

Volume 21, 2022

Accepting Editor Benson Soong │ Received: March 31, 2022│ Revised: May 25, June 2, 2022 │
Accepted: June 4, 2022.
Cite as: Bakke, C, & Sakai, R. (2022). Using design-based research to layer career-like experiences onto software
development courses. Journal of Information Technology Education: Innovations in Practice, 21, 25-60.
https://doi.org/10.28945/4988

(CC BY-NC 4.0) This article is licensed to you under a Creative Commons Attribution-NonCommercial 4.0 International
License. When you copy and redistribute this paper in full or in part, you need to provide proper attribution to it to ensure
that others can later locate this work (and to ensure that others do not accuse you of plagiarism). You may (and we encour-
age you to) adapt, remix, transform, and build upon the material for any non-commercial purposes. This license does not
permit you to use this material for commercial purposes.

USING DESIGN-BASED RESEARCH TO LAYER
CAREER-LIKE EXPERIENCES ONTO

SOFTWARE DEVELOPMENT COURSES
Christine Bakke* University of Minnesota, Crookston,

MN, United States
cbakke@crk.umn.edu

Rena Sakai University of Minnesota, Crookston,
MN, United States

sakai017@crk.umn.edu

* Corresponding author

ABSTRACT
Aim/Purpose This research aims to describe layering of career-like experiences over existing

curriculum to improve perceived educational value.

Background Feedback from students and regional businesses showed a clear need to increase
student’s exposure to career-like software development projects. The initial goal
was to develop an instructor-optional project that could be used in a single mid-
level programming course; however, the pilot quickly morphed into a multi-year
study examining the feasibility of agile projects in a variety of settings.

Methodology Over the course of four years, an agile project was honed through repeated De-
sign Based Research (DBR) cycles of design, implementation, testing, commu-
nication, and reflective analysis. As is common with DBR, this study did not fol-
low single methodology design; instead, analysis of data coupled with review of
literature led to exploration and testing of a variety of methodologies. The re-
view phase of each cycle included examination of best practices and methodol-
ogies as determined by analysis of oral and written comments, weekly journals,
instructor feedback, and surveys. As a result of participant feedback, the origi-
nal project was expanded to a second project, which was tested in another Soft-
ware Engineering (SE) course. The project included review and testing of many
academic and professional methodologies, such as Student Ownership of
Learning, Flipped Classroom, active learning, waterfall, agile, Scrum, and Kan-
ban.

The study was homogenous and quasi-experimental as the population consisted
solely of software engineering majors taking required courses; as based on va-

https://doi.org/10.28945/4988
https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/
mailto:cbakke@crk.umn.edu
mailto:sakai017@crk.umn.edu

Using Design-Based Research

26

lidity of homogenous studies, class sizes were small, ranging from 8 to 20 stu-
dents. Close interactions between respondents and the instructor provided in-
terview-like settings and immersive data capture in a natural environment. Fur-
ther, the iterative development practices of DBR cycles, along with the inclu-
sion of participants as active and valued stakeholders, was seen to align well
with software development practitioner practices broadly known as agile.

Contribution This study is among the first to examine layering a career-like software develop-
ment project on top of a course through alteration of traditional delivery, agile
development, and without supplanting existing material.

Findings In response to industry recommendations for additional career-like experiences,
a standalone agile capstone-like project was designed that could be layered over
an existing course. Pilot data reflected positive perceptions of the project, alt-
hough students did not have enough time to develop a working prototype in ad-
dition to completing existing course materials. Participant feedback led to simul-
taneous development of a second, similar project. DBR examination of both
projects resulted in a simplified design and the ability to develop a working pro-
totype, if and only if the instructor was willing to make adjustments to delivery.

After four years, a solution was developed that is both stable and flexible. The
solution met the original charge in that it required course delivery, not course
material, to be adjusted. It is critical to note that when a working prototype is
desired, a portion of the lecture should be flipped allowing more time for
guided instruction through project-focused active learning and study group re-
quirements. The results support agile for standalone software development pro-
jects, as long as passive delivery methods are correspondingly reduced.

Recommendations
for Practitioners

Based on the findings, implementation of a career-like software development
project can be well received as long as active learning components are also de-
veloped. Multiple cycles of DBR are recommended if future researchers wish
to customize instructional delivery and develop complex software development
projects. Programming instructors are recommended to explore hybrid delivery
to support development of agile career-like experiences.

Small class sizes allowed the researchers to maintain an interview-like setting
throughout the study and future studies with larger classes are recommended to
include additional subject matter experts such as graduate students as interac-
tion with a subject matter expert was highly valued by students.

Recommendations
for Researchers

Researchers are recommended to further examine career-like software develop-
ment experiences that combine active learning with agile methods; more studies
following agile and active learning are needed to address the challenges faced
when complex software development is taught in academic settings.

Further testing of standalone agile project development has now occurred in
medium sized in person classes, online classes, independent studies, and creative
works research settings; however, further research is needed. Future research
should also examine the implementation of agile projects in larger class sizes.
Increasing class size should be coupled with additional subject matter experts
such as graduate students.

Impact on Society This study addresses professional recommendations for development of agile
career-like experiences at the undergraduate level. This study provides empirical
evidence of programming projects that can be layered over existing curriculum,
with no additional cost to the students.

Bakke & Sakai

27

Initial feedback from local businesses and graduates, regarding agile projects
with active learning, has been positive. The area business that refused to hire
our underprepared SE graduates has now hired several.

Future Research Future research should explore layering agile projects over a broader range of
software development courses. Feedback from hiring professionals and former
students has been positive. It is also recommended that DBR be used to de-
velop career-like experiences for online programming courses.

Keywords Agile, Scrum, software development, programming, Student Ownership of
Learning, active learning, iterative development, information technology, soft-
ware engineering

INTRODUCTION
In 2016, there was a complete turnover in our software engineering (SE) staff, at the same time a ma-
jor IT employer in our region let our office know that our SE graduates were underprepared for pro-
gramming careers. These events led the new staff to closely examine existing SE curriculum for
alignment with both academics and professionals. At first glance the curriculum appeared to follow
best practices through inclusion of the common technology core, multiple programming languages,
two career-like experiences, and an emphasis on mathematics (Alperowitz et al., 2016; Mahnic, 2012;
Rico & Syani, 2009; Schilling & Klamama, 2010). However, while our curriculum aligned with aca-
demic best practices, it did not align with professional recommendations. A meta-study by Sahin and
Celikkan (2020) documented professionals in 24 countries finding underprepared programming grad-
uates; further, the professionals recommended an academic shift toward agile and Scrum along with
increasing technical discussions with academics, increasing exposure to project management, and in-
corporating teamwork requirements.

We noted that we were following recommendations of industry stakeholders and accreditation agen-
cies, in that we included a career-like experience in an academic setting through a yearlong capstone
sequence focused on developing complex software (Adkins & Tu, 2021; Alperowitz et al., 2016; Mah-
nic, 2012; Rico & Syani, 2009). A problem arose when it was noted that the capstone courses were
designed around the traditional academic model of waterfall. In an examination of the rest of the SE
courses we did not find any agile instruction, and, other than a few lab assignments, we found water-
fall methodology and lecture-style instruction throughout.

Lack of software engineering preparedness in programming projects means that students need more
career-like experiences, i.e., they need more practice developing software projects. This is different
than lab experience where students encounter neat problems with clear answers. Complex software
development is the messy, unknown development that occurs when a software developer is tasked
with creating new and original software designed to address the specific needs of a client. To provide
another such experience without the ability to add or change course, we developed an agile pilot pro-
ject that would be added to a course. The goal of such a project is the same as the goal of semi-cap-
stone and capstone courses; students are tasked with creating a unique software prototype from
scratch.

There were some advantages to having the project design rely on agile, rather than waterfall. One of
the main differences between agile and waterfall development is the use of iterative, cyclic develop-
ment (agile), rather than forward-only development (waterfall). Our capstone is a two series course,
the first course focuses on project requirements, the second on development of working software
based on the project requirements. During the capstone experience, development teams meet with
the instructor once a week to present progress and discuss challenges. Some instructors provide a
guide for such meetings, but a weekly meeting guide is completely optional. The pilot modified one
of the weekly meeting guides to incorporate cyclic development and agile terminology to begin the
first cycle of Design Based Research (DBR).

Using Design-Based Research

28

As the cycles continued adjustments were made based on stakeholder feedback, mainly the weekly
report was modified, but soon adjustments to delivery method were also seen as essential for suc-
cessful prototype development. At our institution, instructors have choice of delivery methods, but
curriculum is determined collaboratively. It was determined that, to keep content consistent between
instructors, the agile project must be flexible enough to be layered onto an SE course without dis-
placing existing course requirements. This led to examination of recent agile studies where we found
development of working prototypes in mid-level programming courses; however, in each case, the
researchers had created either a new course or re-designed an existing course so that the course focus
was on the project (Corritore & Love, 2020; Magana et al., 2018; Maxim et al., 2017). None of the
studies addressed our need for a standalone agile project. Was it possible to develop an agile-based
project for a mid-level course that layered over an existing, traditional course? We were unable to find
studies that mapped out a solution, so we turned to an active form of research known as Design
Based Research (DBR), whereby we were able to iteratively collect, examine, and test the design in a
real classroom setting.

Each DBR cycle relies on data and literature as the basis for the design that will be tested in the next
cycle. The design, also known as an intervention, is tested, and collected data is reviewed to deter-
mine if a solution has been reached. The cyclic nature of DBR, combined with examination of
data/literature and regular testing, make it a good fit for instructional development. Some of the
challenges of incorporating DBR include multiple methodologies, extensive time commitment, and
clear dissemination of data. DBR cycles start with identification of a problem, followed by repeated
cycles of planning/design, implementation of the design, testing in a natural setting, communication
with stakeholders and review of literature, and reflection and analysis. Each cycle culminates with a
reflection stage where data is analyzed to determine whether a stable, flexible solution has been
reached or if further adjustments are needed (McKenny & Reeves, 2013). DBR cycles included re-
view of data alongside an examination of both academic and professional literature.

Throughout the study, research was guided by the following questions:

RQ1: How can career-like experiences be successfully layered over existing course material?

RQ2: What are student perceptions of courses with career-like experiences layered on top
of existing course content?

This paper begins with an overview of relevant literature followed by four years of DBR iterations,
including discussions of student survey responses and instructional observations. The research con-
tributes to applied scholarship through development of a career-like complex software project that
has the potential to be layered on top of existing course material. In alignment with DBR, the project
did not rely on a single methodology, rather several project-focused methodologies were examined
during each cycle. Participant feedback resulted in adjustments toward independent coding and test-
ing of a second project design. The following literature review highlights only those academic and
professional methodologies used to develop the proposed project solution: Student Ownership of
Learning, Flipped Classroom, active learning, waterfall, agile, Scrum, and Kanban.

LITERATURE REVIEW
A survey of academics, IT professionals, and employers in 24 countries reported perceptions that
programming instruction frequently placed too much emphasis on theory, while employers and pro-
fessionals reported graduates needed additional training in soft skills, analytical thinking, hands on
projects, teams, and project management. Professional recommendations for addressing these issues
in an academic setting include increasing exposure to agile development, embedding newer technolo-
gies into the curriculum, providing interactive environments that encourage technical discussions be-
tween academics and students, and increasing experiences in project management and teamwork (Sa-
hin & Celikkan, 2020). In the United States alone, there are around 1.5 million software developers

Bakke & Sakai

29

(Bureau of Labor Statistics, 2018), and the most common framework reported to be in use by pro-
fessionals is agile, with industry adoption rates ranging between 71% (9th Global Project Management
Survey, 2017) and 95% in 2020 (Digital.ai, 2020) and with 80% of major federal IT projects self-de-
scribing as either Agile or iterative (Viechnicki & Keikar, 2017). An examination of our courses re-
vealed a need for change, as a majority of the instruction was through passive delivery and focused
on the waterfall method.

First, we examined key factors in successful software development, as perceived by professional de-
velopers. In 2004, Steve McConnell, a professional programmer and author of Code Complete, de-
scribed software development as often ill-defined and complex, insomuch that students and instruc-
tors face many challenges if they are to include complex projects in undergraduate education (2004,
p.75). But what are these ill-defined and complex challenges? Beginning in 1985, the Standish Group
began researching and collecting data on software engineering cases; today, they maintain a research
database of over 50,000 software development projects from which they are able to provide premiere
software development advice. In their Chaos report (Standish Group, 2015), the Standish Group
listed just three critical criteria for successful software development: user involvement, executive
management support, and clear requirements. This list can be compared to Sheffield’s (2019) listing
of 10 key factors for software development success: develop for intended users, create a detailed stra-
tegic plan, use a team of expert developers, require project planning, follow agile project manage-
ment best practices, be clear and consistent in communication, create wireframes, develop a risk log
with a corresponding action plan, follow best practices, and complete scheduled reviews. It can be
seen that both lists highlight user involvement, managerial support, and clear communication
through planning.

It was noted that the emphasis of professional developers had some overlap with academics. Aca-
demic agile software development literature was found to include voluntary, self-organized, cross
functional teams in time-intensive academic settings (Zhang & Dorn, 2012); timeboxed competitions
such as hackathons and coding bootcamps (Fronza et al., 2020; Gama et al., 2018) eXtreme Program-
ming practices encountered during coding bootcamps (Fronza et al., 2020); and self-regulated learn-
ing (Parsons & MacCallum, 2019). Both professional and academic literature addressed complex soft-
ware development by incorporating team approaches. As expected, professional software developers
were using methods and tools that are in development, so that many are yet to be thoroughly tested
and documented in academic settings.

With the foundational need for career-like projects already determined and an existing project as a
model, the primary goal for the students was to design and build a working software prototype. We
modeled the project after the capstone in order to provide a similar career-like experience at an intro-
ductory level, the main adjustment being agile methodologies, rather than waterfall, with the goal of
experiencing the software development lifecycle at least one time. In order to create an agile project
that emulates the career-like experience of the capstone, a pilot project was first tested in Introduc-
tion to Software Engineering. The project varied from that of Magana et al. (2018), which had rede-
signed an Introduction to Software Engineering course around a mid-level career-like experience, as
we added the project onto existing material and did not alter the underlying course design. When the
department determined that it was not desirable for a programming prerequisite to be enforced, we
examined studies of courses designed expressly for beginning programmers (Corritore & Love, 2020;
Figueiredo & García-Peñalvo; 2019).

Starting with the findings of previous studies, two frameworks formed the basis for the pilot project:
Student Ownership of Learning (SOL) and agile methodologies. The researchers selected SOL for
the pilot in order to provide an agile-like academic setting through meaningful learning and practical
life skills through self-directed active participation. Agile was the initial professional framework; how-
ever, Agile’s most popular method, Scrum, was found to be a better fit in our setting. No prior stud-
ies were found where researchers were able to add a capstone-like project onto a mid-level course,
excepting studies where an entire course was modified or created with a project as the central focus

https://pubs.rsc.org/en/content/articlelanding/2020/RP/C9RP00111E#cit29

Using Design-Based Research

30

of the course. The following sections review the primary methodologies used in the development of
our agile projects.

SOFTWARE DEVELOPMENT METHODOLOGIES
A study of current research moved the pilot design away from waterfall and toward agile. Figure 1
shows a subset of data from a multi-year comparison of 50,000 IT cases (Standish Group, 2020) that
revealed success rates for waterfall and project management to be significantly less than those of ag-
ile. When considering the best way to add a complex software development project to an existing
course, it was crucial to note that professionals reported less challenges and greater successes with
agile over all other methods.

Figure 1: Software Project Resolution Rates

Authors’ representation of data from the Standish Group (2020)

WATERFALL
Waterfall is a traditional academic model composed of distinct, sequential steps which is often
misattributed to Royce (1970). In 1970, Royce recommended adjusting the then prevalent “waterfall”
method toward a more iterative approach, but his adjustments were not implemented and the preva-
lent waterfall method continued. It is interesting to note that today’s academic and business “water-
fall” diagrams include multi-directional flow (Herawati et al., 2021; LucidChart, 2017; ReQtest, 2019).
Traditionally, waterfall development isolates and forward-loads the requirements of a software devel-
opment project. Although Royce is the first professional programmer to have proposed changes, he
is not the last. With companies reporting the most common reasons for project failure being lack of
user input, incomplete specifications, and changing requirements (Standish Group, 2015), it is clear
that traditional waterfall methods should not be the primary software development instructional
model.

AGILE PHILOSOPHY
Agile practices have been used for many years by professional software developers (Bakke, 2013;
McConnell, 2004); however, it was not formally gathered into an organized philosophy until a group
of 17 software developers drafted the Agile Manifesto in 2001 (Agile Alliance, n.d. -b). This pub-
lished document defines the heart of the agile movement to prioritize individuals, working software,
customer collaboration, and response to change over processes, abundant documentation, contracts,
and extensive planning (Agile Alliance, n.d. -b). Over time, agile practices have been further defined
and developed, so that agile now refers to a broad range of practices that emphasizes stakeholder in-
volvement, soft skills, and creating value for the customer. Agile has become the most prevalent de-
velopment philosophy, with private industry adoption rates ranging between 71% (9th Global Project

13
%

59
%

28
%

23
%

58
%

19
%

42
% 47

%

11
%

S U C C E S S F U L C H A L L E N G E D F A I L E D

SW PROJECT RESOLUTION
Waterfall Highly Skilled Project Manager Agile

Bakke & Sakai

31

Management Survey, 2017) and 95% (Digital.ai, 2020); while 80% of major federal IT projects self-
describe as either agile or iterative (Viechnicki & Keikar, 2017).

Agile is broad and, for the purposes of this study, it refers to a flexible software development philos-
ophy that encourages customer communication, iterative development, and teamwork. A broad range
of studies have been published on agile topics in both the academic and business realm from volun-
tary, self-organized, cross-functional teams in time-intensive academic settings (Zhang & Dorn, 2012)
to timeboxed competitions such as hackathons and coding boot camps (Gama et al., 2018). Agile
frameworks have been studied including eXtreme Programming practices during coding boot camps
(Fronza et al., 2020) and self-regulated learning (Parsons & MacCallum, 2019).

The study began by examining the agile glossary, a dictionary of the most popular agile frameworks,
tools, and practices (Agile Alliance, n.d. -a.). This led to a “library” approach, whereby the online pro-
fessional community became accepted as mentors, able to provide trouble-shooting assistance, re-
sources, and coding tips as students worked to develop custom projects. DBR cycles led to simplifi-
cation of the design to primarily focus on Scrum, an agile framework which had been previously
studied in both project-based learning (Dinis-Carvalho et al., 2018; Saadé & Shah, 2016) and semi-
capstone experiences (Magana et al., 2018; Maxim et al., 2017).

SCRUM FRAMEWORK
Originally developed by Sutherland and Schwaber, the Scrum framework (Figure 2) involves regular
collaboration between management, stakeholders, and the development team; these interactions
guide decision making, reduce waste, emphasize essentials, and place value on experiences (Scrum
Guides, 2017). Over 70% of agile companies report Scrum to be their preferred framework because
of its strengths in managing changing priorities (70%), business / IT alignment (65%), delivery speed
(60%), team morale (59%), increased team productivity (58%), project predictability (50%), software
quality (46%), engineering discipline (44%) (Digital.ai., 2020).

Scrum is designed to guide teams in the development of software solutions; it is lightweight and
helps teams generate value as they work to solve complex problems (Digital.ai., 2020). Scrum incre-
mentally moderates project risk through teamwork and communication, tracking project progress
through backlogs, daily stand-ups, and actionable items. Scrum timeframes (sprints) are fixed but
may range from one week to one month depending on company preferences. During each sprint,
project tasks are organized, prioritized, and addressed through the four key events of team planning,
regular meetings, product reviews, and retrospectives. An example of the Scrum framework adapted
to an academic setting can be seen in Figure 2.

Figure 2: Scrum Framework Overview

Source: Authors’ interpretation

https://pubs.rsc.org/en/content/articlelanding/2020/RP/C9RP00111E#cit29
https://pubs.rsc.org/en/content/articlelanding/2020/RP/C9RP00111E#cit10

Using Design-Based Research

32

Team planning takes up no more than eight hours per sprint and involves communication with stake-
holders to clarify and prioritize sprint goals and product backlog. Each day, the scrum team meets for
a daily stand-up where they briefly discuss progress and challenges. A practice known as “three ques-
tions” helps to guide team members through a discussion of accomplishments, challenges, and up-
coming tasks (Scrum.org, n.d.). Three questions can be worded in many different ways, for example:

1. What did you complete yesterday?
2. What do you plan to complete by tomorrow?
3. Is there anything blocking your progress?

Scrum emphasizes flexibility by valuing stakeholder input, encouraging adjustments to requirements,
and self-analysis (Scrum.org, n.d.). Scrum teams are flexible and adjust quickly to project changes
through artifact creation, backlog tracking, viability testing, and regular stakeholder communication.
Scrum practices rely on feedback, clearly defined roles, and priorities through goal setting, team or-
ganization, timeboxed increments, real-life experiences, and reduction of waste (California Project
Management Office [CA-PMO], 2017). During development, teams regularly hold product reviews
and team retrospectives during which they present the results of each sprint to stakeholders and
management. During a product review teams rely on stakeholder feedback to adjust project backlog
and determine priorities for the next sprint. Such changes may also result in managerial issues such as
budget adjustments. While reviews focus on the product, retrospectives focus on improving the
team’s quality and effectiveness. Retrospectives help the team discuss successes and note areas for im-
provement (Scrum Guides, 2017).

KANBAN
Kanban is an agile tool for managing project workflow that has been documented to increase team
productivity by providing an overview of tasks while helping to minimize waste and balance availabil-
ity of resources (Kanbanize, n.d.). Kanban boards provide teams with real-time task visualization of
project tasks and rapid assessment of productivity bottlenecks. Teams and management benefit from
this simple communication tool which displays a snapshot of current tasks; quickly revealing project
needs, successes, and challenges. Kanban cards and columns help teams organize a complex project
into a single chart that can quickly provide an overview of all major backlog tasks. A representation
of a Kanban board that students might set up for their projects is shown in Figure 3.

Figure 3: Kanban board

Source: Authors’ interpretation

Bakke & Sakai

33

Kanban boards were modeled after industry, so that teams and instructors could quickly see an over-
view of both individual and team progress. Kanban is a simple and efficient tool that helps teams
visualize the entire project, improve lead time estimates, and quickly see both challenges and flow.
Management also benefits as the entire project is tracked over time and an entire overview of the
project can be viewed at any time (Radigan, 2019). Two professional Kanban boards were found to
be free for small groups: Jira and Trello. Teams followed professional practice through use of profes-
sional tools, and instructors found that Kanban charts were simple, needing little explanation. Project
implementation mirrors professional teams in that each person moves their backlog items across a
team progress chart divided into meaningful categories such as do, doing, and done. Because teams
use a single board, a single snapshot provides assessment documentation for everyone on the team.

ACADEMIC RESEARCH METHODOLOGIES

SELF-SELECTION
In an academic setting, self-selection has been reported to be a stressor at the onset of a project;
however, as students become vested, the freedom to make project decisions is appreciated and seen
as beneficial (Md Rejab et al, 2019). This finding is similar to feedback from professional agile devel-
opers who state that the fastest and most efficient way to form productive, small, cross-functional soft-
ware development teams is with facilitated self-selection (Mamoli & Mole, 2014).

Self-selection can also be practiced through teams that self-organize tasks. It has been shown that
self-organizing teams more readily adapt to changes when they are given authority to make decisions
as they work together toward a shared goal (Mamoli & Mole, 2016). Using a bottom-up estimation
and planning, self-organized teams lead the decision-making process. This is seen at the sprint level
by peer balancing of workload, teams that proactively address tasks, and team identification of hours
needed. Additionally, it is common for professionals to employ a Scrum master to provide any
needed education, facilitation, and guidance (Mandonca, 2016).

DESIGN-BASED RESEARCH (DBR)
Design-Based Research (DBR) is a form of active research whereby researchers iteratively test and
refine “curricula, practices, software, or tangible objects beneficial to the learning process” (Arm-
strong et al., 2018), but may also examine the intangible such as contextually developed claims to bet-
ter understand or advance theory (Collins et al., 2004). In DBR, participants play an active and inte-
gral role, which is much different from studies that view participants as subjects to be observed or
experimented on. Throughout the research process DBR subjects are immersed in the study through
collaborative key roles that encourage them to share in the investigation and improvement process
(Barab et al., 2004, p.3).

A DBR study is initiated by defining a problem, its context, and relevant theories (McKenny &
Reeves, 2013). Clear problem identification starts a cycle of collaborations between practitioners and
participants in an effort to better understand, document, and evaluate the issues. Based on initial
analysis, an intervention is designed and implemented. During implementation, data is often collected
through methods such as observations, surveys, or interviews. DBR encourages data authentication
through participant interaction in a natural setting along with communication and testing. At the
completion of each cycle, a period of reflection examines relevant literature to assure best practices
have been incorporated into the design. Researchers reflect on the study in an attempt to connect ac-
tions with results as they modify each intervention with the goal of developing a flexible, stable solu-
tion (Armstrong et al., 2018). During the review phase, collaborators determine if the design needs
further modifications, or if a solution has been reached (Design-Based Research Collective, 2003, pp.
5–6). A representation of the DBR cycle, as employed in this study, can be seen in Figure 4.

Using Design-Based Research

34

Figure 4. Design-Based Research Cycle
Source: Authors

ACTIVE LEARNING
When pilot data revealed a need for additional in-class activities to clarify connections between the
project and the course material, a methodology was sought that could guide us through an impossible
task: increase course value without adding time. We were already adding a project, now we were asked
to add in-class activities. We found a possible solution in project-based studies that replaced lectures
with active learning, and found they increased perceptions of educational value (Freeman et al, 2014;
Pattanaphanchai, 2019). This meant we would need to cut back on lecture time. This led to a meta-
analysis where active learning was found to be significantly more effective than traditional methods
regardless of class size, student quality, or instructor identity; so much so that students in traditional
lecture courses were found to be 150% more likely to fail than those in courses delivered through ac-
tive learning methods (Freeman et al, 2014).

These studies led to development of hybrid lessons that combined traditional lecture with active
learning. Active learning involves students in dynamic and creative activities such as group work,
problem-solving, presentations, cooperative learning, case studies, and classroom responses (Klinger
et al., 2022). Lecture instruction had been shown to be destructive to STEM so much so that failure
rates were 55% greater in lecture classes over the same course delivered with some active learning
components. If this failure rate were to be extrapolated to count each failure uniquely, it would calcu-
late into 840,000 STEM course failures, simply because the courses do not include active compo-
nents (National Science Foundation, 2014). Active learning tools are well documented in academic
literature through studies on peer-assisted learning, cooperative learning, problem-based learning,
group presentations, a think-pair-exercise discussion, and classroom response tools such as clickers
(Bishop & Verleger 2013; Hawks 2014; Talbert & Mor-Avi, 2019).

Active learning generally refers to any form of learning that engages students in doing something
other than listening (Duffany, 2015). Case studies are a form of active learning that encourages prob-
lem solving, real experiences, and interactions that increase content discussions between learners and
content experts (Maxim et al., 2017). When active learning is sustainable, it has been shown to pro-
vide more value than traditional lectures and assessments (Brown et al., 2016; Wong et al., 2017). An-
other benefit to active learning was experienced by minorities and first-generation students who were
seen to increase time spent preparing for class while feeling a greater sense of community (Eddy &

http://www.pnas.org/content/111/23/8410.full

Bakke & Sakai

35

Hogan, 2014); these benefits are similar to those seen in capstone-like experiences (Jazayeri, 2015;
Marques et al., 2018).

In an academic setting, facilitators of active learning provide formative feedback and pose complex
problems that encourage examination of multiple sources (Carless & Boud, 2018). In a professional
agile environment, active learning is manifested through self-organizing teams which in turn increases
ownership and empowers decision making (Lemos et al., 2014; Mamoli & Mole, 2016). By designing
our projects and activities around agile, we could expect to see a rise in peer engagement along with
increases in creativity, flexibility, and self-directed learning (European Commission, 2020.

STUDENT OWNERSHIP OF LEARNING (SOL)
SOL is an applied learning framework rooted in the works of Dewey (1966). In SOL students’ skills
are developed starting with an instructional shift toward facilitation, directed learning, and student
engagement. Beginning with a level of understanding, students’ progress to a level of ownership,
which is demonstrated through the ability to articulate strategies and outcomes of personal learning.
The apex of student ownership can be seen when teachers and students collaboratively facilitate
learning through a mutual exchange of ideas and strategies (National Science Foundation, 2014).

Courses that incorporate SOL increase student engagement by building on existing experiences and
knowledge while encouraging student choices through project identification, goal setting, and priori-
tization of project tasks. As students develop expertise and confidence in their abilities through re-
peated interactions with projects, ideas, and important concepts, they demonstrate content mastery
and project ownership (Corritore & Love, 2020).

Such an environment is created when instructors co-facilitate the learning process by engaging stu-
dents in active leadership and self-directed learning (National Institute for Excellence in Teaching
[NIET], 2021). Ownership of learning is typically observed in active learning settings that allow stu-
dents to generate new knowledge as they become self-directed (Graus et al., 2022). To facilitate stu-
dent ownership of learning, the role of the teacher must change from lecturer to coach. A teacher in
this role becomes a valued resource, helping students achieve goals through active participation in
decisions, choices, content application, observations, and evaluations (Chan et al., 2014; Weekly Tip,
2019).

METHODOLOGY

BACKGROUND OF THE PROBLEM
Software development is at the heart of SE; in other words, the goal of software engineering is to
develop software. The SE program requires students to complete two career-like experiences: an in-
ternship and a capstone. Periodically, we examine our curriculum in light of professional trends as
reported by researchers and area businesses. As a result of the examination process, we began a
multi-year DBR study focused on devising another career-like project, modeled after our existing
capstone. The goal was to develop a mid-level project whereby students would develop a complex
software project from start to finish; this career-like experience would be similar to the capstone but
would employ industry best practices of agile, rather than our current academic instructional meth-
odology: waterfall. In technical fields, capstone projects are designed to emulate career experiences;
throughout this study career-like experiences refer to any project where students experience the en-
tire software development life cycle. To avoid adding graduation requirements or changing course
material, it was decided that a successful project would be one that could be layered over an existing
course without significant adjustments to the underlying material. It was also determined that such
projects must remain instructor optional. Perceptions of participants were tracked to assure students
were not overwhelmed by the addition of a complex project. The use of participant perceptions as a

Using Design-Based Research

36

critical factor in determining the success of the project is grounded in DBR theory where partici-
pants are viewed as stakeholders and co-researchers, rather than subjects to be observed and docu-
mented by an outside specialist. In valuing participant feedback, researchers were led to examine ac-
tive learning methodologies which often occur in natural settings and have been shown to increase
participant initiative, decision making skills, and intellectual engagement (BU Center for Teaching and
Learning, n.d.). We also considered the role teamwork might play, as professional developers often
complete complex projects by working in teams. In academic settings adequate teacher-student ratios,
cooperative learning, versatility, and quality support are seen to build student leadership skills
(Mendo-Lázaro et al, 2018). In professional settings, the physical work location of team members is
often flexible with 81% of software developers reporting they work with team members at different
locations and 71% of co-located developers reporting working in geographically dispersed teams
(Digital.ai, 2020). To increase the likelihood of success, the pilot was deployed in Introduction to
Software Engineering, a mid-level course, covering the entire SDLC and requiring a foundational
knowledge of object-oriented programming. The original project was designed as a simplified cap-
stone in order to emulate a career-like experience. Concerns that the project would be perceived to
add a significant work load were addressed by employing DBR methods and small class sizes.

When pilot data was analyzed, the instructor was encouraged to further develop a second project for
another course, so that there were times when two DBR interventions occurred in the same cycle.
Because another mid-level course with a clear correlation to the entire SDLC did not exist, develop-
ment of a second complex agile project was placed in the next course that the students would en-
counter: Software Construction. There were many challenges to including an agile project in this
course as it emphasized the low-level design documents of waterfall development. While it was ex-
pected that the additional workload created by the addition of a software development project would
play a significant role in feedback, the additional workload was never reported as a concern. Rather,
participants recommended adjustments to course delivery in order to provide an overlap between the
project and course material. It is important to note that, while course delivery was adjusted, no mate-
rial was removed. Additionally, the adjustment to course delivery coincided with major project suc-
cesses that were previously unseen: nearly all students were able to successfully demonstrate working
prototypes.

The study was homogenous and quasi-experimental as the population consisted solely of software
engineering majors taking required courses. During each cycle, surveys were offered to all students
for minimal extra credit points. Class sizes ranged from 8 to 20 students; with an overall average of
11.7. The validity of the study data is consistent with the findings of Boddy (2016) where homogene-
ous settings of 12 result in saturation. Repeated data collections increased data validity over the
course of seven cycles; with three interventions conducted in the first course and four in the second.
Case studies that allow close interactions between respondents and instructor provided us with an
interview-like settings that allowed in-depth study and immersive data capture in a naturalistic, in-
quiry setting (Crouch & McKenzie, 2006). Further, the expansion of the study to two sequential
courses strengthened case-oriented analysis (Sandelowski, 1996).

PROJECT GOALS
In an effort to address recommendations for increased professional development, the initial goal was
to develop a complex project that could be overlaid on a mid-level programming course (Peters &
Tripp, 1977; Rittel & Webber, 1973). Data from the pilot supported further development, as well as
revealing a desire for a second project; this led to two projects rather than one. Over the course of
four years and seven iterations, two questions remained the driving factors for project development:

RQ1: How can career-like experiences be successfully layered over existing course material?

RQ2: What are student perceptions of courses with career-like experiences layered on top of
existing course content?

Bakke & Sakai

37

Because the courses already existed, we developed the career-like project based on the need for soft-
ware developers to make working software, thus the goal of a career-like experience for a software
developer is at least a working prototype. As the project was developed to be layered over an existing
course and was intended to be assigned as a mid-level experience, a successful career-like experience
would be if a majority of the students developed working prototypes. Further, a successful project
should be feasible for students, in so much that students not only report the project as valuable but
also do not reflect that the course load is too much. Thus, the success of a career-like experience
would be gauged based on completion of prototypes and perceived course value.

The researchers viewed participant feedback as critical to the success of the study, so that DBR was
well aligned with project goals. When a significant project is added to only one section of a course,
students’ perceptions are viewed as a critical driving factor in the courses success. DBR involves all
stakeholders, not as subjects to be observed, but as valued fellow researchers. Students were told that
their feedback was valued and their recommendations would be examined during the development
process, and many were able to later observe how their feedback had been implemented when the
projects were introduced to other courses. The researchers placed value on student perceptions of
the course in order to guide against excessive workload.

The pilot was designed to provide students with a mid-level capstone experience that would empha-
size teamwork, soft skills, and all, or nearly all, of the software development life cycle (SDLC). The
first two cycles found that the addition of a complex software development project on top of exist-
ing curricula was problematic, and perhaps impossible. Yet, by the third DBR cycle, implementation
of stakeholder recommendations brought unexpected success to students. The goals remained the
same throughout DBR cycles, and project development progressed through a series of refinements
based on feedback combined with an examination of the literature. In the course of analysis and
testing, delivery methods came under scrutiny for best practice. As a result, it is recommended that
when projects are to be overlaid onto existing curriculum, delivery adjustments away from passive
learning should be planned. Repeated examination and adjustments led to an agile software develop-
ment experience that has been well received by students.

DBR FINDINGS

PILOT INTERVENTION
A sophomore-level course, Introduction to Software Engineering, was selected for the pilot project,
as the course relied on traditional-style instruction, covered the entire software development lifecycle,
and required prior knowledge of object-oriented programming. The initial project goal was to pro-
vide an introduction to the complexities of a career-like experience steeped in Student Ownership of
Learning (SOL) and agile practices. Table 1 shows how the capstone experience incorporated current
literature, with notable influences from Corritore & Love (2020) and NIET (2021).

Table 1. Pilot Design of Mid-level Career-Like Project

Intro to Web Development Into to SE SE Capstone

• Weekly presentations
• Independent coding
• Instructor determines

weekly requirements
• No teams, no group work
• No prerequisite

• Random selection of small
group (3-4 students)

• Weekly presentations
• Weekly team meeting
• One team project.
• Individuals determine and pri-

oritize tasks
• Division of project into

“equal”, independent parts.

• Self-selected teams of 3-4
• Weekly team meetings
• Weekly instructor meeting
• One team project.
• The team determines tasks,

goals, and priorities.
• Iterative development
• Pre-requisite: senior status

Using Design-Based Research

38

Intro to Web Development Into to SE SE Capstone

• Iterative development
• Prerequisite: object-oriented

programming

SOL: Thinking

Teachers integrate weekly
team communication and re-
flection tools.

Students apply their learning
to a real software develop-
ment project.

SOL: Control

Self-selection of
• Software project
• Determine project features
• Set goals
• Prioritize project tasks

SOL: Problem-Solving

Team: set project and weekly
goals.

Individual problem solving

Team meetings: team problem-
solving.

Agile in Practice: Scrum

Iterative development, rotat-
ing scrum master

Presentations: share project;
discussions with team and
class

Agile Tool:

Stand-up, goals, three questions,
backlog, artifacts

Facilitation: random selection
of team members by the in-
structor, the project was limited
to designing desktop software.

Agile Terminology

Artifact, backlog, Definition of
Done, Scrum, Agile

DBR ITERATION ONE: FALL 2018
Prior to the start of class, an agile-like template was developed as a guide for incremental software
development. During the first week of class, students were tasked with proposing unique software
that might be created; then, the instructor assigned them to development teams based on similarity
of proposals. Each team discussed the proposed projects of the members and a single project was
then selected for each team. Students were then tasked with dividing their project into independent
parts, so that the parts might later be put together into a single product. This varies slightly from our
senior project, where the team sets their own goals and divides the project as they wish.

Throughout the semester, teams met weekly to correlate and troubleshoot their project, and the small
class size allowed teams to briefly report in class. The value of small class size and weekly presenta-
tions soon became apparent when several students said they were struggling because they had not
completed the programming prerequisites. At this point, a discussion took place to consider drop-
ping the project from the course and replacing it with a more traditional requirement or continuing.
The instructor was surprised when students overwhelmingly requested to continue project develop-
ment.

The discussion led to adjustments that the researchers hoped would provide a level of success for the
students who faced the challenge of developing software with no prior programming experience.
The primary recommendation was for a portion of each lecture to be replaced with in-class assign-
ments that would guide project development; this was possible from a curriculum standpoint as the
course covered the entire software development life cycle, however, it also led to an additional work-
load for the instructor. From this point on, whenever possible, the instructor developed in class ac-
tivities that aligned with both the project and the curriculum.

In this way, the interview-like setting of the pilot led to adjustments not only to the project, but also
to course delivery. After the discussion, active learning began to be viewed as an essential component
of any course that included a complex software development project. Throughout the course the
small class size led to many informal discussions, which provided insights into the cycle of software

Bakke & Sakai

39

development for new programmers. This allowed the instructor to create timely curriculum-based
activities that complimented the students’ project development needs.

Many challenges had been encountered in the pilot. The small class size was ideal for testing such a
project and led to many informal discussions where it was often observed that students had selected
a major they were not only interested in, but passionate about. The end of course survey listed in
Appendix A, was offered to the students in order to collect their thoughts and recommendations re-
garding the value of the project. Responses revealed common threads of concerns and recommenda-
tions, and representative participant responses are listed below.

ADDRESSING RESEARCH QUESTIONS
RQ1: How can career-like experiences be successfully layered over existing course material?

Question: As an instructor, what can I do to structure the student-to-student learning, so it is more
beneficial?

• It is more beneficial if instructor selects the “best fit” groups, rather than random selection.
• Give category options for app development, and place students into groups by their category selection.
• Give some goals for students to accomplish in group cooperation time.

Question: Do you have suggestions or ideas for changing or improving assignments in this course?
Please explain.

• Assign an app to develop that will introduce students to different aspects of mobile app development.
• Teach more about Android studio.
• Keep presentations and give the students more to work off of so they can actually start getting more in depth

with their projects.

Instructor observations:

• The course required object-oriented programming; however, many students had not taken
the prerequisite; students without the prerequisite struggled the most.

• Poor attendance at study group meetings and no prior programming experience were the
most commonly reported group problems.

• There were several requests for increased guidance.
• Some students were able to get a portion of their software working.

DBR notes: A new intervention would be designed to address the main themes of student and in-
structor feedback. Instructor feedback includes feedback from independent research projects where
students provided feedback on ways to improve the tools used throughout this study.

RQ2: What are student perceptions of courses with career-like experiences layered on top of exist-
ing course content?

Question: Select all that apply to your learning in this class: [I learned a lot in this class; I learned a
few things in this class that I did not already know; I did not learn anything new in this class]

• I learned a lot in this class (83%)
• I learned a few things in this class that I did not already know. (17%)
• No negative responses

Question: I would recommend this course to other students? 97% (yes)

DBR notes: students reported value for a project that was layered over existing material; however,
additional iterations are needed to address feedback that pertains to RQ1.

Using Design-Based Research

40

METHODOLOGY REVIEW
DBR involves methodological review as part of the design modification process. The pilot revealed a
need for further examination of active learning methods and agile practices. Student feedback led to
more specific project guidance as well as the creation of in-class active learning assignments. Current
literature was examined to address feedback requesting adjustments to the teamwork selection pro-
cess and the high levels of team friction. It was found that the instructor arbitration can be mini-
mized by shifting some of the management responsibilities to the team (Mamoli & Mole, 2016).

Both academics and professionals report self-selection to be a positive experience; however, ap-
proaches to self-selection differ. In the professional realm facilitated self-selection is preferred, while
the academic study examined self-selection without facilitation. The participant recommendations
aligned not with the prior academic study, but with the professional preference for facilitated self-se-
lection, so that it was decided the next cycle would design and test self-selection similar to a profes-
sional environment. This change to a more active instructor role was hoped to result in improve-
ments to productivity, team motivation, and group stability (Agile Alliance, 2021).

Alterations were made to adjust for a second level project to be incorporated in to the next course in
sequence, Software Construction. The first course would also be adjusted by incorporating addi-
tional guidance for those who may be struggling with foundational skills (Corritore & Love, 2020;
Figueiredo & García-Peñalvo, 2019). The next curriculum cycle offered both of the targeted courses:
Software Construction (SE 2300) and its prerequisite, Introduction to Software Engineering (SE
2200) using the designs shown in Table 2. The two altered designs were implemented in tandem
which provided a unique opportunity to observe both project variations at the same time.

Table 2. Two-Course Intervention

Into to SE (pilot) New Intervention

• Random selection of small groups
• Weekly presentations
• Weekly team meeting
• One team project with the division of the

project into “equal”, independent parts.
• Individuals determine and prioritize tasks
• Project: game development

• Self-selection of a preferred project from a
project list

• Teams determined by instructor based on
self-selected project choice(s)

• Weekly presentations
• Project: app development

Agile Active Learning
Add group meeting guidance by incorporating agile practices, terminology, and tools

Scrum
• Addition of three questions

ITERATION TWO: SPRING AND FALL 2019
The spring semester contained slight adjustments as few students provided meaningful data during
the COVID disruptions. Due to the minimal responses, spring data was combined with fall, which
had returned to in-person instruction resulting in more robust feedback. Minimal feedback during
spring led to analysis of RQ1 only; during fall analysis was complete allowing analysis of both RQ1
and RQ2.

Combined feedback: SE 2200 & SE 2300, representative student comments
RQ1: How can career-like experiences be successfully layered over existing course material?

Bakke & Sakai

41

• Explain portions of code
• Allow more time to work on in class activities.
• Reinforcing and making the connection between course material and the project early on would be helpful.
• Less emphasis on coding hours or more emphasis on analysis and design in the beginning may help reinforce

the software development life cycle.

Feedback from the COVID semester led to further development of embedded active learning experi-
ences as well as further experimentation with the frequency of presentations and team meetings,
which had been highlighted in the pilot data. In this way, the benefit of COVID was the gift of time
to further develop agile components and active learning lessons. The intervention adjustments for
both courses are shown in Table 3.

Table 3. Two-Course Intervention, Version 2

SE 2200 SE 2300

• Bi-weekly presentations
• Bi-weekly team meetings
• Add code discussion requirements

to the weekly presentation
• Game development

Develop more active learning to
more clearly connect the project to
course material

• Four presentations
• Weekly team meetings
• Add code artifact and discussion re-

quirements to weekly reports
• App development
• Develop more active learning to

more clearly connect the project to
course material

Agile Active Learning
Add individual participation requirements to team meetings and group reports.
Include rotating Scrum Master requirement.

Agile and Scrum
Change wording from Scrum three questions to Agile three questions

Feedback from previous interventions recommended decreasing lecture time, so the new design in
both courses emphasized further development of active learning lessons that would continue to
build the connection between software development and the required course material. During this
cycle, the use of professional agile resources greatly decreased time spent in active learning develop-
ment. The following example shows an active lesson incorporating a common agile development
technique known as Given When Then.

Active learning examples: Introduction to Software Engineering
Lesson focus: User Interface.

• Traditional lecture: Discussion of UI Best Practices.
• Active learning: students worked with their team to select color palettes, fonts, and menu lay-

out; teams determined a cohesive interface design that would be used by all members.

Lessons on Software Construction, focus on code design and quality

• Traditional lecture: The importance of high-quality design
• Agile active learning: Given When Then (work with a team)

o Create a Given When Then user story for your software
o Each student’s Given When Then is unique.

Using Design-Based Research

42

ADDRESSING RESEARCH QUESTIONS

Intro to Software Engineering: SE 2200, representative student comments
RQ1: How can career-like experiences be successfully layered over existing course material?

Question: As an instructor, what can I do to structure the student-to-student learning, so it is more
beneficial?

• Find a way to connect what we learn in class to what we work on outside of class.
• Presentation: doing it every other week is too much.
• Ask about group discussions.

Question: Do you have suggestions or ideas for changing or improving assignments in this course?
Please explain.

• Activities were very efficient.
• Make it a rule to have only one meeting in each week.
• Honestly felt the class was engaging: less lecture time and more time for students to discuss in class.
• Teams need to agree develop on the same game engine instead of multiples, so it will be easier to cooperate

with other classmates.

Software Construction: SE 2300, representative student comments
Question: As an instructor, what can I do to structure the student-to-student learning, so it is more
beneficial?

• The only thing I can think of is that sometimes the instructions for how to format the presentations and what
to include changed from time to time, but it’s not a large problem.

• Nothing I can think of, you do a good job of mixing up the groups in class and the out of class meetings are
run by us. (a majority of the responses were similar to this or blank)

• More guidance on how we could make our project better.
• Presentations are important. I like to share my work to my classmates, it’s pretty cool, I have a sense of

achievement when others see my project.

Question: Do you have suggestions or ideas for changing or improving assignments in this course?
Please explain.

• More requirements for working with each other in a software engineering team.
• Require a team meeting once every two weeks instead of every week.
• Give more code exercises and examples.
• When classes just talk about textbook content, it is kind of boring.

DBR notes: Changes were attributed to the addition of group guidance, instructor facilitation, and
adding code discussion to presentations. The next intervention will adjust so that members in the
same group will be working on similar projects. Presentations will be reduced to 4 per semester.

RQ2: What are student perceptions of courses with career-like experiences layered on top of exist-
ing course content?

Intro to Software Engineering: SE 2200, representative student comments
Question: Select all that apply to your learning in this class: [I learned a lot in this class; I learned a
few things in this class that I did not already know; I did not learn anything new in this class]

• I learned a lot in this class (67%)
• I learned a few things in this class that I did not already know. (22%)

o Two students selected both of the above
• No negative responses

Bakke & Sakai

43

Question: I would recommend this course to other students? 97% (yes)

Software Construction: SE 2300, representative student comments
Question: Select all that apply to your learning in this class: [I learned a lot in this class; I learned a
few things in this class that I did not already know; I did not learn anything new in this class]

• I learned a lot in this class (64%)
• I learned a few things in this class that I did not already know. (21%)

o Two students selected both of the above
• No negative responses

Question: I would recommend this course to other students? 95% (yes)

DBR notes: The data supports layering of a career-like project over existing, software development-
related material. Additional DBR cycles are needed to address feedback to RQ1 to determine if the
project is stable and flexible. Data for RQ2 will continue to be collected.

Instructor observations:
Bi-weekly meetings and reports were noticeably less productive than weekly reports and meetings; no
significant project completion differences were noted between bi-weekly presentations and four
presentations; however, four presentations were preferred by both participants and the instructor.
The agile glossary (Agile Alliance, n.d. -b.) provided resources for many active learning lessons that
were seen to clearly tie course material to student projects, with little or no modifications. A chart
with the agile tools we incorporate most often is listed in Appendix B.

METHODOLOGY REVIEW
The similarities between DBR and agile philosophies became apparent during this cycle with both
employing cycles of iterative development in natural settings and placing a high value on stakeholder
involvement (Agile Alliance, n.d. -b; Haagen-Schützenhöfer & Hopf, 2020). It appears that propo-
nents of agile and DBR have independently created similar processes, designed around cyclic testing
and valuing all participants. This correlation may be of interest to researchers. (See Table 4.)

The Agile Alliance glossary (Agile Alliance, n.d. -a) was seen as an invaluable aid to rapid develop-
ment of active learning assignments for software development projects. We have included a listing of
agile tools that easily translated to active learning lessons: agile manifesto, backlog, CRC cards, daily
meeting, Definition of Done, do-doing-done, epic, extreme programming, facilitation, frequent re-
leases, given when then, incremental development, iteration, iterative development, Kanban, Kanban
board, Niko-Niko Calendar, Personas, Scrum, Scrum Master, Sprint, Sprint Backlog, Sprint Planning,
Story Mapping, team, timebox, user stories, user story template, velocity.

Table 4. Adaptable Intervention

Intervention

• Implementation of Do, Doing, Done through a minimum of three goals per week,
one achieved task, one in progress task, and one task not yet started.

• Weekly team meetings required documentation and goal setting for the project, dis-
cussion of weekly progress, and trouble-shooting.

• Weekly report: added artifacts of either video or picture.
• Added code sample and explanation

Active Learning and Agile
• Agile research and application were added to group requirements
• Many active learning experiences incorporated agile or scrum practices.

Using Design-Based Research

44

ITERATION THREE: SPRING 2020
Each person selected their top three projects from an instructor provided list. Based on student
choices and instructor preferences, students were divided into study groups of three or four. Each
student would develop a unique project; however, all projects in the same group would be on the
same topic. For example, for those selecting Photoshop-like projects, all members needed to build
unique filters, but no two filters would be the same. One student might develop an inversion filter
and a color adjuster, while another could develop a pixilation and blur filter.

Grading became nearly independent, so that, while participation in group work was graded, the stu-
dents each developed their own work. Individual grades were able to be based on individual submis-
sions and participation in a study group. Individuals were graded on their own contribution and their
own project development, so that this iteration involved breaking down requirements to the individ-
ual level.

There was also a change to presentation requirements, which freed up class time for more lecture and
active learning. The length of the weekly report requirements increased to include project details,
coding slides, and resources in an attempt to address requests for more structure and guidance. The
group additions included studying Agile, Smart Goals, Burndown Chart, and the additional individual
requirements included Smart Goals, Gantt Chart, user stories, backlog, velocity, bugs/fixes, an arti-
fact, and velocity estimation. Students commented that the added requirements increased frustration
rather than educational value, which resulted in adjustments to the weekly report requirements which
allowed teams to research their choice of agile methodology and apply it to everyone’s project. The
individual report was simplified by having students address the three Scrum questions, goals were
simplified to a Kanban-like overview of do, doing, done, and project code was either demonstrated
or three coding terms were explained. For each of the four presentations, students would highlight
their weekly journal along with a challenge. Spring 2020 resulted in a few changes to the report.
Group meeting documentation included a paragraph of each project and an overview for each per-
son during the weekly meeting and attendance in group meetings was noticed to be reflective of pro-
ject quality.

ADDRESSING RESEARCH QUESTIONS
Software Construction: SE 2300, representative student comments
RQ1: How can career-like experiences be successfully layered over existing course material?

Question: As an instructor, what can I do to structure the student-to-student learning, so it is more
beneficial?

• Continue with the same methodology of teaching.
• Going forward and assuming this type of classroom format will persist it would be helpful to putting students

in the same time-zone into the same group. But, if the classroom format is going to be going back to normal,
then allowing students to choose their group will be more beneficial for learning in my opinion. Yes it is true
that you will have to work with people you don’t like or don’t work well with, but when learning how things
work you’re likely to learn better when you’re learning with people you get along with and work well with.

Question: Do you have suggestions or ideas for changing or improving assignments in this course?
Please explain.

• My project was very valuable, and I’m glad to have gotten a chance to get credit in class for something I
wanted to do on my own.

• I think an improvement for this course would be to have a project/continuation of a project you’re working
on for the final instead of a final consisting of rote memorization. It’s pretty clear that students learn the
most from projects.

• I learned the most from making a project.

Bakke & Sakai

45

• Keep the project and keep us working as a team to solve problems together.

DBR: Feedback was positive as summarized above. There were no comments for changing the pro-
ject. A few adjustments were made, and DBR data was collected on one more cycle to assure adapta-
bility and stability of layered career-like projects.

RQ2: What are student perceptions of courses with career-like experiences layered on top of exist-
ing course content?

Question: Select all that apply to your learning in this class: [I learned a lot in this class; I learned a
few things in this class that I did not already know; I did not learn anything new in this class]

• I learned a lot in this class. (40%)
• I learned a few things in this class that I did not already know. (40%)
• No negative responses
• Some students left this question blank

Question: I would recommend this course to other students? 100% (yes)

DBR: Feedback continued to support development of active learning in conjunction with the pro-
ject. In reviewing current literature, slight adjustments were made to project topic list to better align
projects with the three of the recommendations of Fronza et al. (2020): craftsmanship: instructors
should guide students from project inception through the release of a working project; goal-setting: in-
structors should facilitate teamwork by identifying high-level goals and breaking them down into
clear tasks; accountability: instructor supervision is crucial to avoid one member sustaining a heavy
workload.

METHODOLOGY REVIEW
The feedback from this cycle appeared to support a stable, yet flexible design. It was determined that
data would be collected during one more cycle that incorporated the same interventions and active
learning assignments. To assure flexibility had been reached, new project topics would be determined.
What had seemed unattainable had been accomplished; students had developed a working prototype
on top of existing curriculum. If student and instructor feedback during the next iteration continued
to be supportive of the project and students developed working prototypes, the intervention would
be considered a success.

ITERATION FOUR: SPRING 2021
For this iteration of Software Construction, a topic was selected for the entire class, but each project
would continue to be unique. For this round, each student would develop an escape room based on
an educational sub-topic of their choice such as history or math and targeted a different age group,
for example, math – addition 1st grade, math – subtraction 3rd grade, math- division 4th grade, etc.
There were no further changes to the course methodologies or projects.

To verify intervention stability and flexibility course material remained consistent with prior iterations
and active learning remained in place. Analysis from implementation and testing phases resulted in
no significant changes or recommendations for alterations. Group requirements and weekly reports
continued to follow the template, and discussions guided study groups through common develop-
ment steps. The course continued to require four presentations which were referred to as check-
points. Once again, fully engaged students successfully developed a prototype game. All prototypes
were able to be played by other students.

Once the project was determined to have satisfied the research questions and achieved both stability
and flexibility, an overview could be developed and included. The examples and summaries included
in Appendix C and D reflect previous cycles as a new theme is used each time the project is taught.

Using Design-Based Research

46

So far, this has resulted in software designs that are unique, without the need for client or stakeholder
input. Appendix C includes an overview of the project along with example weekly report and presen-
tation requirements. Appendix D includes previous software topics and representative discussion as-
signment examples.

ADDRESSING RESEARCH QUESTIONS
Software Construction: SE 2300, representative student comments
RQ1: How can career-like experiences be successfully layered over existing course material?

Question: As an instructor, what can I do to structure the student-to-student learning, so it is more
beneficial?

• This way the learning effect is better because students are assigned to a group that suits them. Vice versa.
• Keep the weekly report. I like to learn this way.
• I enjoyed the coding project. I learned more about programing in a different application.

Question: Do you have suggestions or ideas for changing or improving assignments in this course?
Please explain.

• Keep the independent learning and choices. I learned a lot about a coding language that was new to me.
• App development is a good thing to learn, and Android Studio.

RQ2: What are student perceptions of courses with career-like experiences layered on top of existing
course content?

Question: Select all that apply to your learning in this class: [I learned a lot in this class; I learned a
few things in this class that I did not already know; I did not learn anything new in this class]

• I learned a lot in this class (50 %)
• I learned a few things in this class that I did not already know. (50 %)
• No negative responses

Question: I would recommend this course to other students? 100% (yes)

DISCUSSION OF FINDINGS
ADDRESSING RESEARCH QUESTIONS
After a review of both professional and academic literature, there were no studies found demonstrat-
ing stand-alone, agile software development projects that could be layered on top of an existing cur-
riculum without re-designing a course. The pilot project was tested in Introduction to Software Engi-
neering, where a small class size and an SDLC focused curriculum were hoped to align well with the
project. The class size was small (eight students) which resulted in a natural, interview-like setting
throughout the semester. This provided ample opportunities for instructor-student discourse to as-
sure data accuracy (Crouch & McKenzie, 2006).

The design began by focusing academic methods on SOL and agile professional practices. Over time
SOL was expanded to encompass the broader active learning framework and the most common agile
framework, Scrum, was emphasized. To address project goals, a brief mixed-methods survey was de-
veloped which combined two open-ended questions with two quantitative questions tht were based
on the Net Promotor Score (NPS) or the Ultimate Question (UQ). The UQ had been used in a pre-
vious academic study (Corritore & Love, 2020) and was well known in NPS calculations that had
been instrumental in driving turnarounds in companies such as Facebook, eBay, Jet Blue, LEGO, and
Apple (Reichheld & Markey, 2011; Thomas, 2014). The interview-like setting was seen to strengthen
consistency between participant responses and instructor observations. Validity was further examined

Bakke & Sakai

47

through analysis of responses to the two quantitative questions demonstrating perceptions of course
value.

Four Question Survey
Question: As an instructor, what can I do to structure the student-to-student learning, so it
is more beneficial?

Question: Do you have suggestions or ideas for changing or improving assignments in this
course? Please explain.

Question: Select all that apply to your learning in this class: [I learned a lot in this class; I
learned a few things in this class that I did not already know; I did not learn anything new in
this class]

Question: I would recommend this course to other students?

The pilot project presented many challenges but was positively received. The biggest surprise was
when several participants requested a second project be overlaid on another course prior to the cap-
stone. DBR data analysis led to improvements which were implemented through alteration of the de-
sign and development of active learning components. The adjustments allowed for testing of two
project variations, and better preparation as all students would have the prerequisite programming
knowledge prior to taking the second course.

The next cycle incorporated a variation in the first course to address the possibility of students with
no programming experience, while the second course was designed with the underlying presumption
that students would have some level of programming experience. The first course increased pro-
gramming guidance and reduced project variation through selection of app development and use of
my first app tutorials from Android and Apple. During this cycle, group meetings became part of
weekly presentations, weekly presentations continued as requirements, and there was an increase in
the agile requirements. To address conflicting comments for more guidance, too many presentations,
and the benefits of presentations; one intervention tested weekly presentations and the other imple-
mented four presentations.

The design began as a simplified version of the capstone with emphasis on self-selection and individ-
ual choices (Agile Alliance, 2021; Mamoli & Mole, 2014; Md Rejab et al, 2019) and the final version
retained similarities to the capstone while including significant differences. The initial version in-
cluded a weekly journal to better track individual and group progress; there were several major modi-
fications to the weekly journal. The pilot revealed several issues, the most significant being a soft pre-
requisite to the course; students with no prior programming experience faced greater challenges in
completing the software development project. From the onset, students’ perceptions of the career-
like project were positive and feedback helped to streamline the design. Repeated iterations involving
agile and) methods helped to meld data into a flexible and stable solution. Adjustments primarily oc-
curred during the first three cycles, while data from the last two cycles supported design stability.

The design for the third intervention simplified the presentations to be similar to Scrum standups,
while broadening group requirements to include the study and application of agile. This cycle also
saw development of a topic list to allow some self-selection, while small groups were determined by
the instructor. Students developed unique projects, but all projects revolved around a common topic
and development style such as educational games. This cycle also included a clarification of the cod-
ing requirement, which became a picture and an explanation of a section of code. The benefits of
DBR were clearly seen when every student with good attendance developed a working prototype.
Table 5 shows a side-by-side comparison of the original waterfall capstone and the new agile project
design which is considered stable and has been incorporated into many pre-capstone courses.

Using Design-Based Research

48

Table 5. Comparison of Agile Project to Waterfall Capstone

Agile (New Project) Waterfall (Capstone)
Individual software development Team-based software development
Course add-on Entire course
Guided study group trouble-shooting Team determined tasks
Development of related software prototypes Development of a single software product
Weekly: team meetings and progress report Weekly: team meetings and progress report
Three to four presentations (all class) Weekly presentations (all teams)
Weekly project-focused discussions
In-class agile & active learning components
Agile terminology/practice (study group/individuals)

The fourth cycle verified stability and flexibility of the design. This was achieved through selection
of different project themes. The class project was to develop educational escape rooms, and teams
were randomly selected by the instructor. Each term agreed to develop based on an educational
topic, such as math, history, reading, or music. After determining the common topic, individuals se-
lected a unique sub-topic and age level for their personal development, such as grade 2 addition. The
project requirements remained the same as the third iteration: weekly report, four presentations,
weekly group meetings, and in–class inactive learning assignments. The project was considered both
stable and flexible, based on participant data, instructor feedback, and all active students achieving
working prototypes. Below we summarize the career-like agile project by comparing it to the originat-
ing course, the SE capstone.

CONCLUSIONS AND FUTURE WORK
Modern software development is challenging, complex, and requires flexibility in fast-paced environ-
ments; such is the nature of career experiences for the professional software developer. As a result,
professionals are recommending that academics increase the robustness of educational practices by
replacing waterfall instruction with a variety of agile tools and practices. With the intent of including
an additional career-like experience in software development, we developed a project that has been
used to guide many students through the complexities and challenges of software development. To
assure efficacy of the project, data and literature were examined through seven DBR interventions
which occurred in two classes over the course of four years.

Implementation of DBR, allowed organized collection of data, examination of literature, planning,
and product testing, followed by a thorough review phase. Similar to a case study, the researchers
employed DBR to collect and analyze empirical evidence from quasi-experimental, interview-like set-
tings. The original goal of developing a completely standalone project was not achieved, possibly due
to time constraints imposed by the addition of a project. The need to supplant something was noted
by the participants early in the study, with a recommendation to partially flip the existing lecture ma-
terials, so that only a portion of each class period was spent in passive learning, while the remainder
was supplanted with active learning that connected the project with the course materials. When the
project was adjusted to include agile based active learning, all of the active students achieved the goal
of working prototypes. The student recommendation to include active learning was supported in lit-
erature, where it has been seen to improve teamwork and development skills through collaborative
community, building of leadership skills, and encouragement of lifelong learning (Coorey, 2016).

The first two DBR cycles led to many adjustments in design based data analysis and further literature
review. For example, when additional guidance was requested, review of literature found the issue has
been documented previously in complex software projects in remote teams (Johansson et al., 1999).
When students recommended keeping presentations, prior studies supplied evidence that our class
was considered safe enough for students to benefit from interaction with their peers (Steen-Utheim

Bakke & Sakai

49

& Foldnes, 2018). In the instance where no corroborative studies were found for the optimal number
of project presentations, it was determined that both three and four class presentations worked well.
When additional project guidance was requested, a portion of face-to-face time shifted to active
learning through guided discussions, Scrum tools, agile practices, and group learning (Srivatanakul &
Annansingh, 2022). It was unexpected that a second project would be requested, and it was a pleasant
surprise to find that a single standardized template could be combined with active learning to effec-
tively add projects to both courses.

Until a stable solution was developed, the review phase of DBR resulted in intervention modifica-
tions. Each review examined literature (for academic and professional best practice), project data, sur-
vey responses, and instructor observations. There were also a few times when an adjustment was nec-
essary mid-way through the course; one such time occurred when we learned that several students
had taken the project course without first completing the programming pre-requisite. During the sec-
ond year of the study, participant feedback led to testing interventions that included a change in de-
livery that resulted in a partial flipped-classroom, whereby a portion of lecture time became outside
reading and the remainder was replace with agile and active learning. This allowed all existing course
material to remain in place but did not allow flexibility of project completion alongside lecture in-
struction. The adjustment to a partially flipped classroom for the third cycle, was significant. All stu-
dents were able to complete prototypes, and all feedback reported the project as valuable. DBR in-
volves testing a potential solution for flexibility and stability, so that a fourth cycle was documented.
The instruction and project were similar in the third and fourth cycles, and the findings were also
consistent. After reviewing data from all cycles, the project combined with active learning, evidenced
a stable solution had been reached.

Using scrum tools and practices, we were able to develop an agile project similar to the capstone, in
order to provide students with another career-like experience. As the study concluded, stakeholder
feedback had expanded inclusion of agile projects into multiple courses. It must be noted that in
each class it was found that flipping a portion of lecture and replacing it with active learning was crit-
ical to completion of working prototypes. Without some adjustments away from lecture, students
were unable to develop a working prototype. In some institutions, students’ perceptions of a course
are important, so we note that once the project stabilized, the instructor did not feel it significantly
increased their workload, but they did note a significant increase in student ratings of the course after
the project was added. Like Gunyou’s (2015) experience with flipped classrooms, we believe replacing
a portion of lecture with active learning was the key that allowed time to develop a working proto-
type. It is important to note that when students first encounter project-based software development
projects in courses they may feel overwhelmed; however, our graduating seniors have frequently
mentioned that the inclusion of these agile projects is one of their most valuable educational experi-
ences.

Studies have indicated that increasing the number of complex software development projects will re-
sult in broader development of professional skills. A related study found that 97% of users use mo-
bile or desktop devices (Statcounter Global Stats, 2019), so that the researchers recommend complex
software development experiences in both desktop and app development. Recommendations for
further study include expansion to online courses and implementation in larger classes. The research-
ers have now tested the proposed solution in class sizes up to 25 students, online courses, independ-
ent studies, and creative works project with similar results. This experience, and the development of
such a flexible, yet stable solution, has resulted in a change to our instruction which now commonly
includes both agile and active learning in many courses.

Using Design-Based Research

50

REFERENCES
Adkins, J., & Tu, C. (2021). Online teaching effectiveness: A case study of online 4-week classes in a graduate

information systems program. Information Systems Education Journal, 19(3), 31-37.
https://files.eric.ed.gov/fulltext/EJ1301232.pdf

Agile Alliance. (n.d. -a..). Agile glossary. https://www.agilealliance.org/agile101/agile-glossary/

Agile Alliance. (n.d. -b). What is Agile?. https://www.agilealliance.org/agile101/

Alperowitz, L., Dzvonyar, D., & Bruegge, B. (2016). Metrics in Agile project courses. Proceedings of the 38th Inter-
national Conference on Software Engineering Companion. https://doi.org/10.1145/2889160.2889183

Armstrong, M., Dopp, C., & Welsh, J. (2018). Design-based research. In R. Kimmons (Ed.), The students’ guide to
learning design and research. EdTech Books. https://edtechbooks.org/studentguide/design-based_research

Bakke, C. (2013). Perceptions of professional and educational skills learning opportunities made available through K-12 robotics
programming [Ph.D. thesis, Capella University]. https://www.learntechlib.org/p/120073/

Barab, S. A., Thomas, M. K., Dodge, T., Squire, K., & Newell, M. (2004). Critical design ethnography: Design-
ing for change. Anthropology Education Quarterly, 35(2), 254–268. https://doi.org/10.1525/aeq.2004.35.2.254

Bishop, J. L., & Verleger, M. A. (2013). The flipped classroom: A survey of the research. Paper presented at the 120th
American Society for Engineering Education Annual Conference and Exposition, 30, 1-18.
https://doi.org/10.18260/1-2--22585

Boddy, C. R. (2016). Sample size for qualitative research. Qualitative Market Research, 19(4), 426-432.
https://doi.org/10.1108/QMR-06-2016-0053

BU Center for Teaching and Learning (n.d.). Experiential Learning. Boston University.
https://www.bu.edu/ctl/guides/experiential-learning/

Brown, G. T. L., Peterson, E. R., & Yao, E. S. (2016). Student conceptions of feedback: Impact on self-regula-
tion, self-efficacy, and academic achievement. British Journal of Educational Psychology, 86(4), 606-629.
https://doi.org/10.1111/bjep.12126

Bureau of Labor Statistics. (2018, April 13). Occupational outlook handbook. https://www.bls.gov/ooh/computer-
and-information-technology/software-developers.htm

Carless, D., & Boud, D. (2018). The development of student feedback literacy: Enabling uptake of feedback.
Assessment & Evaluation in Higher Education, 43(8), 1315–1325.
https://doi.org/10.1080/02602938.2018.1463354

California Project Management Office. (2017, September 22). 3.8.1 Agile Tools and Techniques. California Depart-
ment of Technology, State of California. https://projectresources.cdt.ca.gov/agile/agile-tools-and-tech-
niques/

Chan, P. E., Graham-Day, K. J., Ressa, V. A., Peters, M. T., & Konrad. M. (2014). Beyond involvement: Promot-
ing student ownership of learning in classrooms. Intervention in School and Clinic, 50(2), 105-113.
https://doi.org/10.1177/1053451214536039

Collins, A., Joseph, D., & Bielaczyc, K. (2004). Design research: Theoretical and methodological issues. Journal
of the Learning Sciences, 13(1), 15-42. https://doi.org/10.1207/s15327809jls1301_2

Coorey, J. (2016). Active learning methods and technology: Strategies for design education. International Journal
of Art & Design Education, 35(3), 337–347. https://doi.org/10.1111/jade.12112

Corritore, C. L., & Love, B. (2020). Redesigning an introductory programming course to facilitate effective stu-
dent learning: A case study. Journal of Information Technology Education: Innovations in Practice, 19, 91-135.
https://doi.org/10.28945/4618

Crouch, M, & McKenzie, H. (2006) The logic of small samples in interview-based qualitative research. Social
Science Information, 45(4), 483-499. https://doi.org/10.1177/0539018406069584

Dewey, J. (1966). Democracy and education: an introduction to the philosophy of education. The Free Press.

https://files.eric.ed.gov/fulltext/EJ1301232.pdf
https://www.agilealliance.org/agile101/agile-glossary/
https://www.agilealliance.org/agile101/
https://doi.org/10.1145/2889160.2889183
https://edtechbooks.org/studentguide/design-based_research
https://www.learntechlib.org/p/120073/
https://doi.org/10.1525/aeq.2004.35.2.254
https://doi.org/10.18260/1-2--22585
https://doi.org/10.1108/QMR-06-2016-0053
https://www.bu.edu/ctl/guides/experiential-learning/
https://doi.org/10.1111/bjep.12126
https://www.bls.gov/ooh/computer-and-information-technology/software-developers.htm
https://www.bls.gov/ooh/computer-and-information-technology/software-developers.htm
https://doi.org/10.1080/02602938.2018.1463354
https://projectresources.cdt.ca.gov/agile/agile-tools-and-techniques/
https://projectresources.cdt.ca.gov/agile/agile-tools-and-techniques/
https://doi.org/10.1177/1053451214536039
https://doi.org/10.1207/s15327809jls1301_2
https://doi.org/10.1111/jade.12112
https://doi.org/10.28945/4618
https://doi.org/10.1177/0539018406069584

Bakke & Sakai

51

Design-Based Research Collective. (2003). Design-based research: An emerging paradigm for educational in-
quiry. Educational Researcher, 32(1), 5-8. https://doi.org/10.3102/0013189X032001005

Digital.ai. (2020). 15th annual state of agile report. https://stateofagile.com/#ufh-i-615706098-14th-annual-state-
of-agile-report/7027494

Dinis-Carvalho, J., Ferreira, A. R., Barbosa, C. S., Lopes, C., Macedo, H., & Tereso, P. (2018). Effectiveness of
SCRUM in Project-Based Learning: Students View. Proceedings of the Regional Helix’18 Conference – Interna-
tional Conference on Innovation, Engineering and Entrepreneurship, Guimarães, Portugal on June 27–29, 2018
https://doi.org/10.1007/978-3-319-91334-6_154

Duffany, J. (2015). Engineering education facing the grand challenges, What are we doing? Paper presented at the 13th
LACCEI Annual International Conference. https://doi.org/10.18687/LACCEI2015.1.1.246

Eddy, S. L., & Hogan, K. A. (2014). Getting under the hood: How and for whom does increasing course struc-
ture work? CBE—Life Sciences Education, 13(3), 453–468. https://doi.org/10.1187/cbe.14-03-0050

European Commission. (2020, October 21). Communication to the Commission. Open Source Software Strategy 2020-
2023: Think Open. https://ec.europa.eu/info/sites/default/files/en_ec_open_source_strategy_2020-
2023.pdf

Figueiredo, J., & García-Peñalvo, F. J. (2019, October). Teaching and learning strategies of programming for
university courses. Proceedings of the 7th International Conference on Technological Ecosystems for Enhancing Multicul-
turality (pp. 1020–1027). León, Spain: ACM. https://doi.org/10.1145/3362789.3362926

Freeman, S., Eddy, S., McDonough, M., Smith, M., Okoroafor, N., Jordt, H., & Wenderoth, M. (2014). Active
learning increases student performance in science, engineering, and mathematics. Proceedings of the National
Academy of Sciences, 111(23), 8410-8415. National Academy of Sciences.
https://doi.org/10.1073/pnas.1319030111

Fronza, I., Corral, L., & Pahl, C. (2020). End-user software development: Effectiveness of a software engineer-
ing-centric instructional strategy. Journal of Information Technology Education: Research, 19, 367-393.
https://doi.org/10.28945/4580

Gama, K., Alencar Goncalves, B., & Alessio, P. (2018). Hackathons in the formal learning process. Proceedings of
the 23rd Annual ACM Conference on Innovation and Technology in Computer Science Education (pp. 248–253).
https://doi.org/10.1145/3197091.3197138

Giorgdze, M., & Dgebuadze, M. (2017). Interactive teaching methods: Challenges and perspectives. IJAEDU-
International E-Journal of Advances in Education, 3(9), 544-548. https://doi.org/10.18768/ijaedu.370419

Gunyou, J. (2015) I flipped my classroom: One teacher’s quest to remain relevant. Journal of Public Affairs Educa-
tion, 21(1), 13-24. https://doi.org/10.1080/15236803.2015.12001813

Graus, M., van de Broek, A., Hennissen, P., & Schils, T. (2022). Disentangling aspects of teacher identity learn-
ing from reflective blogs: The development of a category system. Teaching and Teacher Education, 111,
103624. https://doi.org/10.1016/j.tate.2021.103624

Haagen-Schützenhöfer, C., & Hopf, M. (2020). Design-based research as a model for systematic curriculum
development: The example of a curriculum for introductory optics. Physical Review Physics Education Research,
16(2). https://doi.org/10.1103/physrevphyseducres.16.020152

Hawks, S.J. (2014). The flipped classroom: Now or never? Education News. https://www.seman-
ticscholar.org/paper/The-Flipped-Classroom-%3A-Now-or-Never-EDUCATION-NEWS-
Hawks/1ccc20a540c78cf9f89c440b29958f550b7fdf4b

Herawati, S., Negara, Y. D. P., Febriansyah, H. F., & Fatah, D. A. (2021). Application of the waterfall method on
a web-based job training management information system at Trunojoyo University Madura. E3S Web of
Conferences, 328, Article 04026. https://doi.org/10.1051/e3sconf/202132804026

Jazayeri, M. (2015) Combining mastery learning with project-based learning in a first programming course: An
experience report. Proceedings of the IEEE/ACM 37th IEEE International Conference on Software Engineering
(ICSE), pp. 315–318. https://doi.org/10.1109/ICSE.2015.163

https://doi.org/10.3102/0013189X032001005
https://stateofagile.com/#ufh-i-615706098-14th-annual-state-of-agile-report/7027494
https://stateofagile.com/#ufh-i-615706098-14th-annual-state-of-agile-report/7027494
https://doi.org/10.1007/978-3-319-91334-6_154
https://doi.org/10.18687/LACCEI2015.1.1.246
https://doi.org/10.1187/cbe.14-03-0050
https://ec.europa.eu/info/sites/default/files/en_ec_open_source_strategy_2020-2023.pdf
https://ec.europa.eu/info/sites/default/files/en_ec_open_source_strategy_2020-2023.pdf
https://doi.org/10.1145/3362789.3362926
https://doi.org/10.1073/pnas.1319030111
https://doi.org/10.28945/4580
https://doi.org/10.1145/3197091.3197138
https://doi.org/10.18768/ijaedu.370419
https://doi.org/10.1080/15236803.2015.12001813
https://doi.org/10.1016/j.tate.2021.103624
https://doi.org/10.1103/physrevphyseducres.16.020152
https://www.semanticscholar.org/paper/The-Flipped-Classroom-%3A-Now-or-Never-EDUCATION-NEWS-Hawks/1ccc20a540c78cf9f89c440b29958f550b7fdf4b
https://www.semanticscholar.org/paper/The-Flipped-Classroom-%3A-Now-or-Never-EDUCATION-NEWS-Hawks/1ccc20a540c78cf9f89c440b29958f550b7fdf4b
https://www.semanticscholar.org/paper/The-Flipped-Classroom-%3A-Now-or-Never-EDUCATION-NEWS-Hawks/1ccc20a540c78cf9f89c440b29958f550b7fdf4b
https://doi.org/10.1051/e3sconf/202132804026
https://doi.org/10.1109/ICSE.2015.163

Using Design-Based Research

52

Johansson, C., Dittrich, Y., & Juustila, A. (1999). Software engineering across boundaries: Student project in
distributed collaboration. IEEE Transactions on Professional Communication, 42(4). 286-296.
https://doi.org/10.1109/47.807967 .

Kanbanize. (n.d.). What is Kanban? Explained for beginners. https://kanbanize.com/kanban-resources/getting-
started/what-is-kanban

Klinger, M, Swaby, M., & Walbridge, E. (2022). Flipped classrooms. Derek Bok Center for Teaching and Learning.
Harvard University. https://bokcenter.harvard.edu/flipped-classrooms

Lemos, A. R., Sandars, J. E., Alves, P., & Costa, M. J. (2014). The evaluation of student-centeredness of teach-
ing and learning: A new mixed-methods approach. International Journal of Medical Education, 5, 157–164.
https://doi.org/10.5116/ijme.53cb.8f87

LucidChart. (2017). The pros and cons of waterfall methodology. https://www.lucidchart.com/blog/pros-and-cons-
of-waterfall-methodology

Magana, A., Seah, Y., & Thomas, P. (2018). Fostering cooperative learning with Scrum in a semi-capstone sys-
tems analysis and design course. Journal of Information Systems Education, 29(2), 75–92. https://jise.org/Vol-
ume29/n2/JISEv29n2p75.pdf

Mahnic, V. (2012). A capstone course on agile software development using Scrum. IEEE Transactions on Educa-
tion, 55(1), 99–106. https://doi.org/10.1109/te.2011.2142311

Mamoli, S., & Mole, D. (2014). Self-selecting teams part 1 - Why you should try self-selection. Methods & Tools.
http://www.methodsandtools.com/archive/selfselectingteams.php

Mamoli, S., & Mole, D. (2016). Creating great teams. How Self-Selection Lets People Excel. Agile Alliance.
https://www.agilealliance.org/resources/experience-reports/creating-how-self-selection-lets-people-excel/

Mandonca, C. (2016, March 3). About self-organizing teams. Scrum.org. https://www.scrum.org/re-
sources/blog/about-self-organizing-teams

Marques, M., Ochoa, S. F., Bastarrica, M. C., & Gutierrez, F. J. (2018) Enhancing the student learning experi-
ence in software engineering project courses. IEEE Transactions on Education, 61(1), 63–73.
https://doi.org/10.1109/TE.2017.2742989

Maxim, B., Acharya, S., Brunvand, S., & Kessentini, M. (2017). WIP: Introducing Active Learning in a Software
Engineering Course. American Society for Engineering Education, ASEE. Paper #17715.
https://peer.asee.org/wip-introducing-active-learning-in-a-software-engineering-course.pdf

McConnell, S. (2004). Code complete (2nd ed.). Microsoft Press, USA.

Mckenney, S., & Reeves, T. (2013). Systematic review of design-based research progress Is a little knowledge a
dangerous thing? Educational Researcher, 42, 97-100. https://doi.org/10.3102/0013189X12463781

Md Rejab, M., Noble, J., & Marshall, S. (2019). Agile self-selecting teams foster expertise coordination. Interdisci-
plinary Journal of Information, Knowledge, and Management, 14, 99-117. https://doi.org/10.28945/4280

Mendo-Lázaro, S., León-del-Barco, B., Felipe-Castaño, E., Polo-del-Río, M.-I., & Iglesias-Gallego, D. (2018).
Cooperative team learning and the development of social skills in higher education: The variables in-
volved. Frontiers in Psychology, 9. https://doi.org/10.3389/fpsyg.2018.01536

National Science Foundation. (May 12, 2014). Enough with the lecturing [News Release 14-064].
https://www.nsf.gov/news/news_summ.jsp?cntn_id=131403

National Institute for Excellence in Teaching. (2021) Learning acceleration resources: Fostering Student Ownership
through Thinking and Problem-Solving. https://www.niet.org/assets/Resources/student-ownership-thinking-
problem-solving.pdf

9th Global Project Management Survey. (2017). Success Rates Rise: Transforming the high cost of low performance.
PMI’s Pulse of the Profession. https://www.pmi.org/-/media/pmi/documents/public/pdf/learn-
ing/thought-leadership/pulse/pulse-of-the-profession-2017.pdf

Parsons, D., & MacCallum, K. (Eds.). (2019). Agile and lean concepts for teaching and learning: Bringing methodologies
from industry to the classroom. Springer. https://doi.org/10.1007/978-981-13-2751-3

https://doi.org/10.1109/47.807967
https://kanbanize.com/kanban-resources/getting-started/what-is-kanban
https://kanbanize.com/kanban-resources/getting-started/what-is-kanban
https://bokcenter.harvard.edu/flipped-classrooms
https://doi.org/10.5116/ijme.53cb.8f87
https://www.lucidchart.com/blog/pros-and-cons-of-waterfall-methodology
https://www.lucidchart.com/blog/pros-and-cons-of-waterfall-methodology
https://jise.org/Volume29/n2/JISEv29n2p75.pdf
https://jise.org/Volume29/n2/JISEv29n2p75.pdf
https://doi.org/10.1109/te.2011.2142311
http://www.methodsandtools.com/archive/selfselectingteams.php
https://www.agilealliance.org/resources/experience-reports/creating-how-self-selection-lets-people-excel/
https://www.scrum.org/resources/blog/about-self-organizing-teams
https://www.scrum.org/resources/blog/about-self-organizing-teams
https://doi.org/10.1109/TE.2017.2742989
https://peer.asee.org/wip-introducing-active-learning-in-a-software-engineering-course.pdf
https://doi.org/10.3102/0013189X12463781
https://doi.org/10.28945/4280
https://doi.org/10.3389/fpsyg.2018.01536
https://www.nsf.gov/news/news_summ.jsp?cntn_id=131403
https://www.niet.org/assets/Resources/student-ownership-thinking-problem-solving.pdf
https://www.niet.org/assets/Resources/student-ownership-thinking-problem-solving.pdf
https://www.pmi.org/-/media/pmi/documents/public/pdf/learning/thought-leadership/pulse/pulse-of-the-profession-2017.pdf
https://www.pmi.org/-/media/pmi/documents/public/pdf/learning/thought-leadership/pulse/pulse-of-the-profession-2017.pdf
https://doi.org/10.1007/978-981-13-2751-3

Bakke & Sakai

53

Pattanaphanchai, J. (2019). An investigation of students’ learning achievement and perception using flipped
classroom in an introductory programming course: A case study of Thailand higher education. Journal of
University Teaching and Learning Practice, 16(5), Article 4. https://doi.org/10.53761/1.16.5.4

Peters, L. J., & Tripp, L. L. (1977). Comparing software design methodologies. Datamation, 23(11), 89-94.

Radigan, D. (2019). What is Kanban? Atlassian. https://www.atlassian.com/agile/kanban

Reichheld, F., & Markey, R. (2011). The ultimate question 2.0. How net promoter companies thrive in a customer-driven
world. Bain & Company. https://www.bain.com/insights/the-ultimate-question-2/

Rico, D.F., & Sayani, H.H. (2009). Use of agile methods in software engineering education. Proceedings of the
2009 Agile Conference, pp. 174-179. https://doi.org/10.1109/AGILE.2009.13

Rittel, H. W. J., & Webber, M. (1973). Dilemmas in a general theory of planning. Policy Sciences, 4,155-169.
https://doi.org/10.1007/BF01405730

ReQtest. (2019, November 20). What is waterfall methodology? Long live waterfall! https://reqtest.com/agile-
blog/what-is-waterfall-methodology/

Royce, W. W. (1970). Managing the development of large software systems. Proceedings of IEEE WESCON, 26,
328 - 388. https://www.semanticscholar.org/paper/Managing-the-development-of-large-software-sys-
tems%3A-Royce/4afe47371b891778c6cc6fa401bfc1673ea0d63f

Saadé, R. G., & Shah, S. (2016). Exploring an agile learning activity to teach agile project management. Proceed-
ings of Informing Science & IT Education Conference (InSITE) 2016, 95-101. https://doi.org/10.28945/3454

Sahin, Y. G., & Celikkan, U. (2020). Information technology asymmetry and gaps between higher education in-
stitutions and industry. Journal of Information Technology Education: Research, 19, 339-365.
https://doi.org/10.28945/4553

Sandelowski M. (1996). One is the liveliest number: The case orientation of qualitative research. Research in
Nursing & Health, 19(6), 525–529. https://doi.org/10.1002/(SICI)1098-240X(199612)19:6%3C525::AID-
NUR8%3E3.0.CO;2-Q

Schilling, S., & Klamma, R. (2010). The difficult bridge between university and industry: A case study in com-
puter science teaching. Assessment & Evaluation in Higher Education 35(4), 367-380.
https://doi.org/10.1080/02602930902795893

Scrum.org. (n.d.). What is scrum? https://www.scrum.org/resources/what-is-scrum

Scrum Guides. (2017). Scrumguides.org. https://scrumguides.org/scrum-guide.html

Sheffield, M. (2019, June 25). 10 Key Factors to Ensure Software Project Success. Seamgen.
https://www.seamgen.com/blog/key-factors-software-project-success/

Srivatanakul, T., & Annansingh, F. (2022). Incorporating active learning activities to the design and develop-
ment of an undergraduate software and web security course. Journal of Computers in Education 9, 25–50.
https://doi.org/10.1007/s40692-021-00194-9

Standish Group. (2015) CHAOS Report 2015. https://www.standishgroup.com/sample_research_files/CHA-
OSReport2015-Final.pdf

Standish Group. (2020). Chaos 2020: Beyond Infinity. https://www.standishgroup.com/news/49

Statcounter Global Stats. (2019). Desktop vs mobile vs tablet market share worldwide.
https://gs.statcounter.com/platform-market-share/desktop-mobile-tablet

Steen-Utheim, A. T., & Foldnes, N. (2018). A qualitative investigation of student engagement in a flipped class-
room. Teaching in Higher Education, 23(3), 307-324. https://doi.org/10.1080/13562517.2017.1379481

Talbert, R., & Mor-Avi, A. (2019). A space for learning: An analysis of research on active learning spaces. Heli-
yon, 5(12), e02967. https://doi.org/10.1016/j.heliyon.2019.e02967

Thomas, J. W. (2014). The Ultimate Question® and the Net Promoter® score. Decision Analyst. https://www.deci-
sionanalyst.com/whitepapers/ultimatequestion/

https://doi.org/10.53761/1.16.5.4
https://www.atlassian.com/agile/kanban
https://www.bain.com/insights/the-ultimate-question-2/
https://doi.org/10.1109/AGILE.2009.13
https://doi.org/10.1007/BF01405730
https://reqtest.com/agile-blog/what-is-waterfall-methodology/
https://reqtest.com/agile-blog/what-is-waterfall-methodology/
https://www.semanticscholar.org/paper/Managing-the-development-of-large-software-systems%3A-Royce/4afe47371b891778c6cc6fa401bfc1673ea0d63f
https://www.semanticscholar.org/paper/Managing-the-development-of-large-software-systems%3A-Royce/4afe47371b891778c6cc6fa401bfc1673ea0d63f
https://doi.org/10.28945/3454
https://doi.org/10.28945/4553
https://doi.org/10.1002/(SICI)1098-240X(199612)19:6%3C525::AID-NUR8%3E3.0.CO;2-Q
https://doi.org/10.1002/(SICI)1098-240X(199612)19:6%3C525::AID-NUR8%3E3.0.CO;2-Q
https://doi.org/10.1080/02602930902795893
https://www.scrum.org/resources/what-is-scrum
https://scrumguides.org/scrum-guide.html
https://www.seamgen.com/blog/key-factors-software-project-success/
https://doi.org/10.1007/s40692-021-00194-9
https://www.standishgroup.com/sample_research_files/CHAOSReport2015-Final.pdf
https://www.standishgroup.com/sample_research_files/CHAOSReport2015-Final.pdf
https://www.standishgroup.com/news/49
https://gs.statcounter.com/platform-market-share/desktop-mobile-tablet
https://doi.org/10.1080/13562517.2017.1379481
https://doi.org/10.1016/j.heliyon.2019.e02967
https://www.decisionanalyst.com/whitepapers/ultimatequestion/
https://www.decisionanalyst.com/whitepapers/ultimatequestion/

Using Design-Based Research

54

Viechnicki, P., & Keikar, M. (2017, May 5). Agile by the numbers: A data analysis of Agile development in the US federal
government. Deloitte. https://www2.deloitte.com/us/en/insights/industry/public-sector/agile-in-govern-
ment-by-the-numbers.html

Weekly tip: Ownership of learning. (2019, Jan 25). Faculty Insider. Washington State University.
https://li.wsu.edu/2019/01/25/ownership-of-learning/

Wong, S. W. L., Miao, H., Cheng, R. W., & Yip, M. C. W. (2017). Graphic novel comprehension among learners
with differential cognitive styles and reading abilities. Reading & Writing Quarterly, 33(5), 412-427.
https://doi.org/10.1080/10573569.2016.1216343

Zhang, X., & Dorn, B. (2012). Accelerating software development through agile practices-A case study of a
small-scale, time-intensive web development project at a college-level IT competition. Journal of Information
Technology Education: Innovations in Practice, 11, 25-37. https://doi.org/10.28945/1545 .

https://www2.deloitte.com/us/en/insights/industry/public-sector/agile-in-government-by-the-numbers.html
https://www2.deloitte.com/us/en/insights/industry/public-sector/agile-in-government-by-the-numbers.html
https://li.wsu.edu/2019/01/25/ownership-of-learning/
https://doi.org/10.1080/10573569.2016.1216343
https://doi.org/10.28945/1545

Bakke & Sakai

55

APPENDICES

APPENDIX A: STUDENT FEEDBACK
Student Survey

• Question: As an instructor, what can I do to structure the student-to-student learning, so it is
more beneficial?

• Question: Do you have suggestions or ideas for changing or improving assignments in this
course? Please explain.

• Question: Select all that apply to your learning in this class: [I learned a lot in this class; I learned
a few things in this class that I did not already know; I did not learn anything new in this class]

• Question: I would recommend this course to other students?

APPENDIX B: PROFESSIONAL TOOLS
Professional Tools

Project need Software examples

Kanban team task board Trello, JIRA, Monday.com

Shared code repository in the cloud Github, BitBucket

Communication Slack, Discord

Weekly meetings Zoom, Messenger, Hangouts

Facilitator meetings & report Report template, zoom, online team documents

APPENDIX C: PROJECT OVERVIEW
Project Overview

 Pilot Design DBR Design

Teams Instructor selected Team selection based on individual project topic

Project topic Student selected, no
list provided

A course focuses on one of the following: app de-
velopment, desktop development, website develop-
ment.

Topic preferences are selected by each student
from a provided list. Study teams of 3 – 4 are de-
termined based on topic selection.

Study groups determine individual projects that
cannot overlap one another.

Example: Educational Escape Rooms. Group se-
lection: History.

Individual selections: Music, Religion, Rome, Agri-
culture.

Using Design-Based Research

56

Agile terminology
and practices

Active learning, in
class

Study groups meetings are guided through all-class
discussions that guide software development to-
ward prototype through a pre-determined series of
goals.

Weekly report Group meeting sum-
mary

Individual project pro-
gress, this week’s
goals, project sample,
problems or fixes,
goals for next week,
sources

Group meeting summary

Individual project progress: three questions, arti-
fact, challenge and solution, top source.

Weekly study
group

The time and topics to
be covered are deter-
mined by the group

Agile research and implementation are embedded
in weekly discussions.

Project presenta-
tions

Two, midterm and last
week of class. Work-
ing prototype required
for the last presenta-
tion

Four checkpoints. Requirements for each check-
point are divided into weekly study group discus-
sions.

Example of Weekly Report Requirements

Team
Weekly
Report

Discussion
Outline of
Facilitotor
Meeting

TEAM: Agile communication artifacts
Kanban: team backlog
Slack: team communication

INDIVIDUAL: Work Journal
Journal of work: date, time, work notes
Three artifacts of progress and/or challenges

INDIVIDUAL: Backlog
BacklogCompleted goals
Upcoming goals

INDIVIDUAL: Resources
Sources used this week
Brief overview of value of each source to project
5-star rating for each source, with rating explanation

Bakke & Sakai

57

Example of Presentation Deliverables
Presentations Software Development Goals

1: Preparation, Design Instructions (1), UI designs (2), points(3), leaderboard (4)

2: Three Screens Start screen (1), instructions (2), win screen(3), music (4)

3: Movement & Inter-
actions

User movement and interaction with an object (1-2)

Solving 2 puzzles activates win screen (3-4)

4: Final Prototype Working score (1), Solving 3 puzzles (2) -> Win Screen and Leader-
board (3).

Check: students play other student’s games

APPENDIX D: SOFTWARE TOPIC EXAMPLES
Examples of prototyped apps:

• Escape Rooms
• IoT Home Security Systems
• Smart Home devices
• “Photoshop” filters
• Bus routing system
• Welcome to our Campus
• Social Connections
• Grocery Shopping
• Speaking – disability

Active Learning: Representative Discussion

WEEKLY TEAM MEETING REQUIREMENTS

In your weekly small group meeting, discuss the following. Add both questions and
answers to your group meeting notes. Also include the date, time, and group partici-
pants.

Group meeting: Tuesday, 4:00 pm. We met using zoom.

WEEKLY MEETING GOAL #1: Determine colors and fonts

1. Determine a color palette that will be used by all group members. Label back-
ground color(s), state main font color(s), accent color(s), and colors that will be
used for navigation. Each color is to be labeled with its hexadecimal number.

Using Design-Based Research

58

We will use white for all words / fonts.

2. Determine the font family that will be used by all group members.

{ Helvetica, Calibri, Arial, Verdana }

WEEKLY MEETING GOAL #2: Develop common UI design

3. Design and explain how the team logo will be common to all projects.

Our group chose the history of the ancient Roman Em-
pire. The Logo is a column. The logo will be dark
green (#9DAAA2) and light green (#BDD1C5). It will
be the home button in the upper right corner of all pro-
jects.

4. Determine the basic layout for the game play screen, this layout will be used
for all team members. Determine at least 5 common features such as score,
assets, pause/resume, save, home, exit, help, settings…. Hand sketch (or use
a drawing program) the layout everyone will incorporate.

Bakke & Sakai

59

WEEKLY MEETING GOAL #3: Each person’s requirements

Determine an overview for your game. All team games must be on the common, se-
lected theme. Explain gameplay and score. How is your game unique from other
team members?

Jackson: My game will be based on Sparta. Players will compete in events such as
running, javelin throwing, obstacle courses, and chariot races. Players can play on
the computer or with friends online. Points are earned for answering trivia questions,
based on response speed. Incorrect answers cost points.

Lillinette: Temple is a game where players build temples and homes. Everyone starts
with basic tools and supplies. To get more supplies or decorate the players must an-
swer questions about city-states and ancient Roman towns. If they want to build more,
they have to also buy land. The game does not have a time limit and there are no ag-
gressors, but if the questions are answered incorrectly, they lose supplies.

Eli: Players search for ancient coins in the catacombs. They might encounter crea-
tures, centaurs, or other aggressors. The catacombs are a maze and they cannot see
the whole thing, so they might get lost. They must complete the game within the time
limit and without losing to a creature. When they encounter something dangerous,
they have to answer questions about ancient Rome. Wrong answers lose time, cor-
rect answers add time.

MEETING GOAL #4: Keep a summary of the team meeting (submit for discussion)

List the time/day of your study-team meeting
List notes for everyone who attended.
Summarize teamwork, communication, and challenges addressed during the meeting.

{this show the information in goal 1, 2, 3 and may contain other meeting notes}

Using Design-Based Research

60

AUTHORS
Dr. Christine Bakke is a Software Engineering and Information Tech-
nology instructor at the University of Minnesota, Crookston. Her Infor-
mation Technology PhD degree specialized in educational robotics; while
her undergraduate was in Computer Science, programming, and mathe-
matics. Her professional experience includes 18 years as an IT profes-
sional with specializations in networks, cybersecurity, database, and pro-
gramming. Her research focuses on active learning techniques that com-
bine academic and professional best practices into agile active learning ex-
periences. Recent projects include Scrum-like development of chatbots,
speech assistant software, and custom IoT devices with software.

Rena Sakai is an honors student at the University of Minnesota, Crook-
ston. She is working to complete her bachelor’s degree in Software Engi-
neering, with minors in Information Technology Management and Cyber-
security. Her research interests center around new ways to learn, innova-
tive and immersive methods, and project-based instruction. Her previous
creative works studies include Flutter programming, Student Ownership
of Learning, and instructional design founded in active learning strate-
gies.

	Using Design-Based Research to Layer Career-Like Experiences onto Software Development Courses
	Abstract
	Introduction
	Literature Review
	Software Development Methodologies
	Waterfall
	Agile Philosophy
	Scrum Framework
	Kanban

	Academic Research Methodologies
	Self-selection
	Design-Based Research (DBR)
	Active Learning
	Student Ownership of Learning (SOL)

	Methodology
	Background of the Problem
	Project Goals

	DBR Findings
	Pilot Intervention
	DBR Iteration One: Fall 2018
	Addressing Research Questions
	Methodology Review
	Iteration Two: Spring and Fall 2019
	Combined feedback: SE 2200 & SE 2300, representative student comments
	Active learning examples: Introduction to Software Engineering

	Addressing Research Questions
	Intro to Software Engineering: SE 2200, representative student comments
	Software Construction: SE 2300, representative student comments
	Instructor observations:

	Methodology Review
	Iteration Three: Spring 2020
	Addressing Research Questions
	Methodology Review
	Iteration Four: Spring 2021
	Addressing Research Questions

	Discussion of Findings
	Addressing Research Questions
	Four Question Survey

	Conclusions and Future Work
	References
	Appendices
	Appendix A: Student Feedback
	Appendix B: Professional Tools
	Appendix C: Project Overview
	Appendix D: Software Topic Examples

	Authors

