computing Machinery SIGCSE Bulle-
tin, 28:SP1, 52-54.

Millis, B., & Cottell, Jr., P. (1998). Cooperative learning for higher education faculty. Phoenix, AZ: American Council on
Education Oryx Press.

Miller, J., Groccia, J., & Wilkes, J. (1996). Providing structure: The critical element. In T. Sutherland and C. Bonwell (Eds.),
Using Active Learning in College Classes: A Range of Options for Faculty (pp. 17-30). San Francisco, CA: Jossey-Bass.

Mukherjee, A. (2000, Spring). Effective user of in-class mini case analysis for discovery learning in an undergraduate MIS
course. Journal of Computer Information Systems, 40 (3), 15-23.

Neufeld, D., & Haggerty, N. (2001, Fall). Collaborative team learning in information systems: A pedagogy for developing
team skills and high performance. Journal of Computer Information Systems, 42 (1), 37-43.

Northern Michigan University. (n.d.). TLC Initiative. Retrieved July 15, 2003, from http://www.nmu.edu/laptops.htm

Poindexter, S., & Allen, D. (2001, Fall). Customizing the classroom learning environment – A phased experiment. Issues in
Information Systems, 2, 364-370

Purao, S. (1997, December). Hyper-link teaching to foster active learning. Proceedings of the 12 th International Academy for
Information Management Annual Conference. Atlanta, GA. (ERIC Document Reproduction Service No. ED422933)

Sutherland, T., & Bonwell, C. (Eds.). (1996). Using active learning in college classes: A range of options for faculty. San
Francisco, CA: Jossey-Bass.

Tang, H-L., Lee, S., & Koh, S. (2000-2001, Winter). Educational gaps as perceived by IS educators: A survey of knowledge
and skill requirements. Journal of Computer Information Systems, 41 (2), 76-84.

Van Slyke, G, Trimmer, K., & Kittner, M. (1997, December). Integrating teamwork into information systems courses. Pro-
ceedings of the 12th International Academy for Information Management Annual Conference. Atlanta, GA. (ERIC
Document Reproduction Service No. ED422950)

Biography
Sandra Poindexter is a professor of Computer Information Systems at North-
ern Michigan University, an institution recognized with a Laureate Award in the
2003 Computerworld Honors Program. She assists with the university laptop
initiative and researches the adoption of Internet, technology, and other innova-
tions in higher education. Professor Poindexter has published articles and pre-
sented papers at national and international conferences on all these topics, and is
the author of a several textbooks on Internet browsers. As member of the uni-
versity Teaching & Learning Advisory Committee, she works to promote excel-
lence in teaching

