

Volume 21, 2022

Accepting Editor Peter Blakey│ Received: July 5, 2022│ Revised: October 30, November 23, 2022 │
Accepted: November 24, 2022.
Cite as: Mohanarajah, S., & Sritharan, T. (2022). Shoot2Learn: Fix-and-play educational game for learning pro-
gramming; Enhancing student engagement by mixing game playing and game programming. Journal of Infor-
mation Technology Education: Research, 21, 639-661. https://doi.org/10.28945/5041

(CC BY-NC 4.0) This article is licensed to you under a Creative Commons Attribution-Non-Commercial 4.0 International
License. When you copy and redistribute this paper in full or in part, you need to provide proper attribution to it to ensure
that others can later locate this work (and to ensure that others do not accuse you of plagiarism). You may (and we encour-
age you to) adapt, remix, transform, and build upon the material for any non-commercial purposes. This license does not
permit you to use this material for commercial purposes.

SHOOT2LEARN: FIX-AND-PLAY EDUCATIONAL GAME
FOR LEARNING PROGRAMMING; ENHANCING STUDENT
ENGAGEMENT BY MIXING GAME PLAYING AND GAME

PROGRAMMING
Selvarajah Mohanarajah * University of North Carolina at Pem-

broke, Pembroke, USA
mohanara@uncp.edu

Thambithurai Sritharan University of Colombo School of Com-
puting, Colombo, Sri Lanka

rts@ucsc.cmb.ac.lk

ABSTRACT
Aim/Purpose The key objective of this research is to examine whether fix-and-play

educational games improve students' performance in learning programming
languages. We also quantified the flow experiences of the students and
analyzed how the flow contributes to their academic performances.

Background Traditionally, learning the first computer programming language is considered
challenging, In this study, we propose the fix-and-play gaming approach that
utilizes the following three facts to alleviate certain difficulties associated with
learning programming: 1. digital games are computer programs, 2. young
students are fond of playing digital games, and 3. students are interested in
creating their own games.

Methodology A simple casual game Shoot2Learn was created for learning the fundamentals of
branching. A number of errors were intentionally implanted in the game at
different levels, and the students were challenged to fix the bugs before
continuing the game. During the play, the program keeps records of the
student’s academic progress and the time logs at different stages to measure the
flow experience of the students. The proposed approach was systematically
evaluated using a quasi-experimental design in real classroom settings in two
countries, Sri Lanka, and USA.

Contribution The results derived from this research provide empirical evidence that the fix-
and-play educational games ease some challenges in learning programming and
motivate the students to play and learn.

https://doi.org/10.28945/5041
https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/
mailto:mohanara@uncp.edu
mailto:rts@ucsc.cmb.ac.lk

Shoot2Learn

640

Findings The results show that the first-year programming students who play the fix-and-
play game gain statistically significant improvement in their academic
performance. However, the result fails to suggest a significant positive
correlation between the flow experience and academic performance.

Recommendations
for Practitioners

Empowering the students to fix the bugs in the educational games they play will
motivate them to stay in the game and learn continuously. However, we have to
make sure that the types and timing of bugs do not hinder the flow experience
of the players,

Recommendations
for Researchers

Students normally play industry-level high-quality games. Experience and
interest in game-playing differ significantly between students. Gender difference
also plays an important role in selecting game genres. We need to identify how
to address these issues when resources are not sufficient to provide an
individualized gaming experience.

Impact on Society Programming is an essential skill for computer science students. The outcome
of this research shows that the proposed approach helps to reduce the
disenchantment associated with learning the first programming language.

Future Research Further investigation is necessary to verify whether the AI techniques such as
user modeling can be used in educational games to reduce the effects of uncer-
tainty associated with the variations in students' gaming skills and other factors.

Keywords CS1, novice programming, game-based learning; gamification, serious games,
educational games for learning programming

INTRODUCTION
The United States Bureau of Labor Statistics (2022) shows that the demand for software developers
is projected to grow 25% from 2021 to 2031 – this is much faster than the average for all occupa-
tions. Obviously, this fact could extrinsically motivate students to pursue a major in computer sci-
ence. Based on the 2021 Taulbee survey, CS enrollment grows at all degree levels, with increased gen-
der diversity, and the average undergraduate enrollment per U. S. CS department has increased to
more than five times its level in fall 2006 (Zweben & Bizot, 2022). Nevertheless, there is a major ob-
stacle that needs to be addressed. One of the key skills required for CS majors is programming; how-
ever, learning the first programming language is considered challenging. Beginning students are easily
frustrated and become bored (Koulouri et al., 2015). Failure and dropout rates are traditionally high
in CS1 courses (Bennedsen & Caspersen, 2007; Smith, 2022; Yadin, 2011). Even the students who
were initially enthusiastic about learning programming with the hope of creating cool computer
games and innovative mobile applications, later complained that learning programming was tiresome
and hard, and demotivating (Beaubouef & Mason, 2005).

Several studies have been conducted to investigate the difficulties associated with learning to pro-
gram and suggested various techniques and tools that could alleviate the problem. Nevertheless,
learning programming is still considered challenging (Smith, 2022). In this research, we propose a
novel approach to alleviate the disenchantment associated with diminishing motivation using fix-and-
play educational games. These games will appropriately challenge novice programming students to fix
the errors in the games they play and will continuously engage them in playing and learning.

Using digital games for learning programming is not a new idea (Johnson et al., 2016). Research
shows that the game-based learning approach helps to nurture CS1 students’ intrinsic motivation
(Sharmin, 2022). There are many coding games available on the web (e.g. [Robocode, n.d.]). Similar
to visual programming languages like Alice and Scratch (Turbak et al., 2014), they allow users to build

Mohanarajah & Sritharan

641

graphical animations using block or text-based programming snippets. Section 2.1.6 discusses three
types of Game-Based Learning (GBL) approaches for learning programming; educational games,
game design environments, and gamification tools. In this study, we combine both game-playing and
game-designing features in a single tool. Young students are not only interested in playing digital
games, but most of them are also excited about creating their own games. Since the digital games
themselves are computer programs, we propose an approach where both interests are seamlessly in-
tegrated into creating scaffolded fix-and-play educational games.

The key objective of this research is to examine whether fix-and-play educational games improve stu-
dents' performance in learning programming languages. We created a simple fix-and-play shooting
game Shoot2Learn to evaluate the effectiveness of the proposed approach. A pilot study was con-
ducted earlier, and the results were published (Mohanarajah, 2018). Recently, we conducted a quasi-
experimental study in real classroom settings at two universities, one each from the countries USA
(say US-U) and Sri Lanka (say SL-U). The next section provides a brief overview of different catego-
ries of software tools for learning programming reported in the mainstream literature. It also outlines
the previous research related to flow experience and motivation pertinent to educational games. The
rest of this paper discusses the research objectives, the proposed approach, evaluation methodolo-
gies, and outlines and analyses the results, and includes the future trajectory of this research.

RELATED RESEARCH
For nearly half a century, numerous studies have attempted to explain the reasons for the challenges
in learning the first computer programming language and proposed various solutions to alienate
these challenges. The first book on this area “Psychology of Programming” was published in the
early seventies by Weinberg (1971). Later in 1989, a book edited by Soloway and Spohrer (1989) doc-
umented a wide-ranging collection of research activities on novice programmers’ learning challenges.
An oft-cited systematic review by Robins et al. (2003) provides a detailed analysis of the research re-
lated to various pedagogical approaches for teaching CS1 between 1970 and 2003. Another notable
survey on teaching CS1 was published by Pears et al. (2007). Recently, Luxton-Reilly et al. (2018) pub-
lished a comprehensive overview that covers the introductory programming education research be-
tween 2004 and 2018. Nevertheless, while revisiting this topic, Robins (2019, p. 353) stated; “The field
[teaching and learning CS1] has attracted considerable interest from researchers, teachers, practitioners, industry, and
governments alike. There is now a significant body of relevant literature, but many important questions remain open.”
The next section focuses only on the studies related to the educational tools for learning introductory
programming.

CS1 TEACHING/LEARNING TOOLS
Becker and Quille (2019) show that nearly 10% of all the publications in ACMSIGCSE-TS proceed-
ings in the last 4 decades were about teaching tools for programming. Kelleher and Pausch (2005)
provide a detailed taxonomy of categorization of nearly 200 broad range of learning tools which are
divided into two large groups: Teaching Systems (simplify-typing-code, alternative-to-typing-code,
structured-languages, enable-to-track-execution, micro-worlds, social-learning, include-motivating-
factors, etc.) and Empowering Systems (simplified-language, interactive languages/environments, in-
cludes-entertainment, supports-other-education, etc.). Some high-level programming languages such
as BASIC, Pascal, and COBOL were also included in this taxonomy. Pears et al. (2007) reviewed
more than 60 learning tools and organized them into 3 broad categories: assessment, visualization,
and programming tools. A 2017 follow-up review by Saito et al. (2017) compared nearly 40 games
and visual programming environments. The next section outlines some key categories of visualiza-
tion and programming tools for learning. These categories have no strict boundaries, and some may
overlap.

Shoot2Learn

642

Intelligent tutoring systems / Interactive learning environments
Anderson’s and Reiser’s (1985) study found that students who received private tutoring learned LISP
nearly four times faster than students who did not learn from private tutors. Robins (2019) postulates
that this observation is true for all programming languages. However, providing adequate one-on-one
tutoring for all students is impractical in a typical educational institution. In this context, intelligent
tutoring systems (ITSs) can play a significant role- they will be cost-effective, and they can be used
for learning at any time and any pace. ITSs include a variety of AI techniques to model students to
provide adaptive course sequencing and individualized feedback. Crow et al. (2018) provide a system-
atic review of fourteen ITSs for programming- one of them is also included in the seven examples
given in Luxton-Reilly et al. (2018).

Another type of Computer-Based Learning (CBL) system is Interactive Learning Environment
(ILE). ILEs are ITSs without integrated AI features. They are usually designed based on behavioral
learning theory using punish-and-reward strategies. Nearly nine examples of ILEs are given in Lux-
ton-Reilly et al.’s survey (2018).

Research shows that creating efficient ITS for programming is very challenging (Dadic, 2011). How-
ever, it can be speculated that, at the rate the technology advances, in near future, it may be possible
to create ITSs that include not only student modeling, but also intelligent teaching units supported by
machine (reinforcement) learning, software visualization features, and natural language interfaces.
Robins (2019) expressed a similar optimism: “In an ideal world we would like to provide individual
and personally designed tuition and support to every student. It may be that breakthroughs in intelli-
gent tutoring systems will one day achieve this ideal.”

Program visualization (PV) / Algorithm animation (AA)
Program visualization tools are designed to engage the students by visualizing the effects of each line
of the code using graphics and animations (Fouh et al., 2012). This will help the student to formulate
his own mental model of how a program is being executed in a notional machine. The term “no-
tional machine” was coined by du Boulay et al. (1981) to denote the high-level abstraction of the
hardware and software features of a computing agent, which includes, the compiler, OS, RAM, CPU,
and I/O systems. This type of mental model is required for a programmer to comprehend the struc-
ture and dynamics of the underlying execution agent of their program. Jeliot’s family of tools is con-
sidered one of the most-studied PV tools (Jeliot 3, n.d.).

Algorithm animation tools are used to visualize data movements in complex algorithms and are gen-
erally used in CS2 courses. Comprehensive reviews of visualization tools are given in (Hundhausen et
al., 2002; Price et al., 1993; Saito et al., 2017). A few past research indicated that PV alone is not suffi-
cient to support learning programming (Naps et al., 2003; Pears & Rogalli, 2011).

Syntax-free, block-based, drag-and-drop microworlds
Papert (1980) argues that the programming languages should be not only simple and entertaining for
the students to learn (“low-floor”), but also powerful enough for the practitioners to build complex
useful systems (“high-ceilings”). However, in general, popular programming languages have unusual
syntax and complex semantics. One of the challenges in learning programming is understanding the
semantics of different language constructs and their syntaxes. Without this comprehensive
knowledge, devising and implementing a solution to a considerably complex problem will be chal-
lenging. Drag-and-Drop visual programming environments like Alice, Scratch, and App-Inventor
(Turbak et al., 2014) are designed to address this difficulty- they allow a novice learner to develop
problem-solving skills without being hindered by the complexities of syntax and semantics of the
programming language. Students need not worry about the properties of the underlying notional ma-
chine. Several studies show that these environments yield positive results with k-12, non-major, or

Mohanarajah & Sritharan

643

under-performing students (Meerbaum-Salant et al., 2013). A few research shows that these environ-
ments do not scale up or carry over: that is, the students still lack the skills to design algorithms for
non-trivial problems (Franklin et al., 2020).

Simplified or scaffolded languages
ACM Curriculum 1978 (Austing et al., 1979) described CS1 as “the emphasis of the course is on the
techniques of algorithm development and programming with style”, and further it stressed that “nei-
ther the esoteric features of a programming language nor other aspects of computers should interfere
with that goal (p. 151)”. In general, universities adopt industry-level programming languages such as
Java, C++, and Python in their CS1 courses (Farooq et al., 2014). These languages include many
complex features that are valuable for professionals but annoying for novices. Educators try different
methods to limit the complexity of these languages in order not to overwhelm the introductory stu-
dents. Many studies have attempted to address this issue by either (1) providing various forms of
scaffolding to hide the undesired complexities of the language environments to reduce the cognitive
load of the students, e.g. BlueJ (Kölling et al., 2003), or (2) designing simple mini languages for teach-
ing purposes only (Brusilovsky et al., 1997). Nearly hundreds of simplified or scaffolded languages
are listed on Wikipedia (n.d.). Like Drag-and-drop environments, simplified languages are also easy to
learn, but the skills learned do not easily transferable to serious programming tasks.

Construct-and-review, immediate feedback systems
This category of tools is designed based on the constructionist learning theory - it is essentially a con-
structivist learning theory based on Jean Piaget’s experiential learning ideas (Harel & Papert, 1991). In
this approach, beginner learners are encouraged to write computer programs to construct or control
some tangible and/or shareable artifacts. This process could intrinsically motivate the students to get
engaged in learning the tool they are using (programming language) to create/control those artifacts.
For example, students might be challenged to write code snippets to control a physical or simulated
robot in a microworld [e.g., Karel the Robot (Pattis, 1981), Robot Virtual World (Liu et al., 2013)], or
to create simple interactive digital games [e.g. Game2Learn framework (Barnes et al., 2008;
Game2Learn, 2012)], or to design multimedia animations (Code.org, n.d.), etc. Similar to drag-and-
drop visual environments, these tools also provide instant visual feedback; that is, the students can
see the impact of their code in the physical world or micro-world simulations immediately. Research
shows inconsistent outcomes for the effectiveness of these approaches in learning programming
(Major et al., 2012; McWhorter & O’Connor, 2009).

Game-based learning systems (educational games, game design tools, and
gamification)
Several research projects have been reported in the CS education literature that focuses on educa-
tional games for learning programming (Barnes et al., 2007; Malliarakis et al., 2014; Shabalina et al.,
2008; Villareale et al., 2020). The working group for Game Development for Computer Science Edu-
cation (ITiCSE-2016) examined nearly 120 games related to CS education and found more than half
of the games focus on some aspect of programming (Johnson et al., 2016). Many games challenge
the students to write code to solve some problems to progress towards winning (Vahldick et al.,
2014). Miljanovic and Bradbury (2018) survey provides a comprehensive review of nearly fifty game-
based environments for learning programming. In general, previous research and surveys related to
Game-Based Learning (GBL) tools for learning programming did not distinguish between, educa-
tional games, game design tools, and gamification tools.

Educational Games: Most educational games for learning programming were designed based on be-
havioral learning theory and utilize, a punish-or-award strategy, proactive supports, and various stim-
uli that were disposed of during the play to engage students (CodeMonkey.org, n.d.). Whereas, some

Shoot2Learn

644

strategic and role-playing games were designed based on cognitive learning theory and situated cogni-
tion, and they excite and challenge the learners to explore and discover any non-explicit knowledge
systematically hidden in the games. Opportunities for trial-and-error type learning are usually built
into the games (Barnes et al., 2007).

Game Design/Creation Tools: Since digital games themselves are computer programs, the teaching
tools based on game design are almost exclusive to the CS discipline (mainly for programming, algo-
rithm design, and software engineering). Many young CS students are interested in creating their own
games. Several studies explored the effectiveness of using game-designing environments for learning
programming (Al-Bow et al., 2009; Code.org, n.d.). Many of these tools are based on constructionist
learning theory and provide scaffolded game development environments where students can design
and code fun games (Kafai & Burke, 2015). Shabalina et al. (2017) discuss a slightly different ap-
proach in which educational games and game design are combined. In this approach, students do not
develop regular games, but they design and code educational games for learning programming.

Gamification: Gamification may not be associated with playing or creating any real game, but it is
about incorporating game-like elements in the instruction strategy to motivate and engage students;
examples include, challenges, points, rewards, control, immediate feedback, incremental levels, etc. To
the best of the author’s knowledge, there are not many pure gamification tools for teaching program-
ming. Shorn (2018) discusses a gamification approach to teaching programming. Some text-based
drill-and-practice tools on the web-based on the idea of “proglets” (Edmondson, 2009) may be in-
cluded in this category [for example, see CodeWrite (Denny et al., 2011)]. In section 2.1, we outlined
various categories of tools discussed in the CS Education research literature.

WHY LEARNING PROGRAMMING IS CHALLENGING
Based on past research (Becker & Quille, 2019; du Boulay et al., 1981; Kelleher & Pausch, 2005; Kou-
louri et al., 2015; Luxton-Reilly et al., 2018; Robins, 2019), we may conclude that learning program-
ming requires at least three basic skills (a) ability to understand the problem and then construct a
step-by-step solution using an appropriate level of abstraction (b) ability to understand the semantic
structures of a programming language and choose suitable structures to design a solution (c) ability
to use the correct syntax to implement the design. Moreover, all of these skills require a clear under-
standing of the limitations and capabilities of the underlying notional machine. Novices struggle to
create the appropriate mental model of the structure and dynamics of the computer environment in
which their solution will be implemented. The only close analogy a beginner student can think of is a
person performing certain tasks based on a sequence of natural language instructions (like a recipe).
This analogy is too shallow and may cause many misconceptions. For example, see the code segment
in Figure 1. Novice programmers struggle to understand the flow of this conditional statement when
executed by a computing agent working in fetch-execute cycles. They simply expect that the grade
will be ‘C’ after the code is executed.

Figure 1: Example: A common misconception in branching

What will be the grade after the following code segment is executed?

int score = 75;

if (score > 60)

 grade = ‘D’;

else if (score > 70)

 grade = ‘C’;

Mohanarajah & Sritharan

645

In addition to the above-mentioned difficulties, the trial-and-error type of learning approach will be
very frustrating for beginners since identifying the errors and isolating their causes still require all
three types of skills discussed above.

INTRINSIC MOTIVATION AND SELF-EFFICACY
Self-efficacy refers to an individual’s belief in their own competence to carry out a specific task
(Bandura, 1997). High self-efficacy increases the student’s persistence at relevant tasks and helps
them to be resilient and recover their motivation even after absolute failures. A student can be moti-
vated by internal or external means. Intrinsic motivation is associated with learning something for
personal pleasure or interest (e.g. playing games or creating games for fun), whereas extrinsic motiva-
tion is derived from external factors such as promised job opportunities and/or high salary scales
(Ryan & Deci, 2000). Research makes it clear that learning programming is challenging, and a learner
needs high determination, dedication, and persistence. Students need to be intrinsically motivated to
stay focused on learning. Self-efficacy plays a key role in keeping one’s intrinsic motivation stable.

FLOW EXPERIENCE IN EDUCATIONAL GAMES
In the context of an educational game, Flow describes a state of mind experienced by the students
who are completely immersed or engaged in learning by playing the game (Csikszentmihályi, 2018).
An optimal flow can be described as an intrinsically enjoyable experience, where students will be in-
tensively focused on their tasks, and nothing else seems to matter. As Kiili (2006) put it “the most
important final result of flow in educational gaming: Students undertake studying activities not nec-
essarily with the expectation of some external future benefit, but simply because playing the game is
enjoyable, a reward in itself ”. Research shows that the optimal flow experience has a positive impact
on learning (ibid).

As mentioned before, CS education researchers have been studying the difficulties of learning pro-
gramming and suggested various remedies. However, in 2015, Robins stated, “After several decades of
research on the core topic of programming, ---, we still don’t have a consensus on the reasons why so many novice pro-
grammers fail to learn ---” (Robins, 2015, Editorial). Some recent studies also support Robins’ observa-
tion and suggest further investigation in this area is continuously required (Loksa et al., 2022; Smith,
2022). Various studies show that designing games, as well as playing games, do help novices focus on
learning programming (Sharmin, 2022). In this research, we propose an even better-enhanced tool
that integrates both game-playing and game-designing challenges to help students to stay motivated
by both types of adventures.

METHODOLOGY
The key objective of this research is to examine whether fix-and-play educational games could im-
prove students’ academic performances while learning their first programming languages. In particu-
lar, we investigate whether empowering the players to manipulate the underlying code of an educa-
tional game will positively impact their academic performance. We also examine how the flow experi-
ence of the students while playing educational games will contribute to their academic performances.

As stated before, this research utilizes two noticeable facts: young students are fond of playing digital
games, and they are also interested in creating their own games. Since the digital games are them-
selves computer programs, we seamlessly mingled both excitements in one scaffolded educational
game. We decided to use casual games in this study. Casual games are easy to learn and play and will
not alienate girls from playing (Cote, 2020). A simple first-person shooting game called Shoot2Learn
was created using swing and JavaFX. There are eight levels in the game, and it covers the basic syntax
and semantics of one-way, two-way, multi-way, and nested conditional branching statements (includ-
ing switch, and ternary operators). At the basic level, a plane will bomb a village periodically for a
fixed number of times, and a player on the ground could use a gun to shoot and destroy the bombs

Shoot2Learn

646

in the air. The bullet supply is limited. At this level, the gun cannot be moved but can be rotated to
the left or right. If a bomb hits the gun, the gun will be destroyed. If a certain number of bombs
reach the floor, the village will be destroyed, and the player lose the game.

One of the authors of this paper has been teaching CS1 for more than 30 years. Based on his and
other educators’ experiences (see below), eight (8) common syntax and semantic errors (java) related
to branching were identified and systematically implanted in the game. Several studies examined the
student’s misconceptions about introductory programming (Qian & Lehman, 2017). Recently, Chi-
odini et al. (2021) presented an inventory of misconceptions in general programming and in specific
programming languages such as java (the current list is available at https://progmiscon.org/). Alzah-
rani and Vahid (2021) surveyed over 47 publications related to CS1 education between 1985 and 2018
and listed 166 common logical errors in novices’ programs, and among them, fourteen errors ac-
counted for branching. For example, while playing the game, a student would notice an apparent
glitch in the game; pressing the Left arrow should rotate the Gun to the right- but instead, the Gun
would turn to the left. At this point, the player will be challenged to fix the bug. To debug, they
should first inspect the code, understand the logic, and then select the appropriate code to fix the bug
(see Figures 2 & 3). The bugs and distractors are designed to address the cognitive skills up to the
fifth level in Bloom’s taxonomy. Distracters may include code segments with common syntax errors
in branching. Students will get appropriate feedback (see Figures 4 & 5). Students could choose to
execute their choices, and if the code compiles, they will get relevant visual feedback. Visual feedback
helps them to check the effects of their choices instantly and makes them feel like game program-
mers rather than test-takers. By fixing a bug, the player will get not only some academic points but
also some more bullets. Moreover, the students can examine why their choices are wrong (or right),
and they can also analyze the nature of the bug and the misconceptions associated with that bug. The
game program will keep track of the academic as well as gaming performances of the students. Stu-
dents will relate the academic performance score to their competence in fixing the bugs in the game.

An average freshman can complete the Shoot2Learn game in 15-20 minutes. By empowering the stu-
dents to inspect the code and fix the game, the students will get some sense of ownership of the
game they play. This feature will nurture their self-efficacy, and as a result, their intrinsic motivation
will be increased. The inherent nature of gaming fantasy combined with high self-efficacy will keep
the students motivated in playing and learning even amidst failures.

Figure 2: Shoot2Learn: Trial Game

https://progmiscon.org/

Mohanarajah & Sritharan

647

Figure 3: Fix-and-Play: Gamers can debug the game they play

Shoot2Learn

648

Figure 4: Text-based Feedbacks

Figure 5: Flow graphs for the options 2, 3 & 4 in Figure-3 (option-1 will not compile)

In past research, the flow experience and motivation of the users of the interactive systems are usu-
ally estimated using questionnaires (Csikszentmihályi, 2018). But in this study, flow experiences are
quantified, and a metric for the degree of flow experience (dfe) for a player is proposed as follows.
The time logs will be recorded at sixteen (16) points while playing the game. This log file will be used
to calculate the time taken to complete sixteen tasks (eight games and eight quizzes) for each student.
Then the average time taken for each task by all the participants will be calculated. Next, for each
participant, the Z-scores for each task will be calculated, and finally, the average of all his/her |Z|-
scores of all tasks will be calculated. The degree of flow experience (dfe) for a particular player is de-
fined based on the following rules (1) The |z| values more than 2 will be approximated to 2 (2) |z|
= 2 is considered as an outlier due to distraction or inattentiveness. (3) if a participant has more than
20% outliers, his/her degree-of-flow experience(dfe) is negligible (i.e. dfe=0). 3). Otherwise, the de-
gree-of-flow experience (dfe) of a participant is defined as, dfe = 2 – avg (|z|)all-tasks. Therefore, dfe
can take a value between 0 and 2 inclusively, where two represents high and zero represents negligible
flow experiences. A high flow experience can yield peak performances (Csikszentmihályi, 2018).

This research is designed based on the guidelines given for the Effectiveness-Research (type #5) in
the Common Guidelines for Education Research and Development – a joint report published by the
National Science Foundation (NSF) and the U.S. Department of Education’s Institute of Education
Sciences (IES) (2013). The underlying pedagogic strategy in the fix-and-play game is built on behav-
ioral and constructionist learning theories (Ben-Ari, 2001; Kafai & Burke, 2015), and flow theory

Mohanarajah & Sritharan

649

(Csikszentmihályi, 2018). The amendable gaming environment will motivate the students to build
their knowledge by actively engaging them in enjoyable creative endeavors. The challenges immersed
in the game are exciting and achievable. The activities are neither too hard (reduce anxiety) nor too
easy (reduce boredom). Students should be able to tackle the challenges with an appropriate level of
help from the game itself (Csikszentmihályi, 2018). Anyway, we also take note of Nelson’s and Ko’s
(2018) observation – focusing too much on general theories of learning may inhibit our search for
better designs in CS Education research.

EVALUATION PROCEDURE, PARTICIPANTS & INSTRUMENTS
As mentioned in the introduction, subjective as well as objective evaluations were conducted in real
classroom settings at two universities US-U and SL-U. There were forty-nine (49) students partici-
pated in the study, including a class of nineteen (19) and thirty (30) students from the US-U and SL-
U, respectively. All the students were in the CS-1 courses and a few of them might have some limited
exposure to programming. Both institutions use Java as the first programming language, and there
are no significant differences between the courses at both institutions. Appropriate IRB approval was
obtained (Expedited Review-Protocol Number: 17-10-006), and the number was included in all con-
sent forms.

Keselman et al.’s (1998) survey describes different types of statistical analyses used by educational re-
searchers. In this study, we used a simple repeated measures design, and our data collection methods
include, questionnaires, pre and post-tests, academic performance scores (based on bug-fixing), and
automated time logs. First, the purpose and scope of the study, the evaluation procedure, and all
other relevant information were clearly explained. A pre-test was given after obtaining voluntary in-
formed consent from all the participants. The pre-test consists of eight (8) multiple-choice questions
and they were all related to some common syntax and semantic errors in conditional branching (see
Appendix A). After the pre-test, the students were asked to play the Shoot2Learn game. As men-
tioned before, during the play the students were confronted with purposefully implanted bugs, and
they were empowered to fix the bugs by selecting the correct code from multiple options. The game
kept the academic as well as gaming performance records of the participants. The game also kept
time logs at certain stages in each game. After the game, the students were asked to take a post-test.
The post-test was the same as the pre-test (due to an unexpected circumstance the post-test was not
given in Sri Lanka). Finally, the students were asked to complete a five-point Likert-style question-
naire which contained ten (10) questions and an optional comment section (see Appendix B). The
first part of the questionnaire includes four (4) questions related to gender identity, programming ex-
perience, and gaming experience (general and casual). The second part posed questions associated
with the flow experience, self-efficacy, and learning experience of the participants.

RESULTS
As mentioned before, forty-nine (49) CS1 students participated in this study including fourteen (14)
boys and five (5) girls from the US-U and fifteen (15) boys and fifteen (15) girls from the SL-U. Ex-
cept for two students, all other students from US-U (89%) identified themselves as beginner pro-
grammers, whereas eighteen students from SL-U (60%) identified themselves as beginner program-
mers. A large portion of the US-U students [seventy-one percent (71%) of boys and eighty percent
(80%) of girls] considered themselves experienced gamers. Three boys and a girl indicated that they
hadn’t played games much, and two male gamers mentioned that they didn’t play casual games. But
among the SL-U students, only forty percent (40%) of boys and twenty-seven (27%) of the girls con-
sidered themselves experienced gamers. Two boys and five girls indicated that they didn’t play games
much. In addition, three female students mentioned that they had experience in playing casual games.

We used SPSS (ver-26) for statistical analysis. The pre and post-test scores of the participants were all
independent and did not affect each other’s scores. The average post-test scores of US-U students
were 11.4% higher than their average pre-test scores. The Paired Samples T-test is used to analyze the

Shoot2Learn

650

efficacy of the proposed intervention on the students’ academic performance, and the results show
that the fix-and-play educational game strategy produced statistically significant improvements in
learning performance in the participants from US-U after playing Shoot2Learn (see Table 1: p =
0.0055 [one-tail] < 0.05). The effect size is moderate (Cohen’s d = 0.65).

Table 1: USA-U: Pre and Post-tests: Paired Sample T-test

 Mean N Std. Deviation Std. Error Mean
Post 60.5263 19 22.37794 5.13156

Pre 49.1228 19 26.33690 6.04210

 Mean Std. Dev T Df

Sig. (2-tailed)

Post-Pre 11.40 17.61 2.822 18 .011

Nevertheless, we noticed that twelve students at US-U (more than 50%) do not show any improve-
ments after playing the game (including two students who scored 100% on both pre and post-tests).
This extreme frequency at the lower part of the distribution caused a negative skewness in the histo-
gram. Therefore, we used the Kolmogorov-Smirnov test to check the normality, and the result was
negative. Since the distribution is neither normal nor symmetrical under null (H0: post-test mean -
pre-test mean = 0), an Exact Sign Test was used to test the significance of the differences between
pre and post-test scores (instead of the Wilcoxon signed-rank test). Results show a statistically signifi-
cant median increase in the learning performance of the US-U participants after playing the game
Shoot2Learn (see Table 2: p = 0.008 [one-tail] < 0.05).

Table 2: US-U Pre and Post-tests: Sign Test

Sign Test – Frequencies N
Post -
Pre

Negative Differences 0
Positive Differences 7
Ties 12
Total 19

Test Statistics Post - Pre
Exact Sig. (2-tailed) .016

We conducted a similar analysis on the results obtained at SL-U. For this analysis, the final academic
scores in the game (thirteen final scores were recorded during the evaluations) were used as the post-
test scores. Once again, Kolmogorov-Smirnov statistics is used to test normality of SL-U’s distribu-
tion of the difference (post-score - pre-score), and the result was positive (see Table-3: p = 0.1 [one-
tail] > 0,05).

Table 3: SL-U (post – pre) score: Normality Test

Kolmogorov-Smirnova Shapiro-Wilk

Statistic df Sig. Statistic Df Sig.

Diff .142 13 .200 .920 13 .252

Mohanarajah & Sritharan

651

Next, we used Paired Sample T-test to test the significance of the difference, and the result shows
that there are statistically significant improvements in academic learning performance in the SL-U
participants after playing Shoot2Learn (see Table-4: p = 0.00 < 0.05). The effect size is large (Cohen’s
d = 1.52).

Table 4: USA-U: Pre and Post-tests: Paired Sample T-test

 Mean N Std. Deviation Std. Error Mean

Post 71.5385 13 15.86198 4.39932

Pre 48.6538 13 14.27466 3.95908

 Mean Std. Dev t df Sig. (2-tailed)

Post-Pre 22.88 15.03 5.49 18 .000

The internal consistency of the questionnaire (for selected items related to flow experience) is meas-
ured using Cronbach’s alpha, and the obtained value (0.64) is slightly lower than the acceptable values
(> 6.5). One of the questions requests the respondents to indicate their experience in using the game.
More than half of the US-U students and nearly one-third of the SL-U students indicated that the
game was neither boring nor interesting. More than half of the SL-U students and four US-U stu-
dents indicated that they like the game. This outcome is understandable since nearly 80% of the par-
ticipants had played industry-level games regularly, but this game was created only for the research
purpose. Another question asks the students if they were given a chance would they ever play a game
of this type again for learning programming. All the students except one from the US-U mentioned
that they would use this type of game again for learning. One of the questions asks whether the stu-
dents felt like more studying than playing. Only 3 students at US-U and 6 students at SL-U indicate
that they felt like more studying than playing.

One of the key questions asks the respondents to indicate how they felt when fixing the bugs while
playing the game (in other words, whether they were proud of themselves since they were able to fix
the bugs in the game). Seventy-four (74%) percent of the US-U students and sixty percent (60%) of
the SL-U students mentioned that they liked this feature, Anyway, two US-U students and eight SL-U
students indicated that this feature interrupted their game and they did not like this feature. Finally,
respondents were asked to write comments (optional), and twelve SL-U students and four US-U stu-
dents wrote comments (see Table 5). Most of the comments were encouraging. As mentioned in stu-
dents’ comments, we found that the game stuck sometimes in less powerful computers. From a usa-
bility point of view, the game did not include options that allow a player to modify any environment
variables such as sound levels. These drawbacks could negatively impact the evaluation process.

Table 5: Participant’s Comments

No. Student Comment

1 SL-1 Game stuck after 10 minutes

2 SL-6 I met some troubles while playing this game.

3 SL-7 That was not bad

4 SL-8 Good game but has many bugs

5 SL-10 Excellent work

6 SL-11 Excellent work

Shoot2Learn

652

No. Student Comment

7 SL-19 I want to know the developer of this game

8 SL-20 It is very funny

9 SL-23 This game is very nice and interesting

10 SL-24 How to create a game like this?

11 SL-25 Simply good

12 SL-30 I am very proud of myself, but there are errors

13 USA-1 Computer Science is hard!

14 USA-16 Loved the game

15 USA-24 I quite enjoyed this

16 USA-21 Noise juxtaposed with the questions irritating

The game is divided into sixteen tasks. The game program records the time logs in certain states dur-
ing the play (the start time and end time of each task). For each participant, the time taken to com-
plete all these tasks is tabulated, and then the averages and standard deviations (SD) of the durations
for each task are calculated (see Table 6).

Due to curiosity, we checked whether the means and SDs of time spent on each task for the US-U
and SL-U participants were correlated and found that the correlation was significant (The Pearson
Correlation coefficients are 0.66 for means and 0.92 for the SDs - at 0.01 level 2 tailed). Next, we cal-
culate the degree of flow experience (dfe) as described in the methodology section. Table 7 gives the
time taken for all the sixteen tasks by two students from both universities. The corresponding z-
scores are also calculated and tabulated. For example, the US-U student-1 (Table 7.1) spent 896-time
units on game-1, and based on table-6.2, the average for game-1 for all US-U participants is only 553
time units (SD is 281). Therefore, the z-score for this student for this task is (896 – 469) / 263 = 1.6;
that is, this student spent 1.6 * SD more time than the average for this task. A close look at Table 7.1
reveals that this student took more time on almost all the tasks than the averages (except one).

Table 6: Means and SDs of the time taken by participants for each task

Now, consider US-U-Student-1’s z scores in table 7.1. The average of the absolute values of all these
z-scores is 0.75 (that is, for this student the avg (|z|) all-tasks = 0.75.). Therefore, the degree of flow
experience (dfe) of the US-U-Student-1 is (2 - 0.75) = 1.25. Similarly, based on tables 7.2, 7.3, and
7.4, the dfe’s for these students are 1.1, 1.13, and 1.2 respectively. The dfe explains how close the time

G
a

m
e

1

G
a

m
e

2

G
a

m
e

3

G
a

m
e

4

G
a

m
e

5

G
a

m
e

6

G
a

m
e

7

G
a

m
e

8

Q
u

iz
1

Q
u

iz
2

Q
u

iz
3

Q
u

iz
4

Q
u

iz
5

Q
u

iz
6

Q
u

iz
7

Q
u

iz
8

Mean 553 549 454 582 581 655 542.62 543 514 439 518 464 452 546 608 474

S.D 281 335 290 297 253 238 348.88 341 307 322 241 274 266 321 251 304

Mean 469 582 559 572 605 613 527.73 638 507 496 510 499 504 556 658 415

SD 263 345 304 266 215 239 350.78 350 328 321 241 298 233 314 240 313

Table: 6.1: SSL-U participants mean and SD of the time taken for each task

Table: 6.2: USA-U participants mean and SD of the time taken for each task

Mohanarajah & Sritharan

653

spent by a participant on each task is to the corresponding averages. If the deviations are small the
flow experience is high. That is, the higher the dfe, the better the flow experience.

Table 7: Example: Time spent on each task by two students (arbitrarily selected) from each
of the universities US-U & SL-U, and the corresponding z-scores

Finally, we test the correlation between the participants’ degree of flow experiences and their learn-
ing gain (post-scores – pre-scores) of all the participants. Results show that there are no statistically
significant positive correlations between the dfe and gain (Pearson coefficients are 0.19 and 0. 21 for
US-U and SL-U respectively).

DISCUSSION & CONCLUSIONS
Learning the first programming language is considered challenging. Nearly five decades of research
have proposed numerous tools and pedagogical approaches to ease this problem. In this research, we
proposed the fix-and-play educational game approach to reduce the disenchantment associated with
learning programming. We created a casual game for learning conditional branching (called
Shoot2Learn) and used it to evaluate our proposed approach in real classroom settings in two coun-
tries. The game includes eight stages, and a number of bugs are intentionally planted in the game at
different points. The bugs were related to the basic syntax and semantics of one-way, two-way, multi-
way, and nested conditional branching statements. The players are empowered to fix the bugs while
they play the game.

Results show that the CS1 students who played Shoot2Learn gained statistically significant improve-
ments in learning conditional branching. Although our sample sizes are too small to generalize, these
findings do indicate that the proposed fix-and-play games have positive impact on learning first pro-
gramming languages. The student responses to the questionnaire provided additional evidence that
the proposed approach could be successful in improving student engagement and learning. Almost
all the participants (except one) indicated that they would use this type of game again for learning.
Sixty-seven percent (67%) of the students mentioned that they liked the feature that allowed them to
fix the bugs in the game while playing. The participants’ comments were also enthusiastically encour-
aging.

Result shows that the correlations between the flow experiences and learning gains were not statisti-
cally significant. In this research, we try to quantify the flow experience using the time lapse between
the key events. A metric is introduced to quantify the flow experience. This outcome may be due to a

Ga
me

1

Ga
me

2

Ga
me

3

Ga
me

4

Ga
me

5

Ga
me

6

Ga
me

7

Ga
me

8

Qu
iz1

Qu
iz2

Qu
iz3

Qu
iz4

Qu
iz5

Qu
iz6

Qu
iz7

Qu
iz8

U-1 896 925 462 929 587 502 543 465 297 998 419 757 334 967 860 509

Z-Sco 1.6 1 -0 1.3 -0 -0 0 -0 -0.6 1.6 -0 0.9 -1 1.3 0.8 0.3

U-2 685 55 928 553 516 673 897 881 379 715 937 806 939 309 417 132

Z-Sco 0.8 -2 1.2 -0 -0 0.3 1.1 0.7 -0.4 0.7 1.8 1 1.9 -1 -1 -0.9

S-1 750 970 91 282 836 796 479 142 550 906 352 413 796 736 882 877

Z-Sco 0.7 1.3 -1 -1 1 0.6 -0 -1 0.1 1.4 -1 -0 1.3 0.6 1.1 1.3

S-2 266 121 338 343 489 408 817 962 131 730 723 399 524 372 422 796

Z-Sco -1 -1 -0 -1 -0 -1 0.8 1.2 -1.2 0.9 0.8 -0 0.3 -1 -1 1.1

Table 7.3: SL-U:Student#1 time taken for each task and z-score

Table 7.4: SL-U :Student#2 time taken for each task and z-score

Table 7.1: USA-U:Student#1 time taken for each task and z-score

Table 7.2: USA-U:Student#2 time taken for each task and z-score

Shoot2Learn

654

flaw in the proposed metric (dfe), and further research is required to validate the effectiveness of the
proposed metric.

In Shoot2Learn, all the players will confront the same bugs during the play, and the system gives the
same options to select the fix from. Fixing the errors is a kind of debugging, and debugging is harder
than coding (though, in this tool, the correct option is also given along with some other distractors).
In the future, we are planning to include a free-form or a drag-and-drop editing tool that will allow
the learners to construct their own code segment. We also plan to incorporate a user modeling sys-
tem in the games to provide individualized challenges to the users. Moreover, an experienced gamer
may have a different flow experience compared to a non-gamer. The user model should also be able
to provide adaptable interfaces based on the user’s level of game-playing experience. We are also
planning to scale up the evaluation process. We will create one industry-level casual game for at least
three key knowledge areas in high-level programming (structured aspects first), and evaluate the
games in real classroom settings in different countries. We will refine the questionnaire and include
suitable questions to measure the flow experiences and motivation of the participants.

REFERENCES
Al-Bow, M., Austin, D., Edgington, J., Fajardo, R., Fishburn, J., Lara, C., Leutenegger, S., & Meyer, S. (2009).

Using game creation for teaching computer programming to high school students and teachers. ACM
SIGCSE Bulletin, 41(3), 104–108. https://doi.org/10.1145/1595496.1562913

Alzahrani, N., & Vahid, F. (2021, July). Common logic errors for programming learners: A three-decade litera-
ture. In ASEE Virtual Annual Conference (Paper ID #32801). Virtual Event: American Society of Engineer-
ing Education (ASEE). https://doi.org/10.18260/1-2--36814

Anderson, J. R., & Reiser, B. J. (1985). The LISP tutor. Byte, 10(4), 159-175. https://www.academia.edu/down-
load/3240480/TheLISPTutor.pdf

Austing, R. H., Barnes, B. H., Bonnette, D. T., Engel, G. L., & Stokes, G. (1979). Curriculum ‘78: Recommenda-
tions for the undergraduate program in computer science – A report of the ACM curriculum committee
on computer science. Communications of the ACM, 22(3), 147-166. https://doi.org/10.1145/359080.359083

Bandura, A. (1997). Self-efficacy: The exercise of control. W H Freeman/Times Books/Henry Holt & Co.
https://psycnet.apa.org/record/1997-08589-000

Barnes, T., Powell, E., Chaffin, A., & Lipford, H. (2008, February). Game2Learn: Improving the motivation of
CS1 students. Proceedings of the 3rd International Conference on Game Development in Computer Science Education
(GDCSE ‘08) (pp. 1–5). Miami, Florida: ACM. https://doi.org/10.1145/1463673.1463674

Barnes, T., Richter, H., Powell, E., & Chaffin, A., & Godwin, A. (2007). Game2Learn: Building CS1 learning
games for retention. ACM SIGCSE Bulletin, 39(3), 121-125. https://doi.org/10.1145/1269900.1268821

Beaubouef, T., & Mason, J. (2005). Why the high attrition rate for computer science students: Some thoughts
and observations. ACM SIGCSE Bulletin, 37(2), 103-106. https://doi.org/10.1145/1083431.1083474

Becker, B. A., & Quille, K. (2019, February). 50 years of CS1 at SIGCSE: A review of the evolution of intro-
ductory programming education research. Proceedings of the 50th ACM Technical Symposium on Computer Science
Education (SIGCSE ‘19) (pp. 338–344). Minneapolis, MN, USA: ACM.
https://doi.org/10.1145/3287324.3287432

Ben-Ari, M. (2001). Constructivism in computer science education. Journal of Computers in Mathematics and Science
Teaching, 20(1), 45-73. https://www.learntechlib.org/primary/p/8505/

Bennedsen, J., & Caspersen, M. E. (2007). Failure rates in introductory programming. ACM SIGCSE Bulletin,
39(2), 32-36. https://doi.org/10.1145/1272848.1272879

Brusilovsky, P., Calabrese, E., Hvorecky, J., Kouchnirenko, A., & Miller, P. (1997). Mini-languages: A way to
learn programming principles. Education and Information Technologies, 2(1), 65-83.
https://doi.org/10.1023/A:1018636507883

https://doi.org/10.1145/1595496.1562913
https://doi.org/10.18260/1-2--36814
https://www.academia.edu/download/3240480/TheLISPTutor.pdf
https://www.academia.edu/download/3240480/TheLISPTutor.pdf
https://doi.org/10.1145/359080.359083
https://psycnet.apa.org/record/1997-08589-000
https://doi.org/10.1145/1463673.1463674
https://doi.org/10.1145/1269900.1268821
https://doi.org/10.1145/1083431.1083474
https://doi.org/10.1145/3287324.3287432
https://www.learntechlib.org/primary/p/8505/
https://doi.org/10.1145/1272848.1272879
https://doi.org/10.1023/A:1018636507883

Mohanarajah & Sritharan

655

Chiodini, L., Santos, I. M., Gallidabino, A., Tafliovich, A., Santos, A. L., & Hauswirth, M. (2021, June). Curated
inventory of programming language misconceptions. Proceedings of the 26th ACM Conference on Innovation and
Technology in Computer Science Education, Volume 1 (ITiCSE ‘21) (pp. 380–386). Virtual Event, Germany:
ACM. https://doi.org/10.1145/3430665.3456343

Code.org. (n.d.). https://code.org/educate/gamelab

CodeMonkey.org. (n.d.). www.codemonkey.com

Cote, A. C. (2020). Gaming sexism: Gender and identity in the era of casual video games. New York University Press.
https://doi.org/10.18574/nyu/9781479838523.001.0001

Crow, T., Luxton-Reilly, A., & Wuensche, B. (2018, January). Intelligent tutoring systems for programming edu-
cation: A systematic review. Proceedings of the 20th Australasian Computing Education Conference (ACE ‘18) (pp.
53–62). Brisbane, Queensland, Australia: ACM. https://doi.org/10.1145/3160489.3160492

Csikszentmihályi, M. (2018). Flow: The psychology of optimal experience. CreateSpace Independent Publishing Plat-
form.

Dadic, T. (2011). Intelligent tutoring systems for programming. In S. Stankov, V. Glavinic, & M. Rosic (Eds.),
Intelligent tutoring systems in e-learning environments: Design, implementation and evaluation (pp. 166-186). IGI
Global. https://doi.org/10.4018/978-1-61692-008-1.ch009

Denny, P., Luxton-Reilly, A., Tempero, E., & Hendrickx, J. (2011, March). CodeWrite: Supporting student-
driven practice of Java. Proceedings of the 42nd ACM Technical Symposium on Computer Science Education
(SIGCSE ‘11) (pp. 471–476). Dallas, TX, USA: ACM. https://doi.org/10.1145/1953163.1953299

du Boulay, C., O’Shea, T., & Monk, J. (1981). The black box inside the glass box: Presenting computing con-
cepts to novices. International Journal of Man-Machine Studies, 14(3), 237–249.
https://doi.org/10.1016/S0020-7373(81)80056-9

Edmondson, C. (2009). Proglets for first-year programming in Java. ACM SIGCSE Bulletin, 41(2), 108-112.
https://doi.org/10.1145/1595453.1595486

Farooq, M. S., Khan, S. A., Ahmad, F., Islam, S., & Abid, A. (2014). An evaluation framework and comparative
analysis of the widely used first programming languages. PLoS ONE, 9(2), e88941.
https://doi.org/10.1371/journal.pone.0088941

Fouh, E., Akbar, M., & Shaffer, C. A. (2012). The role of visualization in computer science education. Computers
in the Schools, 29(1-2), 95-117. https://doi.org/10.1080/07380569.2012.651422

Franklin, D., Salac, J., Thomas, C., Sekou, Z., & Krause, S. (2020, March). Eliciting student scratch script under-
standings via scratch charades. Proceedings of the 51st ACM Technical Symposium on Computer Science Education
(SIGCSE ‘20) (pp. 780–786). Portland, OR, USA: ACM. https://doi.org/10.1145/3328778.3366911

Game2Learn. (2012). Game2Learn lab archives. North Carolina State University, Department of Computer Sci-
ence. https://eliza.csc.ncsu.edu/archives.html

Harel, I., & Papert, S. (1991). Constructionism: Research reports and essays, 1985–1990. Ablex Publishing Corpora-
tion.

Hundhausen, C. D., Douglas, S. A., & Stasko, J. T. (2002). A meta-study of algorithm visualization. Journal of
Visual Languages & Computing, 13(3), 259-290. https://doi.org/10.1006/jvlc.2002.0237

Jeliot 3. (n.d.). Publications. http://cs.joensuu.fi/jeliot/pub.php

Johnson, C., McGill, M., Bouchard, D., Bradshaw, M. K., Bucheli, V. A., Merkle, L. D., Scott, M. J., Sweedyk, Z.,
Velázquez-Iturbide, J. A., Xiao, Z., & Zhang, M. (2016, July). Game development for computer science ed-
ucation. Proceedings of the 2016 ITiCSE Working Group Reports (ITiCSE '16) (pp. 23–44). Arequipa, Peru:
ACM. https://doi.org/10.1145/3024906.3024908

Kafai, Y. B., & Burke, Q. (2015). Constructionist gaming: Understanding the benefits of making games for
learning. Educational Psychologist, 50(4), 313-334. https://doi.org/10.1080/00461520.2015.1124022

https://doi.org/10.1145/3430665.3456343
https://code.org/educate/gamelab
http://www.codemonkey.com/
https://doi.org/10.18574/nyu/9781479838523.001.0001
https://doi.org/10.1145/3160489.3160492
https://doi.org/10.4018/978-1-61692-008-1.ch009
https://doi.org/10.1145/1953163.1953299
https://doi.org/10.1016/S0020-7373(81)80056-9
https://doi.org/10.1145/1595453.1595486
https://doi.org/10.1371/journal.pone.0088941
https://doi.org/10.1080/07380569.2012.651422
https://doi.org/10.1145/3328778.3366911
https://eliza.csc.ncsu.edu/archives.html
https://doi.org/10.1006/jvlc.2002.0237
http://cs.joensuu.fi/jeliot/pub.php
https://doi.org/10.1145/3024906.3024908
https://doi.org/10.1080/00461520.2015.1124022

Shoot2Learn

656

Kelleher, C., & Pausch, R. (2005). Lowering the barriers to programming: A taxonomy of programming envi-
ronments and languages for novice programmers. ACM Computing Surveys, 37(2), 83-137.
https://doi.org/10.1145/1089733.1089734

Keselman, H. J., Huberty, C. J., Lix, L. M., Olejnik, S., Cribbie, R. A., Donahue, B., Kowalchuk, R. K., Lowman,
L. L., Petoskey, M. D., Keselman, J. C., & Levin, J. R. (1998). Statistical practices of educational researchers:
An analysis of their ANOVA, MANOVA, and ANCOVA analyses. Review of Educational Research, 68(3),
350-386. https://doi.org/10.3102/00346543068003350

Kiili, K. (2006). Evaluations of an experimental gaming model. Human Technology: An Interdisciplinary Journal on
Humans in ICT Environments, 2(2), 187-201. https://jyx.jyu.fi/bitstream/han-
dle/123456789/20195/1/HT_2006_v02_n02_p_187-201.pdf

Kölling, M., Quig, B., Patterson, A., & Rosenberg, J. (2003). The BlueJ system and its pedagogy. Computer Science
Education, 13(4), 249-268. https://doi.org/10.1076/csed.13.4.249.17496

Koulouri, T., Lauria, S., & Macredie, R. D. (2015). Teaching introductory programming: A quantitative evalua-
tion of different approaches. ACM Transactions on Computing Education, 14(4), Article No.: 26.
https://doi.org/10.1145/2662412

Liu, A. S., Schunn, C. D., Flot, J., & Shoop, R. (2013). The role of physicality in rich programming environ-
ments. Computer Science Education, 23(4), 315-331. https://doi.org/10.1080/08993408.2013.847165

Loksa, D., Margulieux, L., Becker, B. A., Craig, M., Denny, P., Pettit, R., & Prather, J. (2022). Metacognition and
self-regulation in programming education: Theories and exemplars of use. ACM Transactions on Computing
Education, 22(4), Article No.: 39. https://doi.org/10.1145/3487050

Luxton-Reilly, A., Albluwi, I., Becker, B. A., Giannakos, M., Kumar, A. N., Ott, L., Paterson, J., Scott, M. J.,
Sheard, J., & Szabo, C. (2018, July). A review of introductory programming research 2003-2017. Proceedings
of the 23rd Annual ACM Conference on Innovation and Technology in Computer Science Education (ITiCSE 2018)
(pp. 342–343). Larnaca, Cyprus: ACM. https://doi.org/10.1145/3197091.3205841

Major, L., Kyriacou, T., & & Brereton, O. P. (2012). Systematic literature review: Teaching novices program-
ming using robots. IET Software, 6(6), 502 – 513. https://doi.org/10.1049/iet-sen.2011.0125

Malliarakis, C., Satratzemi, M., & Xinogalos, S. (2014). Educational games for teaching computer programming.
In C. Karagiannidis, P. Politis, & I. Karasavvidis (Eds.), Research on e-learning and ICT in education: Technological,
pedagogical and instructional perspectives (pp 87–98). Springer. https://doi.org/10.1007/978-1-4614-6501-0_7

McWhorter, W. I., & O’Connor, B. C. (2009, March). Do LEGO® Mindstorms® motivate students in CS1?
Proceedings of the 40th ACM Technical Symposium on Computer Science Education (SIGCSE ‘09) (pp. 438–442).
Chattanooga, TN, USA: ACM. https://doi.org/10.1145/1508865.1509019

Meerbaum-Salant, O., Armoni, M., & Ben-Ari, M. (2013). Learning computer science concepts with Scratch.
Computer Science Education, 23(3), 239-264. https://doi.org/10.1080/08993408.2013.832022

Miljanovic, M. A., & Bradbury, J. S. (2018, November). A review of serious games for programming. Proceedings
of the 4th Joint International Conference on Serious Games (JCSG 2018). Darmstadt, Germany: Springer, Cham.
https://doi.org/10.1007/978-3-030-02762-9_21

Mohanarajah, S. (2018). Increasing intrinsic motivation of programming students: Towards fix-and-play educa-
tional games. Issues in Informing Science & Information Technology, 15, 69-77. https://doi.org/10.28945/4027

Naps, T. L., Rößling, G., Almstrum, V., Dann, W., Fleischer, R., Hundhausen, C., Korhonen, A., Malmi, L.,
McNally, M., Rodger, S., & Velázquez-Iturbide, J. A. (2003). Exploring the role of visualization and en-
gagement in computer science education. ACM SIGCSE Bulletin, 35(2), 131-152.
https://doi.org/10.1145/782941.782998

National Science Foundation & Institute of Education Sciences. (2013, August). Common guidelines for education
research and development. https://www.nsf.gov/pubs/2013/nsf13126/nsf13126.pdf

Nelson, G. L., & Ko, A. J. (2018, August). On use of theory in computing education research. Proceedings of the
2018 ACM Conference on International Computing Education Research (ICER ‘18) (pp. 31–39). Espoo, Finland:
ACM. https://doi.org/10.1145/3230977.3230992

https://doi.org/10.1145/1089733.1089734
https://doi.org/10.3102/00346543068003350
https://jyx.jyu.fi/bitstream/handle/123456789/20195/1/HT_2006_v02_n02_p_187-201.pdf
https://jyx.jyu.fi/bitstream/handle/123456789/20195/1/HT_2006_v02_n02_p_187-201.pdf
https://doi.org/10.1076/csed.13.4.249.17496
https://doi.org/10.1145/2662412
https://doi.org/10.1080/08993408.2013.847165
https://doi.org/10.1145/3487050
https://doi.org/10.1145/3197091.3205841
https://doi.org/10.1049/iet-sen.2011.0125
https://doi.org/10.1007/978-1-4614-6501-0_7
https://doi.org/10.1145/1508865.1509019
https://doi.org/10.1080/08993408.2013.832022
https://doi.org/10.1007/978-3-030-02762-9_21
https://doi.org/10.28945/4027
https://doi.org/10.1145/782941.782998
https://www.nsf.gov/pubs/2013/nsf13126/nsf13126.pdf
https://doi.org/10.1145/3230977.3230992

Mohanarajah & Sritharan

657

Papert, S. (1980). Mindstorms: Children, computers, and powerful ideas. Basic Books.

Pattis, R. E. (1981). Karel the robot: A gentle introduction to the art of programming with pascal. John Wiley and Sons.
https://dl.acm.org/doi/10.5555/539521

Pears, A., & Rogalli, M. (2011, November). mJeliot: A tool for enhanced interactivity in programming instruc-
tion. Proceedings of the 11th Koli Calling International Conference on Computing Education Research (Koli Calling ‘11)
(pp. 16–22). Koli, Finland: ACM. https://doi.org/10.1145/2094131.2094135

Pears, A., Seidman, S., Malmi, L., Mannila, L., Adams, E., Bennedsen, J., Devlin, M., & Paterson, J. (2007). A
survey of literature on the teaching of introductory programming. ACM SIGCSE Bulletin, 39(4), 204-223.
https://doi.org/10.1145/1345375.1345441

Price, B. A., Baecker, R. M., & Small, I. S. (1993). A principled taxonomy of software visualization. Journal of
Visual Languages & Computing, 4(3), 211-266. https://doi.org/10.1006/jvlc.1993.1015

Qian, Y., & Lehman, J. (2017). Students’ misconceptions and other difficulties in introductory programming: A
literature review. ACM Transactions on Computing Education, 18(1), Article No.: 1.
https://doi.org/10.1145/3077618

Robins, A. (2015). The ongoing challenges of computer science education research [Editorial]. Computer Science
Education, 25(2), 115-119. https://doi.org/10.1080/08993408.2015.1034350

Robins, A. V. (2019). Novice programmers and introductory programming. In S. A. Fincher, & A. V. Robins
(Eds.), The Cambridge handbook of computing education research (pp. 327 - 376). Cambridge University Press.
https://doi.org/10.1017/9781108654555.013

Robins, A., Rountree, J., & Rountree, N. (2003). Learning and teaching programming: A review and discussion.
Computer Science Education, 13(2), 137-172. https://doi.org/10.1076/csed.13.2.137.14200

Robocode. (n.d.). https://robocode.sourceforge.io/

Ryan, R. M., & Deci, E. L. (2000). Intrinsic and extrinsic motivations: Classic definitions and new directions.
Contemporary Educational Psychology, 25(1), 54-67. https://doi.org/10.1006/ceps.1999.1020

Saito, D., Sasaki, A., Washizaki, H., Fukazawa, Y., & Moto, Y. (2017, November). Program learning for begin-
ners: Survey and taxonomy of programming learning tools. Proceedings of the 9th International Conference on
Engineering Education (ICEED). Kanazawa, Japan: IEEE. https://doi.org/10.1109/ICEED.2017.8251181

Shabalina, O., Malliarakis, C., Tomos, F., & Mozelius, P. (2017, October). Game-based learning for learning to
program: From learning through play to learning through game development. Proceedings of the 11th Euro-
pean Conference on Games Based Learning (pp. 571-576). Graz, Austria: Academic Conferences and Publishing
International Limited. https://www.diva-portal.org/smash/get/diva2:1147690/FULLTEXT01.pdf

Shabalina, O., Vorobkalov, P., Kataev, A., & Tarasenko, A. (2008). Educational games for learning program-
ming. Educational games for learning programming, Book 6. International book series: Information science and computing
(pp. 79-83). Institute of Information Theories and Applications FOI ITHEA. http://hdl.han-
dle.net/10525/1136

Sharmin, S. (2022). Creativity in CS1: A literature review. ACM Transactions on Computing Education, 22(2), Article
No.: 16. https://doi.org/10.1145/3459995

Shorn, S. P. (2018, June). Teaching computer programing using gamification. Proceedings of the 14th International
CDIO Conference (pp. 1-10). Kanazawa, Japan: The CDIO™ Initiative. http://www.cdio.org/knowledge-
library/documents/teaching-computer-programming-using-gamification

Smith, J. M. (2022, July). How do students learn to program? Investigating theory and practice with learning
analytics. Proceedings of the 27th ACM Conference on Innovation and Technology in Computer Science Education
(ITiCSE ‘22), Volume 2 (pp. 640-641). Dublin, Ireland: ACM. https://doi.org/10.1145/3502717.3532110

Soloway, E., & Spohrer, J. C. (1989). Studying the novice programmer. L. Erlbaum Associates.
https://dl.acm.org/doi/book/10.5555/576212

Turbak, F., Sherman, M., Martin, F., Wolber, D., & Pokress, S. C. (2014). Events-first programming in App In-
ventor. Journal of Computing Sciences in Colleges, 29(6), 81-89. https://cs.wellesley.edu/~tink-
erblocks/CCSCNE14-AI2-events-first-paper.pdf

https://dl.acm.org/doi/10.5555/539521
https://doi.org/10.1145/2094131.2094135
https://doi.org/10.1145/1345375.1345441
https://doi.org/10.1006/jvlc.1993.1015
https://doi.org/10.1145/3077618
https://doi.org/10.1080/08993408.2015.1034350
https://doi.org/10.1017/9781108654555.013
https://doi.org/10.1076/csed.13.2.137.14200
https://robocode.sourceforge.io/
https://doi.org/10.1006/ceps.1999.1020
https://doi.org/10.1109/ICEED.2017.8251181
https://www.diva-portal.org/smash/get/diva2:1147690/FULLTEXT01.pdf
http://hdl.handle.net/10525/1136
http://hdl.handle.net/10525/1136
https://doi.org/10.1145/3459995
http://www.cdio.org/knowledge-library/documents/teaching-computer-programming-using-gamification
http://www.cdio.org/knowledge-library/documents/teaching-computer-programming-using-gamification
https://doi.org/10.1145/3502717.3532110
https://dl.acm.org/doi/book/10.5555/576212
https://cs.wellesley.edu/%7Etinkerblocks/CCSCNE14-AI2-events-first-paper.pdf
https://cs.wellesley.edu/%7Etinkerblocks/CCSCNE14-AI2-events-first-paper.pdf

Shoot2Learn

658

United States Bureau of Labor Statistics. (2022, September 9). Software developers, quality assurance analysts,
and testers. Occupational Outlook Handbook [Online]. https://www.bls.gov/ooh/Computer-and-Infor-
mation-Technology/Software-developers.htm

Vahldick, A., Mendes, A. J., & Marcelino, M. J. (2014, October). A review of games designed to improve intro-
ductory computer programming competencies. Proceedings of the IEEE Frontiers in Education Conference (FIE)
(pp. 1-7). Madrid, Spain: IEEE. https://doi.org/10.1109/FIE.2014.7044114

Villareale, J., Biemer, C. F., El-Nasr, M. S., & Zhu, J. (2020, September). Reflection in game-based learning: A
survey of programming games. Proceedings of the 15th International Conference on the Foundations of Digital
Games (FDG ‘20) (Article No.: 81). Bugibba, Malta: ACM. https://doi.org/10.1145/3402942.3403011

Weinberg, G. M. (1971). The psychology of computer programming. Van Nostrand Reinhold.

Wikipedia. (n.d.). Educational programming languages. https://en.wikipedia.org/wiki/Category:Educational_pro-
gramming_languages

Yadin, A. (2011). Reducing the dropout rate in an introductory programming course. ACM Inroads, 2(4), 71-76.
https://doi.org/10.1145/2038876.2038894

Zweben, S., & Bizot, B. (2022, May). 2021 Taulbie survey: CS enrollment grows at all degree levels, with in-
creased gender diversity. Computing Research News, 34(5), 2-82. Computer Research Association.
https://cra.org/wp-content/uploads/2022/05/2021-Taulbee-Survey.pdf

https://www.bls.gov/ooh/Computer-and-Information-Technology/Software-developers.htm
https://www.bls.gov/ooh/Computer-and-Information-Technology/Software-developers.htm
https://doi.org/10.1109/FIE.2014.7044114
https://doi.org/10.1145/3402942.3403011
https://en.wikipedia.org/wiki/Category:Educational_programming_languages
https://en.wikipedia.org/wiki/Category:Educational_programming_languages
https://doi.org/10.1145/2038876.2038894
https://cra.org/wp-content/uploads/2022/05/2021-Taulbee-Survey.pdf

Mohanarajah & Sritharan

659

APPENDIX A: PRE/POST TEST

Shoot2Learn

660

Mohanarajah & Sritharan

661

APPENDIX B: QUESTIONNAIRE

AUTHORS
Dr. Selvarajah (Mohan) Mohanarajah received his Ph.D. in Computer
Science from the Massey University, New Zealand. He is currently serv-
ing as a Professor of Computer Science at University of North Carolina
at Pembroke, NC, USA. His research interests include AI in Computer
Science Education, Educational Games, Cybersecurity and Machine
Learning.

Dr. Thambithurai Sritharan received his Ph.D. in Mathematics from
the University of Sussex, U.K. Senior Lecturer at the University of Co-
lombo, School of Computing, University of Colombo, Colombo, cur-
rently teaching Mathematics and Theoretical Computer Science courses.

	Shoot2Learn: Fix-and-Play Educational Game for Learning Programming; Enhancing Student Engagement by Mixing Game Playing and Game Programming
	Abstract
	Introduction
	Related Research
	CS1 Teaching/Learning Tools
	Intelligent tutoring systems / Interactive learning environments
	Program visualization (PV) / Algorithm animation (AA)
	Syntax-free, block-based, drag-and-drop microworlds
	Simplified or scaffolded languages
	Construct-and-review, immediate feedback systems
	Game-based learning systems (educational games, game design tools, and gamification)

	Why Learning Programming is Challenging
	Intrinsic Motivation and Self-Efficacy
	Flow Experience in Educational Games

	Methodology
	Evaluation Procedure, Participants & Instruments

	Results
	Discussion & Conclusions
	References
	Appendix A: Pre/Post Test
	Appendix B: Questionnaire
	Authors

