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ABSTRACT 
Aim/Purpose The key objective of this research is to examine whether fix-and-play 

educational games improve students' performance in learning programming 
languages.  We also quantified the flow experiences of the students and 
analyzed how the flow contributes to their academic performances. 

Background Traditionally, learning the first computer programming language is considered 
challenging, In this study, we propose the fix-and-play gaming approach that 
utilizes the following three facts to alleviate certain difficulties associated with 
learning programming: 1. digital games are computer programs, 2. young 
students are fond of playing digital games, and 3. students are interested in 
creating their own games. 

Methodology A simple casual game Shoot2Learn was created for learning the fundamentals of 
branching. A number of errors were intentionally implanted in the game at 
different levels, and the students were challenged to fix the bugs before 
continuing the game. During the play, the program keeps records of the 
student’s academic progress and the time logs at different stages to measure the 
flow experience of the students. The proposed approach was systematically 
evaluated using a quasi-experimental design in real classroom settings in two 
countries, Sri Lanka, and USA. 

Contribution The results derived from this research provide empirical evidence that the fix-
and-play educational games ease some challenges in learning programming and 
motivate the students to play and learn. 
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Findings The results show that the first-year programming students who play the fix-and-
play game gain statistically significant improvement in their academic 
performance. However, the result fails to suggest a significant positive 
correlation between the flow experience and academic performance. 

Recommendations  
for Practitioners 

Empowering the students to fix the bugs in the educational games they play will 
motivate them to stay in the game and learn continuously. However, we have to 
make sure that the types and timing of bugs do not hinder the flow experience 
of the players, 

Recommendations  
for Researchers  

Students normally play industry-level high-quality games. Experience and 
interest in game-playing differ significantly between students. Gender difference 
also plays an important role in selecting game genres. We need to identify how 
to address these issues when resources are not sufficient to provide an 
individualized gaming experience. 

Impact on Society Programming is an essential skill for computer science students. The outcome 
of this research shows that the proposed approach helps to reduce the 
disenchantment associated with learning the first programming language. 

Future Research Further investigation is necessary to verify whether the AI techniques such as 
user modeling can be used in educational games to reduce the effects of  uncer-
tainty associated with the variations in students' gaming skills and other factors. 

Keywords CS1, novice programming, game-based learning; gamification, serious games, 
educational games for learning programming 

 

INTRODUCTION 
The United States Bureau of  Labor Statistics (2022) shows that the demand for software developers 
is projected to grow 25% from 2021 to 2031 – this is much faster than the average for all occupa-
tions. Obviously, this fact could extrinsically motivate students to pursue a major in computer sci-
ence. Based on the 2021 Taulbee survey, CS enrollment grows at all degree levels, with increased gen-
der diversity, and the average undergraduate enrollment per U. S. CS department has increased to 
more than five times its level in fall 2006 (Zweben & Bizot, 2022). Nevertheless, there is a major ob-
stacle that needs to be addressed. One of  the key skills required for CS majors is programming; how-
ever, learning the first programming language is considered challenging. Beginning students are easily 
frustrated and become bored (Koulouri et al., 2015). Failure and dropout rates are traditionally high 
in CS1 courses (Bennedsen & Caspersen, 2007; Smith, 2022; Yadin, 2011). Even the students who 
were initially enthusiastic about learning programming with the hope of  creating cool computer 
games and innovative mobile applications, later complained that learning programming was tiresome 
and hard, and demotivating (Beaubouef  & Mason, 2005).  

Several studies have been conducted to investigate the difficulties associated with learning to pro-
gram and suggested various techniques and tools that could alleviate the problem. Nevertheless, 
learning programming is still considered challenging (Smith, 2022). In this research, we propose a 
novel approach to alleviate the disenchantment associated with diminishing motivation using fix-and-
play educational games. These games will appropriately challenge novice programming students to fix 
the errors in the games they play and will continuously engage them in playing and learning.  

Using digital games for learning programming is not a new idea (Johnson et al., 2016). Research 
shows that the game-based learning approach helps to nurture CS1 students’ intrinsic motivation 
(Sharmin, 2022). There are many coding games available on the web (e.g. [Robocode, n.d.]). Similar 
to visual programming languages like Alice and Scratch (Turbak et al., 2014), they allow users to build 
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graphical animations using block or text-based programming snippets. Section 2.1.6 discusses three 
types of  Game-Based Learning (GBL) approaches for learning programming; educational games, 
game design environments, and gamification tools. In this study, we combine both game-playing and 
game-designing features in a single tool. Young students are not only interested in playing digital 
games, but most of  them are also excited about creating their own games. Since the digital games 
themselves are computer programs, we propose an approach where both interests are seamlessly in-
tegrated into creating scaffolded fix-and-play educational games. 

The key objective of  this research is to examine whether fix-and-play educational games improve stu-
dents' performance in learning programming languages. We created a simple fix-and-play shooting 
game Shoot2Learn to evaluate the effectiveness of  the proposed approach. A pilot study was con-
ducted earlier, and the results were published (Mohanarajah, 2018). Recently, we conducted a quasi-
experimental study in real classroom settings at two universities, one each from the countries USA 
(say US-U) and Sri Lanka (say SL-U). The next section provides a brief  overview of  different catego-
ries of  software tools for learning programming reported in the mainstream literature. It also outlines 
the previous research related to flow experience and motivation pertinent to educational games. The 
rest of  this paper discusses the research objectives, the proposed approach, evaluation methodolo-
gies, and outlines and analyses the results, and includes the future trajectory of  this research.  

RELATED RESEARCH 
For nearly half  a century, numerous studies have attempted to explain the reasons for the challenges 
in learning the first computer programming language and proposed various solutions to alienate 
these challenges. The first book on this area “Psychology of  Programming” was published in the 
early seventies by Weinberg (1971). Later in 1989, a book edited by Soloway and Spohrer (1989) doc-
umented a wide-ranging collection of  research activities on novice programmers’ learning challenges. 
An oft-cited systematic review by Robins et al. (2003) provides a detailed analysis of  the research re-
lated to various pedagogical approaches for teaching CS1 between 1970 and 2003. Another notable 
survey on teaching CS1 was published by Pears et al. (2007). Recently, Luxton-Reilly et al. (2018) pub-
lished a comprehensive overview that covers the introductory programming education research be-
tween 2004 and 2018. Nevertheless, while revisiting this topic, Robins (2019, p. 353) stated; “The field 
[teaching and learning CS1] has attracted considerable interest from researchers, teachers, practitioners, industry, and 
governments alike. There is now a significant body of  relevant literature, but many important questions remain open.” 
The next section focuses only on the studies related to the educational tools for learning introductory 
programming. 

CS1 TEACHING/LEARNING TOOLS 
Becker and Quille (2019) show that nearly 10% of  all the publications in ACMSIGCSE-TS proceed-
ings in the last 4 decades were about teaching tools for programming. Kelleher and Pausch (2005) 
provide a detailed taxonomy of  categorization of  nearly 200 broad range of  learning tools which are 
divided into two large groups: Teaching Systems (simplify-typing-code, alternative-to-typing-code, 
structured-languages, enable-to-track-execution, micro-worlds, social-learning, include-motivating-
factors, etc.) and Empowering Systems (simplified-language, interactive languages/environments, in-
cludes-entertainment, supports-other-education, etc.). Some high-level programming languages such 
as BASIC, Pascal, and COBOL were also included in this taxonomy. Pears et al. (2007) reviewed 
more than 60 learning tools and organized them into 3 broad categories: assessment, visualization, 
and programming tools. A 2017 follow-up review by Saito et al. (2017) compared nearly 40 games 
and visual programming environments. The next section outlines some key categories of  visualiza-
tion and programming tools for learning. These categories have no strict boundaries, and some may 
overlap. 
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Intelligent tutoring systems / Interactive learning environments 
Anderson’s and Reiser’s (1985) study found that students who received private tutoring learned LISP 
nearly four times faster than students who did not learn from private tutors. Robins (2019) postulates 
that this observation is true for all programming languages. However, providing adequate one-on-one 
tutoring for all students is impractical in a typical educational institution. In this context, intelligent 
tutoring systems (ITSs) can play a significant role- they will be cost-effective, and they can be used 
for learning at any time and any pace. ITSs include a variety of  AI techniques to model students to 
provide adaptive course sequencing and individualized feedback. Crow et al. (2018) provide a system-
atic review of  fourteen ITSs for programming- one of  them is also included in the seven examples 
given in Luxton-Reilly et al. (2018). 

Another type of  Computer-Based Learning (CBL) system is Interactive Learning Environment 
(ILE). ILEs are ITSs without integrated AI features. They are usually designed based on behavioral 
learning theory using punish-and-reward strategies. Nearly nine examples of  ILEs are given in Lux-
ton-Reilly et al.’s survey (2018). 

Research shows that creating efficient ITS for programming is very challenging (Dadic, 2011). How-
ever, it can be speculated that, at the rate the technology advances, in near future, it may be possible 
to create ITSs that include not only student modeling, but also intelligent teaching units supported by 
machine (reinforcement) learning, software visualization features, and natural language interfaces.  
Robins (2019) expressed a similar optimism: “In an ideal world we would like to provide individual 
and personally designed tuition and support to every student. It may be that breakthroughs in intelli-
gent tutoring systems will one day achieve this ideal.” 

Program visualization (PV) / Algorithm animation (AA) 
Program visualization tools are designed to engage the students by visualizing the effects of  each line 
of  the code using graphics and animations (Fouh et al., 2012). This will help the student to formulate 
his own mental model of  how a program is being executed in a notional machine. The term “no-
tional machine” was coined by du Boulay et al. (1981) to denote the high-level abstraction of  the 
hardware and software features of  a computing agent, which includes, the compiler, OS, RAM, CPU, 
and I/O systems. This type of  mental model is required for a programmer to comprehend the struc-
ture and dynamics of  the underlying execution agent of  their program. Jeliot’s family of  tools is con-
sidered one of  the most-studied PV tools (Jeliot 3, n.d.). 

Algorithm animation tools are used to visualize data movements in complex algorithms and are gen-
erally used in CS2 courses. Comprehensive reviews of visualization tools are given in (Hundhausen et 
al., 2002; Price et al., 1993; Saito et al., 2017). A few past research indicated that PV alone is not suffi-
cient to support learning programming (Naps et al., 2003; Pears & Rogalli, 2011). 

Syntax-free, block-based, drag-and-drop microworlds 
Papert (1980) argues that the programming languages should be not only simple and entertaining for 
the students to learn (“low-floor”), but also powerful enough for the practitioners to build complex 
useful systems (“high-ceilings”). However, in general, popular programming languages have unusual 
syntax and complex semantics. One of  the challenges in learning programming is understanding the 
semantics of  different language constructs and their syntaxes. Without this comprehensive 
knowledge, devising and implementing a solution to a considerably complex problem will be chal-
lenging. Drag-and-Drop visual programming environments like Alice, Scratch, and App-Inventor 
(Turbak et al., 2014) are designed to address this difficulty- they allow a novice learner to develop 
problem-solving skills without being hindered by the complexities of  syntax and semantics of  the 
programming language. Students need not worry about the properties of  the underlying notional ma-
chine. Several studies show that these environments yield positive results with k-12, non-major, or 
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under-performing students (Meerbaum-Salant et al., 2013). A few research shows that these environ-
ments do not scale up or carry over: that is, the students still lack the skills to design algorithms for 
non-trivial problems (Franklin et al., 2020). 

Simplified or scaffolded languages 
ACM Curriculum 1978 (Austing et al., 1979) described CS1 as “the emphasis of the course is on the 
techniques of algorithm development and programming with style”, and further it stressed that “nei-
ther the esoteric features of a programming language nor other aspects of computers should interfere 
with that goal (p. 151)”. In general, universities adopt industry-level programming languages such as 
Java, C++, and Python in their CS1 courses (Farooq et al., 2014). These languages include many 
complex features that are valuable for professionals but annoying for novices. Educators try different 
methods to limit the complexity of these languages in order not to overwhelm the introductory stu-
dents. Many studies have attempted to address this issue by either (1) providing various forms of 
scaffolding to hide the undesired complexities of the language environments to reduce the cognitive 
load of the students, e.g. BlueJ (Kölling et al., 2003), or (2) designing simple mini languages for teach-
ing purposes only (Brusilovsky et al., 1997). Nearly hundreds of simplified or scaffolded languages 
are listed on Wikipedia (n.d.). Like Drag-and-drop environments, simplified languages are also easy to 
learn, but the skills learned do not easily transferable to serious programming tasks. 

Construct-and-review, immediate feedback systems 
This category of tools is designed based on the constructionist learning theory - it is essentially a con-
structivist learning theory based on Jean Piaget’s experiential learning ideas (Harel & Papert, 1991). In 
this approach, beginner learners are encouraged to write computer programs to construct or control 
some tangible and/or shareable artifacts. This process could intrinsically motivate the students to get 
engaged in learning the tool they are using (programming language) to create/control those artifacts. 
For example, students might be challenged to write code snippets to control a physical or simulated 
robot in a microworld [e.g., Karel the Robot (Pattis, 1981), Robot Virtual World (Liu et al., 2013)], or 
to create simple interactive digital games [e.g. Game2Learn framework (Barnes et al., 2008; 
Game2Learn, 2012)], or to design multimedia animations (Code.org, n.d.), etc. Similar to drag-and-
drop visual environments, these tools also provide instant visual feedback; that is, the students can 
see the impact of their code in the physical world or micro-world simulations immediately. Research 
shows inconsistent outcomes for the effectiveness of these approaches in learning programming 
(Major et al., 2012; McWhorter & O’Connor, 2009). 

Game-based learning systems (educational games, game design tools, and 
gamification) 
Several research projects have been reported in the CS education literature that focuses on educa-
tional games for learning programming (Barnes et al., 2007; Malliarakis et al., 2014; Shabalina et al., 
2008; Villareale et al., 2020). The working group for Game Development for Computer Science Edu-
cation (ITiCSE-2016) examined nearly 120 games related to CS education and found more than half  
of  the games focus on some aspect of  programming (Johnson et al., 2016). Many games challenge 
the students to write code to solve some problems to progress towards winning (Vahldick et al., 
2014). Miljanovic and Bradbury (2018) survey provides a comprehensive review of  nearly fifty game-
based environments for learning programming. In general, previous research and surveys related to 
Game-Based Learning (GBL) tools for learning programming did not distinguish between, educa-
tional games, game design tools, and gamification tools. 

Educational Games: Most educational games for learning programming were designed based on be-
havioral learning theory and utilize, a punish-or-award strategy, proactive supports, and various stim-
uli that were disposed of  during the play to engage students (CodeMonkey.org, n.d.). Whereas, some 
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strategic and role-playing games were designed based on cognitive learning theory and situated cogni-
tion, and they excite and challenge the learners to explore and discover any non-explicit knowledge 
systematically hidden in the games. Opportunities for trial-and-error type learning are usually built 
into the games (Barnes et al., 2007). 

Game Design/Creation Tools: Since digital games themselves are computer programs, the teaching 
tools based on game design are almost exclusive to the CS discipline (mainly for programming, algo-
rithm design, and software engineering). Many young CS students are interested in creating their own 
games. Several studies explored the effectiveness of  using game-designing environments for learning 
programming (Al-Bow et al., 2009; Code.org, n.d.). Many of  these tools are based on constructionist 
learning theory and provide scaffolded game development environments where students can design 
and code fun games (Kafai & Burke, 2015). Shabalina et al. (2017) discuss a slightly different ap-
proach in which educational games and game design are combined. In this approach, students do not 
develop regular games, but they design and code educational games for learning programming. 

Gamification: Gamification may not be associated with playing or creating any real game, but it is 
about incorporating game-like elements in the instruction strategy to motivate and engage students; 
examples include, challenges, points, rewards, control, immediate feedback, incremental levels, etc. To 
the best of  the author’s knowledge, there are not many pure gamification tools for teaching program-
ming. Shorn (2018) discusses a gamification approach to teaching programming. Some text-based 
drill-and-practice tools on the web-based on the idea of  “proglets” (Edmondson, 2009) may be in-
cluded in this category [for example, see CodeWrite (Denny et al., 2011)]. In section 2.1, we outlined 
various categories of  tools discussed in the CS Education research literature.  

WHY LEARNING PROGRAMMING IS CHALLENGING 
Based on past research (Becker & Quille, 2019; du Boulay et al., 1981; Kelleher & Pausch, 2005; Kou-
louri et al., 2015; Luxton-Reilly et al., 2018; Robins, 2019), we may conclude that learning program-
ming requires at least three basic skills (a) ability to understand the problem and then construct a 
step-by-step solution using an appropriate level of  abstraction (b) ability to understand the semantic 
structures of  a programming language and choose suitable structures to design a solution (c) ability 
to use the correct syntax to implement the design. Moreover, all of  these skills require a clear under-
standing of  the limitations and capabilities of  the underlying notional machine. Novices struggle to 
create the appropriate mental model of  the structure and dynamics of  the computer environment in 
which their solution will be implemented. The only close analogy a beginner student can think of  is a 
person performing certain tasks based on a sequence of  natural language instructions (like a recipe). 
This analogy is too shallow and may cause many misconceptions. For example, see the code segment 
in Figure 1. Novice programmers struggle to understand the flow of  this conditional statement when 
executed by a computing agent working in fetch-execute cycles. They simply expect that the grade 
will be ‘C’ after the code is executed. 

 
Figure 1: Example: A common misconception in branching 

What will be the grade after the following code segment is executed? 

int score = 75; 

if  (score > 60) 

      grade = ‘D’; 

else if  (score > 70) 

     grade = ‘C’; 
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In addition to the above-mentioned difficulties, the trial-and-error type of  learning approach will be 
very frustrating for beginners since identifying the errors and isolating their causes still require all 
three types of  skills discussed above.  

INTRINSIC MOTIVATION AND SELF-EFFICACY 
Self-efficacy refers to an individual’s belief  in their own competence to carry out a specific task 
(Bandura, 1997). High self-efficacy increases the student’s persistence at relevant tasks and helps 
them to be resilient and recover their motivation even after absolute failures. A student can be moti-
vated by internal or external means. Intrinsic motivation is associated with learning something for 
personal pleasure or interest (e.g. playing games or creating games for fun), whereas extrinsic motiva-
tion is derived from external factors such as promised job opportunities and/or high salary scales 
(Ryan & Deci, 2000). Research makes it clear that learning programming is challenging, and a learner 
needs high determination, dedication, and persistence. Students need to be intrinsically motivated to 
stay focused on learning. Self-efficacy plays a key role in keeping one’s intrinsic motivation stable. 

FLOW EXPERIENCE IN EDUCATIONAL GAMES 
In the context of  an educational game, Flow describes a state of  mind experienced by the students 
who are completely immersed or engaged in learning by playing the game (Csikszentmihályi, 2018). 
An optimal flow can be described as an intrinsically enjoyable experience, where students will be in-
tensively focused on their tasks, and nothing else seems to matter. As Kiili (2006) put it “the most 
important final result of  flow in educational gaming: Students undertake studying activities not nec-
essarily with the expectation of  some external future benefit, but simply because playing the game is 
enjoyable, a reward in itself ”. Research shows that the optimal flow experience has a positive impact 
on learning (ibid). 

As mentioned before, CS education researchers have been studying the difficulties of  learning pro-
gramming and suggested various remedies. However, in 2015, Robins stated, “After several decades of  
research on the core topic of  programming, ---, we still don’t have a consensus on the reasons why so many novice pro-
grammers fail to learn ---” (Robins, 2015, Editorial). Some recent studies also support Robins’ observa-
tion and suggest further investigation in this area is continuously required (Loksa et al., 2022; Smith, 
2022). Various studies show that designing games, as well as playing games, do help novices focus on 
learning programming (Sharmin, 2022). In this research, we propose an even better-enhanced tool 
that integrates both game-playing and game-designing challenges to help students to stay motivated 
by both types of  adventures. 

METHODOLOGY 
The key objective of  this research is to examine whether fix-and-play educational games could im-
prove students’ academic performances while learning their first programming languages. In particu-
lar, we investigate whether empowering the players to manipulate the underlying code of  an educa-
tional game will positively impact their academic performance. We also examine how the flow experi-
ence of  the students while playing educational games will contribute to their academic performances. 

As stated before, this research utilizes two noticeable facts: young students are fond of  playing digital 
games, and they are also interested in creating their own games. Since the digital games are them-
selves computer programs, we seamlessly mingled both excitements in one scaffolded educational 
game. We decided to use casual games in this study. Casual games are easy to learn and play and will 
not alienate girls from playing (Cote, 2020). A simple first-person shooting game called Shoot2Learn 
was created using swing and JavaFX. There are eight levels in the game, and it covers the basic syntax 
and semantics of  one-way, two-way, multi-way, and nested conditional branching statements (includ-
ing switch, and ternary operators). At the basic level, a plane will bomb a village periodically for a 
fixed number of  times, and a player on the ground could use a gun to shoot and destroy the bombs 
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in the air. The bullet supply is limited. At this level, the gun cannot be moved but can be rotated to 
the left or right. If  a bomb hits the gun, the gun will be destroyed. If  a certain number of  bombs 
reach the floor, the village will be destroyed, and the player lose the game.  

One of  the authors of  this paper has been teaching CS1 for more than 30 years. Based on his and 
other educators’ experiences (see below), eight (8) common syntax and semantic errors (java) related 
to branching were identified and systematically implanted in the game. Several studies examined the 
student’s misconceptions about introductory programming (Qian & Lehman, 2017). Recently, Chi-
odini et al. (2021) presented an inventory of  misconceptions in general programming and in specific 
programming languages such as java (the current list is available at https://progmiscon.org/). Alzah-
rani and Vahid (2021) surveyed over 47 publications related to CS1 education between 1985 and 2018 
and listed 166 common logical errors in novices’ programs, and among them, fourteen errors ac-
counted for branching. For example, while playing the game, a student would notice an apparent 
glitch in the game; pressing the Left arrow should rotate the Gun to the right- but instead, the Gun 
would turn to the left. At this point, the player will be challenged to fix the bug. To debug, they 
should first inspect the code, understand the logic, and then select the appropriate code to fix the bug 
(see Figures 2 & 3). The bugs and distractors are designed to address the cognitive skills up to the 
fifth level in Bloom’s taxonomy. Distracters may include code segments with common syntax errors 
in branching. Students will get appropriate feedback (see Figures 4 & 5). Students could choose to 
execute their choices, and if  the code compiles, they will get relevant visual feedback. Visual feedback 
helps them to check the effects of  their choices instantly and makes them feel like game program-
mers rather than test-takers. By fixing a bug, the player will get not only some academic points but 
also some more bullets. Moreover, the students can examine why their choices are wrong (or right), 
and they can also analyze the nature of  the bug and the misconceptions associated with that bug. The 
game program will keep track of  the academic as well as gaming performances of  the students. Stu-
dents will relate the academic performance score to their competence in fixing the bugs in the game. 

An average freshman can complete the Shoot2Learn game in 15-20 minutes. By empowering the stu-
dents to inspect the code and fix the game, the students will get some sense of  ownership of  the 
game they play. This feature will nurture their self-efficacy, and as a result, their intrinsic motivation 
will be increased. The inherent nature of  gaming fantasy combined with high self-efficacy will keep 
the students motivated in playing and learning even amidst failures. 

 
Figure 2: Shoot2Learn: Trial Game 

https://progmiscon.org/


Mohanarajah & Sritharan 

647 

 
Figure 3: Fix-and-Play: Gamers can debug the game they play 
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Figure 4: Text-based Feedbacks 

 

 
Figure 5: Flow graphs for the options 2, 3 & 4 in Figure-3 (option-1 will not compile) 

 

In past research, the flow experience and motivation of  the users of  the interactive systems are usu-
ally estimated using questionnaires (Csikszentmihályi, 2018). But in this study, flow experiences are 
quantified, and a metric for the degree of  flow experience (dfe) for a player is proposed as follows. 
The time logs will be recorded at sixteen (16) points while playing the game. This log file will be used 
to calculate the time taken to complete sixteen tasks (eight games and eight quizzes) for each student. 
Then the average time taken for each task by all the participants will be calculated. Next, for each 
participant, the Z-scores for each task will be calculated, and finally, the average of  all his/her |Z|-
scores of  all tasks will be calculated. The degree of  flow experience (dfe) for a particular player is de-
fined based on the following rules (1) The |z| values more than 2 will be approximated to 2 (2) |z| 
= 2 is considered as an outlier due to distraction or inattentiveness. (3) if  a participant has more than 
20% outliers, his/her degree-of-flow experience(dfe) is negligible (i.e. dfe=0). 3). Otherwise, the de-
gree-of-flow experience (dfe) of  a participant is defined as, dfe = 2 – avg (|z|)all-tasks. Therefore, dfe 
can take a value between 0 and 2 inclusively, where two represents high and zero represents negligible 
flow experiences. A high flow experience can yield peak performances (Csikszentmihályi, 2018). 

This research is designed based on the guidelines given for the Effectiveness-Research (type #5) in 
the Common Guidelines for Education Research and Development – a joint report published by the 
National Science Foundation (NSF) and the U.S. Department of  Education’s Institute of  Education 
Sciences (IES) (2013). The underlying pedagogic strategy in the fix-and-play game is built on behav-
ioral and constructionist learning theories (Ben-Ari, 2001; Kafai & Burke, 2015), and flow theory 
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(Csikszentmihályi, 2018). The amendable gaming environment will motivate the students to build 
their knowledge by actively engaging them in enjoyable creative endeavors. The challenges immersed 
in the game are exciting and achievable. The activities are neither too hard (reduce anxiety) nor too 
easy (reduce boredom). Students should be able to tackle the challenges with an appropriate level of  
help from the game itself  (Csikszentmihályi, 2018). Anyway, we also take note of  Nelson’s and Ko’s 
(2018) observation – focusing too much on general theories of  learning may inhibit our search for 
better designs in CS Education research. 

EVALUATION PROCEDURE, PARTICIPANTS &  INSTRUMENTS 
As mentioned in the introduction, subjective as well as objective evaluations were conducted in real 
classroom settings at two universities US-U and SL-U. There were forty-nine (49) students partici-
pated in the study, including a class of  nineteen (19) and thirty (30) students from the US-U and SL-
U, respectively. All the students were in the CS-1 courses and a few of  them might have some limited 
exposure to programming. Both institutions use Java as the first programming language, and there 
are no significant differences between the courses at both institutions. Appropriate IRB approval was 
obtained (Expedited Review-Protocol Number: 17-10-006), and the number was included in all con-
sent forms. 

Keselman et al.’s (1998) survey describes different types of  statistical analyses used by educational re-
searchers. In this study, we used a simple repeated measures design, and our data collection methods 
include, questionnaires, pre and post-tests, academic performance scores (based on bug-fixing), and 
automated time logs. First, the purpose and scope of  the study, the evaluation procedure, and all 
other relevant information were clearly explained. A pre-test was given after obtaining voluntary in-
formed consent from all the participants. The pre-test consists of  eight (8) multiple-choice questions 
and they were all related to some common syntax and semantic errors in conditional branching (see 
Appendix A). After the pre-test, the students were asked to play the Shoot2Learn game. As men-
tioned before, during the play the students were confronted with purposefully implanted bugs, and 
they were empowered to fix the bugs by selecting the correct code from multiple options. The game 
kept the academic as well as gaming performance records of  the participants. The game also kept 
time logs at certain stages in each game. After the game, the students were asked to take a post-test. 
The post-test was the same as the pre-test (due to an unexpected circumstance the post-test was not 
given in Sri Lanka). Finally, the students were asked to complete a five-point Likert-style question-
naire which contained ten (10) questions and an optional comment section (see Appendix B). The 
first part of  the questionnaire includes four (4) questions related to gender identity, programming ex-
perience, and gaming experience (general and casual). The second part posed questions associated 
with the flow experience, self-efficacy, and learning experience of  the participants. 

RESULTS 
As mentioned before, forty-nine (49) CS1 students participated in this study including fourteen (14) 
boys and five (5) girls from the US-U and fifteen (15) boys and fifteen (15) girls from the SL-U. Ex-
cept for two students, all other students from US-U (89%) identified themselves as beginner pro-
grammers, whereas eighteen students from SL-U (60%) identified themselves as beginner program-
mers. A large portion of  the US-U students [seventy-one percent (71%) of  boys and eighty percent 
(80%) of  girls] considered themselves experienced gamers. Three boys and a girl indicated that they 
hadn’t played games much, and two male gamers mentioned that they didn’t play casual games. But 
among the SL-U students, only forty percent (40%) of  boys and twenty-seven (27%) of  the girls con-
sidered themselves experienced gamers. Two boys and five girls indicated that they didn’t play games 
much. In addition, three female students mentioned that they had experience in playing casual games. 

We used SPSS (ver-26) for statistical analysis. The pre and post-test scores of  the participants were all 
independent and did not affect each other’s scores. The average post-test scores of  US-U students 
were 11.4% higher than their average pre-test scores. The Paired Samples T-test is used to analyze the 
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efficacy of  the proposed intervention on the students’ academic performance, and the results show 
that the fix-and-play educational game strategy produced statistically significant improvements in 
learning performance in the participants from US-U after playing Shoot2Learn (see Table 1: p = 
0.0055 [one-tail] < 0.05). The effect size is moderate (Cohen’s d = 0.65). 

Table 1: USA-U: Pre and Post-tests: Paired Sample T-test  

          Mean N Std. Deviation Std. Error Mean 
Post 60.5263 19 22.37794 5.13156 

Pre 49.1228 19 26.33690 6.04210 

 
 

   Mean   Std. Dev     T     Df 
                                  
Sig. (2-tailed) 

Post-Pre 11.40 17.61 2.822 18 .011 
 

Nevertheless, we noticed that twelve students at US-U (more than 50%) do not show any improve-
ments after playing the game (including two students who scored 100% on both pre and post-tests). 
This extreme frequency at the lower part of  the distribution caused a negative skewness in the histo-
gram. Therefore, we used the Kolmogorov-Smirnov test to check the normality, and the result was 
negative. Since the distribution is neither normal nor symmetrical under null (H0: post-test mean - 
pre-test mean = 0), an Exact Sign Test was used to test the significance of  the differences between 
pre and post-test scores (instead of  the Wilcoxon signed-rank test). Results show a statistically signifi-
cant median increase in the learning performance of  the US-U participants after playing the game 
Shoot2Learn (see Table 2: p = 0.008 [one-tail] < 0.05). 

Table 2: US-U Pre and Post-tests: Sign Test  

Sign Test – Frequencies N 
Post - 
Pre 

Negative Differences 0 
Positive Differences 7 
Ties 12 
Total 19 

 
Test Statistics Post        - Pre 
Exact Sig. (2-tailed) .016 
  

 

We conducted a similar analysis on the results obtained at SL-U. For this analysis, the final academic 
scores in the game (thirteen final scores were recorded during the evaluations) were used as the post-
test scores. Once again, Kolmogorov-Smirnov statistics is used to test normality of  SL-U’s distribu-
tion of  the difference (post-score - pre-score), and the result was positive (see Table-3: p = 0.1 [one-
tail] > 0,05). 

Table 3: SL-U (post – pre) score: Normality Test  

 

Kolmogorov-Smirnova Shapiro-Wilk 

Statistic df Sig. Statistic Df Sig. 

Diff .142 13 .200 .920 13 .252 

 



Mohanarajah & Sritharan 

651 

Next, we used Paired Sample T-test to test the significance of  the difference, and the result shows 
that there are statistically significant improvements in academic learning performance in the SL-U 
participants after playing Shoot2Learn (see Table-4: p = 0.00 < 0.05). The effect size is large (Cohen’s 
d = 1.52). 

Table 4: USA-U: Pre and Post-tests: Paired Sample T-test 

                    Mean N Std. Deviation Std. Error Mean 

Post 71.5385 13 15.86198 4.39932 

Pre 48.6538 13 14.27466 3.95908 

 Mean Std. Dev t df     Sig. (2-tailed) 

Post-Pre 22.88 15.03 5.49 18 .000 

 

The internal consistency of  the questionnaire (for selected items related to flow experience) is meas-
ured using Cronbach’s alpha, and the obtained value (0.64) is slightly lower than the acceptable values 
(> 6.5). One of  the questions requests the respondents to indicate their experience in using the game. 
More than half  of  the US-U students and nearly one-third of  the SL-U students indicated that the 
game was neither boring nor interesting. More than half  of  the SL-U students and four US-U stu-
dents indicated that they like the game. This outcome is understandable since nearly 80% of  the par-
ticipants had played industry-level games regularly, but this game was created only for the research 
purpose. Another question asks the students if  they were given a chance would they ever play a game 
of  this type again for learning programming. All the students except one from the US-U mentioned 
that they would use this type of  game again for learning. One of  the questions asks whether the stu-
dents felt like more studying than playing. Only 3 students at US-U and 6 students at SL-U indicate 
that they felt like more studying than playing.   

One of  the key questions asks the respondents to indicate how they felt when fixing the bugs while 
playing the game (in other words, whether they were proud of  themselves since they were able to fix 
the bugs in the game). Seventy-four (74%) percent of  the US-U students and sixty percent (60%) of  
the SL-U students mentioned that they liked this feature, Anyway, two US-U students and eight SL-U 
students indicated that this feature interrupted their game and they did not like this feature. Finally, 
respondents were asked to write comments (optional), and twelve SL-U students and four US-U stu-
dents wrote comments (see Table 5). Most of  the comments were encouraging. As mentioned in stu-
dents’ comments, we found that the game stuck sometimes in less powerful computers. From a usa-
bility point of  view, the game did not include options that allow a player to modify any environment 
variables such as sound levels. These drawbacks could negatively impact the evaluation process. 

Table 5: Participant’s Comments  

No. Student Comment 

1 SL-1 Game stuck after 10 minutes 

2 SL-6 I met some troubles while playing this game.  

3 SL-7 That was not bad 

4 SL-8 Good game but has many bugs 

5 SL-10 Excellent work 

6 SL-11 Excellent work 
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No. Student Comment 

7 SL-19 I want to know the developer of  this game 

8 SL-20 It is very funny 

9 SL-23 This game is very nice and interesting  

10 SL-24 How to create a game like this? 

11 SL-25 Simply good 

12 SL-30 I am very proud of  myself, but there are errors 

13 USA-1 Computer Science is hard! 

14 USA-16 Loved the game 

15 USA-24 I quite enjoyed this 

16 USA-21 Noise juxtaposed with the questions irritating 

 

The game is divided into sixteen tasks. The game program records the time logs in certain states dur-
ing the play (the start time and end time of  each task). For each participant, the time taken to com-
plete all these tasks is tabulated, and then the averages and standard deviations (SD) of  the durations 
for each task are calculated (see Table 6). 

Due to curiosity, we checked whether the means and SDs of  time spent on each task for the US-U 
and SL-U participants were correlated and found that the correlation was significant (The Pearson 
Correlation coefficients are 0.66 for means and 0.92 for the SDs - at 0.01 level 2 tailed). Next, we cal-
culate the degree of  flow experience (dfe) as described in the methodology section. Table 7 gives the 
time taken for all the sixteen tasks by two students from both universities. The corresponding z-
scores are also calculated and tabulated. For example, the US-U student-1 (Table 7.1) spent 896-time 
units on game-1, and based on table-6.2, the average for game-1 for all US-U participants is only 553 
time units (SD is 281). Therefore, the z-score for this student for this task is (896 – 469) / 263 = 1.6; 
that is, this student spent 1.6 * SD more time than the average for this task. A close look at Table 7.1 
reveals that this student took more time on almost all the tasks than the averages (except one). 

Table 6: Means and SDs of the time taken by participants for each task 

 
Now, consider US-U-Student-1’s z scores in table 7.1. The average of  the absolute values of  all these 
z-scores is 0.75 (that is, for this student the avg ( |z| ) all-tasks  =  0.75.). Therefore, the degree of  flow 
experience (dfe) of  the US-U-Student-1 is (2 - 0.75) = 1.25. Similarly, based on tables 7.2, 7.3, and 
7.4, the dfe’s for these students are 1.1, 1.13, and 1.2 respectively. The dfe explains how close the time 
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Table: 6.1:  SSL-U participants mean and SD of the time taken for each task

Table: 6.2:  USA-U participants mean and SD of the time taken for each task
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spent by a participant on each task is to the corresponding averages. If  the deviations are small the 
flow experience is high. That is, the higher the dfe, the better the flow experience. 

Table 7: Example: Time spent on each task by two students (arbitrarily selected) from each 
of the universities US-U & SL-U, and the corresponding z-scores 

 
Finally, we test the correlation between the participants’ degree of  flow experiences and their learn-
ing gain (post-scores – pre-scores) of  all the participants. Results show that there are no statistically 
significant positive correlations between the dfe and gain (Pearson coefficients are 0.19 and 0. 21 for 
US-U and SL-U respectively).  

DISCUSSION & CONCLUSIONS 
Learning the first programming language is considered challenging. Nearly five decades of  research 
have proposed numerous tools and pedagogical approaches to ease this problem. In this research, we 
proposed the fix-and-play educational game approach to reduce the disenchantment associated with 
learning programming. We created a casual game for learning conditional branching (called 
Shoot2Learn) and used it to evaluate our proposed approach in real classroom settings in two coun-
tries. The game includes eight stages, and a number of  bugs are intentionally planted in the game at 
different points. The bugs were related to the basic syntax and semantics of  one-way, two-way, multi-
way, and nested conditional branching statements. The players are empowered to fix the bugs while 
they play the game.  

Results show that the CS1 students who played Shoot2Learn gained statistically significant improve-
ments in learning conditional branching. Although our sample sizes are too small to generalize, these 
findings do indicate that the proposed fix-and-play games have positive impact on learning first pro-
gramming languages. The student responses to the questionnaire provided additional evidence that 
the proposed approach could be successful in improving student engagement and learning. Almost 
all the participants (except one) indicated that they would use this type of  game again for learning. 
Sixty-seven percent (67%) of  the students mentioned that they liked the feature that allowed them to 
fix the bugs in the game while playing. The participants’ comments were also enthusiastically encour-
aging.  

Result shows that the correlations between the flow experiences and learning gains were not statisti-
cally significant. In this research, we try to quantify the flow experience using the time lapse between 
the key events. A metric is introduced to quantify the flow experience. This outcome may be due to a 
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U-1 896 925 462 929 587 502 543 465 297 998 419 757 334 967 860 509

Z-Sco 1.6 1 -0 1.3 -0 -0 0 -0 -0.6 1.6 -0 0.9 -1 1.3 0.8 0.3

U-2 685 55 928 553 516 673 897 881 379 715 937 806 939 309 417 132

Z-Sco 0.8 -2 1.2 -0 -0 0.3 1.1 0.7 -0.4 0.7 1.8 1 1.9 -1 -1 -0.9

S-1 750 970 91 282 836 796 479 142 550 906 352 413 796 736 882 877

Z-Sco 0.7 1.3 -1 -1 1 0.6 -0 -1 0.1 1.4 -1 -0 1.3 0.6 1.1 1.3

S-2 266 121 338 343 489 408 817 962 131 730 723 399 524 372 422 796

Z-Sco -1 -1 -0 -1 -0 -1 0.8 1.2 -1.2 0.9 0.8 -0 0.3 -1 -1 1.1

Table 7.3: SL-U:Student#1 time taken for each task and z-score

Table 7.4: SL-U :Student#2 time taken for each task and z-score

Table 7.1: USA-U:Student#1 time taken for each task and z-score

Table 7.2: USA-U:Student#2 time taken for each task and z-score
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flaw in the proposed metric (dfe), and further research is required to validate the effectiveness of  the 
proposed metric. 

In Shoot2Learn, all the players will confront the same bugs during the play, and the system gives the 
same options to select the fix from. Fixing the errors is a kind of  debugging, and debugging is harder 
than coding (though, in this tool, the correct option is also given along with some other distractors). 
In the future, we are planning to include a free-form or a drag-and-drop editing tool that will allow 
the learners to construct their own code segment. We also plan to incorporate a user modeling sys-
tem in the games to provide individualized challenges to the users. Moreover, an experienced gamer 
may have a different flow experience compared to a non-gamer. The user model should also be able 
to provide adaptable interfaces based on the user’s level of  game-playing experience. We are also 
planning to scale up the evaluation process. We will create one industry-level casual game for at least 
three key knowledge areas in high-level programming (structured aspects first), and evaluate the 
games in real classroom settings in different countries. We will refine the questionnaire and include 
suitable questions to measure the flow experiences and motivation of  the participants. 
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