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ABSTRACT 
Aim/Purpose This study presents some activities that integrate computational thinking (CT) 

into mathematics lessons utilizing GeoGebra to promote constructionist learn-
ing.  

Background CT activities in the Indonesian curriculum are dominated by worked examples 
with less plugged-mode activities that might hinder students from acquiring CT 
skills. Therefore, we developed mathematics and CT (math+CT) lessons to pro-
mote students’ constructionist key behaviors while learning.  

Methodology The researchers utilized an educational design research (EDR) to guide the les-
son’s development. The lesson featured 11 applets and 22 short questions de-
veloped in GeoGebra. To improve the lesson, it was sent to eight mathematics 
teachers and an expert in educational technology for feedback, and the lesson 
was improved accordingly. The improved lessons were then piloted with 17 stu-
dents, during which the collaborating mathematics teachers taught the lessons. 
Data were collected through the students’ work on GeoGebra, screen recording 
when they approached the activities, and interviews. We used content analysis 
to analyze the qualitative data and presented descriptive statistics to quantitative 
data.  
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Contribution This study provided an example and insight into how CT can be enhanced in 
mathematics lessons in a constructionist manner.  

Findings Students were active in learning mathematics and CT, especially when they were 
engaged in programming and debugging tasks. 

Recommendations  
for Practitioners 

Educators are recommended to use familiar mathematics software such as Geo-
Gebra to support students’ CT skills while learning mathematics. Additionally, 
our applets are better run on big-screen devices to optimize students’ CT pro-
gramming and debugging skills. Moreover, it is recommended that students 
work collaboratively to benefit from peer feedback and discussion. 

Recommendations  
for Researchers  

Collaboration with teachers will help researchers better understand the situation 
in the classroom and how the students will respond to the activities. Addition-
ally, it is important to provide more time for students to get familiar with Geo-
Gebra and start with fewer errors to debug. 

Future Research Further research can explore more mathematics topics when integrating CT uti-
lizing GeoGebra or other mathematics software or implement the lessons with 
a larger classroom size to provide a more generalizable result and deeper under-
standing.  

Keywords computational thinking, mathematics, constructionist, GeoGebra 

INTRODUCTION 
Computational thinking (CT) has received significant interest from scholars across the globe (Boc-
coni et al., 2016, 2022). The research on integrating computational thinking in mathematics education 
has increased significantly in the last five years (Subramaniam et al., 2022). Several countries have in-
corporated CT into their educational curricula, and CT is taught in various ways across countries. 
Some include it as a specific subject, some include it in other disciplines, and yet others include it as a 
component of a subject (Bocconi et al., 2016). Some countries, like France, Finland, Sweden, and 
Norway, have made it explicit in their compulsory education to integrate CT into the mathematics 
subject (Bocconi et al., 2022). The initiatives reported from their research show the significance of 
CT in education and for 21st-century skills. 

Although often taught as a term in computer science, CT has applications beyond this field. It is a 
problem-solving approach that can be applied to a variety of disciplines (Wing, 2006). The impact of 
CT is crucial in various subject fields, including science, mathematics, languages, and others. Re-
searchers have integrated CT into other school subjects such as science (Sneider et al., 2014; 
Weintrop et al., 2016), mathematics (Chan et al., 2020; Hickmott et al., 2018; Ho & Ang, 2015; Ho et 
al., 2018, 2019, 2021; Khoo et al., 2022; Subramaniam et al., 2022; Ye et al., 2023) and language (Rot-
tenhofer et al., 2021; Sabitzer et al., 2018) and those integrations promote CT and the embedded sub-
jects. It proved that CT is implementable in other subjects, including mathematics. Additionally, 
learning CT and mathematics as an integration could benefit both, as they could co-develop and sup-
port each other (Ye et al., 2023). 

Based on literature reviews, the researchers found studies on the integration of CT in mathematics 
education focus on students, design activities, and preservice teachers (Khoo et al., 2022), tools used, 
and countries (Subramaniam et al., 2022), students’ levels, mathematics domains, tools, as well as CT 
framework (Ye et al., 2023). These different literature reviews supplement each other, such as the 
tools used to teach CT in mathematics lessons (Subramaniam et al., 2022; Ye et al., 2023). A sum-
mary of CT research in mathematics education will help other scholars take a stance and conduct fur-
ther research. From those studies, we learned about mathematical software and approaches that can 
potentially integrate CT into mathematics lessons.  
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Inevitably, with the introduction to new innovations in education, teachers might face challenges to 
integrate them. Furthermore, due to the curriculum reform that encourages teachers to infuse CT in 
possible subject areas in European countries (Bocconi et al., 2016, 2022), teachers might encounter 
challenges in designing and accessing CT activities or lessons. Some teachers have reported that they 
felt uncertain about their understanding of CT despite having it in their school curricula, and they 
find it difficult to teach CT to their students (Nordby et al., 2022). Teachers need to be trained due to 
their limited understanding of CT and teaching approaches (Kravik et al., 2022). This indicates that 
the presence of CT in the curriculum in their schools does not necessarily ensure that teachers can 
easily instruct it, and they need support. To overcome the challenges faced by teachers in Singapore, 
teachers are prepared with CT activities, exemplars to teach mathematics and CT, and the design 
Math+CT principles (Ho et al., 2019) – such CT activities for integrating CT in mathematics act as a 
reference for teachers in their lesson implementation.  

Meanwhile, in Indonesia, the curriculum document promotes the integration of CT in computer sci-
ence (CS) or informatics disciplines. It shows that Indonesia realized the importance of students de-
veloping their CT skills. However, CT integration in other disciplines is rarely found. If non-CS 
teachers, such as mathematics teachers, could contribute to enhancing students’ CT skills, they first 
require access to learning activities that would aid in incorporating CT into mathematics. Addition-
ally, in Indonesia, students primarily learn CT from worked examples and in unplugged mode (not 
using machines). Learning with worked examples could reduce cognitive load and impose less chal-
lenge (Chen et al., 2023). However, it might inhibit the students’ CT development as it does not re-
flect Papert’s (1980) strategy to develop students’ CT skills by letting children explore the codes to 
program mathematical objects and gain knowledge from their interaction with the computer. There-
fore, this paper provides an alternative approach and examples of learning mathematics using com-
putational thinking with the constructionist approach. We propose to use mathematics software 
called GeoGebra instead of other general programming software. The research question we aim to 
answer is: How do the mathematics CT tasks utilizing GeoGebra align with constructionist con-
structs?  

LITERATURE REVIEW 
There is a growing interest in integrating computational thinking (CT) in education and mathematics 
education (Subramaniam et al., 2022). In this section, the researchers will elaborate on the conceptu-
alization of CT, its components, how CT is integrated with mathematics, and the tools for students 
to develop CT skills.  

COMPUTATIONAL THINKING (CT) 
Papert (1980) first introduced computational thinking (CT), describing it as a way of accessing 
knowledge through computer interaction. Papert and his fellow researchers created a program called 
‘turtle geometry’ to let students program mathematical objects. Wing (2006) later revived CT and de-
fined it as the ability to solve problems by processing information agents, humans, or a mix of the 
two, arguing that it is a core skill alongside reading, writing, and arithmetic. However, there isn’t a 
consensus definition for CT, and there are different ways to teach it. In this study, we combined Pa-
pert’s (1980) key idea and Wing’s (2006) concept of problem-solving skills. 

CT can be delivered in two different ways: unplugged or plugged. The term “unplugged,” introduced 
by Bell et al. (2009), refers to conducting CT activities without using computers or information pro-
cessing agents. Meanwhile, the plugged CT utilizes computers and comparable tools to help students 
improve their CT skills (Hermans & Aivaloglou, 2017). Students are able to participate in both types 
of CT activities and gain benefits from their involvement. 
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CT  FRAMEWORK IN MATHEMATICS EDUCATION RESEARCH  
The researchers investigated the existing frameworks that have been utilized in this domain during 
the development of our math+CT lessons. Other scholars have employed various frameworks to in-
vestigate the incorporation of computational thinking (CT) in mathematics instructions (Ho et al., 
2021; Hoyles, 2015). Several frameworks have developed from their predecessors (Shute et al., 2017; 
Zhong et al., 2016). One potential explanation is that the framework adapts or conforms to the re-
quirements of the CT implementation. For instance, Shute et al. (2017) further improved the frame-
work of CT proposed by Weintrop et al. (2016) by extending grade-level specifications and the use of 
programming tools. The enhanced CT framework will assist us in devising our CT tasks in mathe-
matics lessons, as this framework is not limited by grade level or specific tools. Consequently, in this 
study, the Math+CT tasks were grounded in the framework established by Shute et al. (2017). 

In this section, the researchers will elaborate on the six CT facets described by Shute et al. (2017) and 
the connection to Math+CT lessons. Table 1 presents the six facets of CT, their indicators proposed 
by Shute et al. (2017), and the connections corresponding to our mathematics activities. These facets 
suggest how a task designer can infuse CT activities into mathematics lessons. However, most of the 
GeoGebra applets developed in this study exhibit mainly algorithms and debugging. Other facets 
were less apparent, but they were there.  

Table 1. CT facets and indicators and corresponding mathematics activity 

No. Facet Indicators Connection to Math+CT Tasks 
1 Decomposition Students dissect a complex problem 

into smaller components. The smaller 
components are functional elements 
that, when combined, constitute the 
entire problem; they are not arbitrary 
portions. 

To construct an inscribed regular 
polygon in a circle, students will 
learn how to construct a circle 
and then the polygon or vice-
versa.  

2 Abstraction Students extract the crucial infor-
mation of a problem. Abstraction can 
be divided into three subcategories: 
(a) Collecting and analyzing data collection 
and analysis: students gather infor-
mation that is most useful and im-
portant from different sources and 
understand the connections of differ-
ent data.  
(b) Pattern recognition: students should 
recognize patterns or principles that 
underlie the data. 
(c) Modeling: students construct mod-
els or simulations to depict the opera-
tion of a system or its prospective 
functionality. 

Data collection and analysis: stu-
dents will get some measure-
ments such as the area of the cir-
cle, radius of the circle, area of 
the regular polygon, angle meas-
ure, and number of vertices of 
the polygon. Students will ob-
serve the pattern of how the 
number of vertices influences the 
area of the polygon and how the 
area is approaching the area of a 
circle. When the circle has a ra-
dius of 1, the area of the polygon 
inscribed in it will be approaching 
3.14. Students would model the 
simulation of a dynamic regular 
polygon inscribed in the circle 
with a slider.  

3 Algorithms Students create a set of coherent and 
systematic instructions for effectively 
presenting a solution to a problem. 
The instructions can be executed by 
either a human or a computer. There 
are four subcategories: 

Students will learn how to input 
commands in GeoGebra and 
later need to construct geomet-
rical figures by themselves. Stu-
dents can run some commands 
simultaneously. Students can 
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No. Facet Indicators Connection to Math+CT Tasks 
(a) Algorithm design: students devise a 
sequence of systematic procedures to 
resolve a problem. 
(b) Parallelism: students simultane-
ously execute a particular number of 
tasks. 
(c) Efficiency: students aim to minimize 
the number of steps required to solve 
a problem by eliminating redundant 
and superfluous actions. 
(d) Automation: students can automate 
the implementation of the method if 
necessary to solve comparable prob-
lems. 

input fewer commands to con-
struct the objects. Students can 
use sliders to automate the poly-
gon with different vertices. 

4 Debugging Students engage in the process of de-
tecting, identifying, and fixing errors 
when a solution fails to function as 
intended. 

Students will learn how to debug 
the work of a fictional character, 
Andi, who programmed incor-
rectly. Students must find the er-
rors and fix them. 

5 Iteration Students iterate design procedures to 
enhance solutions until the optimal 
outcome is attained. 

In the final task, students will 
construct a specific object, and 
the process should be repeated 
until the object comes as close as 
possible to the determined suc-
cess criteria.  

6 Generalization Students use their CT skills in various 
contexts and areas in order to solve 
problems effectively and efficiently. 

Students are expected to use their 
experiences from the activities to 
extend it to different inscribed 
polygons. 

 

GEOGEBRA IN MATHEMATICS AND CT 
GeoGebra is an interactive geometric software that is widely used for teaching geometry and algebra. 
Geogebra has three key features – modeling, visualization, and programming – allowing users to 
tackle the importance of different mathematical fields (Ziatdinov & Valles, 2022). Researchers can 
use GeoGebra to teach mathematics in demonstration, interaction, or creation (Lavicza et al., 2010). 

Teachers can use GeoGebra to create an applet by inputting commands and uploading them to the 
website. A study by Kushwaha et al. (2013) shows that, with limited programming skills, teachers can 
make attractive mathematics applets using simple GeoGebra script commands. Velikova and Petkova 
(2019) trained preservice mathematics teachers to create GeoGebra applets, resulting in satisfying 
programming skills and the basic ability to use commands or codes. The researchers believe that it 
could be possible for junior or high school students to do the same things in more straightforward 
activities like the applets in our study.  

GeoGebra is accessible without charge to mathematics instructors both offline and online. The im-
plementation of GeoGebra in mathematics education facilitates students’ mathematical learning 
(Hamzah & Hidayat, 2022; Juandi et al., 2021; Velikova & Petkova, 2019; Yohannes & Chen, 2021). 
Hence, our study employed this software to aid students’ development of mathematical and compu-
tational thinking skills with the gadgets they could afford. 



Constructionist Approach to Learning Computational Thinking 

6 

There is limited research on utilizing GeoGebra for incorporating computational thinking (CT) into 
mathematics (Subramaniam et al., 2022; van Borkulo et al., 2021). van Borkulo et al. (2021) imple-
mented GeoGebra into their design lessons for academic research and reported that the lessons im-
proved students’ development of algorithmic thinking and generalization. Their study utilized Geo-
Gebra, accompanied by a paper worksheet, and involved around 15 Grade 12 students in the Nether-
lands. Students inputted the variables and/or equations on the input box, resulting in the computa-
tions and representations. In this manner, it was reported that students’ algorithmic thinking (AT) 
was enhanced by allowing them to work on steps of commands and iterations that they proceeded 
with GeoGebra. The “If” command was used by these students to generate a perpendicular line bi-
secting a given line segment. In addition, students enhanced their generalization ability by replacing 
letters or variables in GeoGebra. The given example used specific numbers, and then students in-
putted letters to replace the numbers so that it resulted in a more general form. Despite the benefit of 
utilizing GeoGebra to enhance CT concepts, students also experienced challenges, such as some dif-
ficulties in writing down the instructions for GeoGebra (i.e., the equation could be troublesome to 
input). Another recent study utilizing GeoGebra in integrated CT in mathematics lessons also im-
proved students’ CT skills (Chytas et al., 2024). Due to the limited study on the utilization of GeoGe-
bra to incorporate computational thinking (CT) into mathematics education, the researchers contrib-
uted to this field by creating mathematics and computational thinking (CT) lessons utilizing GeoGe-
bra. These lessons had the purpose of promoting constructionist learning to students. 

COMPARING TRADITIONAL AND MATH+CT  APPROACHES 
We expected that in our Math+CT lessons, students would learn computational thinking skills while 
learning mathematics through active participation in a way that Papert (1980) intended to have with 
his idea of constructionist ‘to access knowledge.’ Meanwhile, traditional approaches to teaching 
mathematics usually entail a teacher-centered approach, where concepts are presented, and problems 
are solved in a systematic way, ensuring clarity but frequently neglecting active involvement and the 
cultivation of critical thinking abilities (Boaler, 1998; Schoenfeld, 1988). The mathematics + compu-
tational thinking (Math+CT) innovation integrates computational thinking with a constructionist ap-
proach, using tools such as GeoGebra to encourage interactive and student-centered learning. This 
approach not only improves involvement but also nurtures analytical thinking and practical problem-
solving abilities (Weintrop et al., 2016). For instance, students who integrate the Math+CT lessons 
have the ability to visually represent and investigate geometric figures in an interactive manner, result-
ing in a more profound comprehension of principles and enhanced problem-solving skills. In gen-
eral, the Math+CT integration has been shown to have clear benefits in terms of student engage-
ment, critical thinking skills, and the ability to apply knowledge to real-world situations. This is sup-
ported by the improved learning outcomes and positive feedback from students in the study con-
ducted by Grover and Pea (2013) and Bers et al. (2014). 

METHODOLOGY 
The researchers employed the educational design research (EDR) methodology by McKenney and 
Reeves (2018). We worked with eight mathematics teachers and one specialist to develop Math+CT 
lessons. As a result, the lessons underwent development through discussion and modification from 
the initial Drafts I to II to III. Draft II was implemented for 17 junior high school students. This pa-
per focuses on the implementation of Draft II.  

The EDR is helpful for our study since its iterative nature helps us design the mathematics lessons 
that integrate CT. Figure 1 shows that EDR has three stages in the cycle, namely, (1) exploration and 
analysis, (2) design and construction, and (3) evaluation and reflection (McKenney & Reeves, 2018, p. 
83).  
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Figure 1. Generic model for conducting design research in education 

In the development of Math+CT lessons, EDR provides a structured framework to design, imple-
ment, and evaluate instructional approaches that integrate computational thinking with mathematics 
topics. This approach incorporates iterative cycles of planning, implementation, and evaluation, start-
ing with identifying educational goals and devising interventions associated with these goals. We uti-
lized tools like GeoGebra to facilitate interactive exploration of mathematical topics, ensuring com-
putational thinking abilities are promoted within authentic situations. The evaluation would focus on 
evidence of student learning through activities, reflections, and quantitative measures, permitting on-
going improvement based on research findings and feedback from students. 

At Freudenthal Institute Utrecht University, mathematics education students utilized EDR principles 
to create and assess educational interventions that improve students’ mathematics understanding by 
providing them with contextualized and engaging learning experiences (FIsme, 2015). By employing 
EDR in the development of Math+CT lessons, researchers cannot only revolutionize their didactical 
approach but also make valuable contributions to educational research by resulting in local instruc-
tional theories (ILT) on how CT could be integrated into mathematics lessons and what has worked 
successfully in this integration (Chytas et al., 2024; van Borkulo et al., 2021, 2023). This integration of 
computational thinking into mathematics education helps to provide students with the necessary 
skills (CT as a problem-solving skill) and knowledge to tackle future challenges in Science, Technol-
ogy, Engineering, and Mathematics (STEM) domains and beyond. 

The first researcher examined the national curriculum of Indonesia during Stage 1. In-depth inter-
views were undertaken with practitioners and experts involved in the development of the CS curricu-
lum and CT teacher training. The researchers found some resistance to accepting new tools or soft-
ware introduced by the trainers, and the participating teachers were more comfortable with spread-
sheets or Ms. Excel to teach CT. Moreover, the first researcher has been unable to locate any re-
sources pertaining to the use of CT for mathematics education within the documents of Indonesian 
government institutions. Consequently, the development of plugged mathematics+CT lessons is nec-
essary. 

During Stage 2, the researchers created the instructional materials. The first researcher developed the 
activities (Draft I) for the lessons and then distributed them to the mathematics teachers and practi-
tioners who were collaborating with us. The mathematics topic is derived from the Indonesian cur-
riculum intended for students in lower secondary schools. The topic of the lesson is a circle and re-
lated problems connected to area measurement. The mathematics in this study aims to teach students 
about the area of a unit circle using Archimedes’ exhaustion method (King, 2013), which involves 
considering the area of an inscribed regular polygon. After the draft was ready, it was shared with the 
collaborating mathematics teachers (T1, T2, T3, …, T8) and the practitioner (P), who offered sugges-
tions for development based on online discussions and participation in activities. Consequently, 
Draft I progressed into Draft II (Figure 2). 
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Figure 2. The improvement processes from Draft I to Draft III 

In stage 3, the researchers trialed Draft II, which involved a small group of 17 students. During this 
stage, the researchers assessed and analyzed the outcomes and experiences in the classrooms. The 
students were affiliated with mathematics teachers who were actively involved in the development 
stage. The researchers delegated the responsibility of selecting the participating students to the teach-
ers. Seventeen junior high school students participated in this pilot project, with each group consist-
ing of three to four students led by five mathematics teachers. They engaged in the completion of the 
lessons within the GeoGebra applets. Their problem-solving methods enabled us to assess the effi-
cacy of our design. From this pilot, the researchers gained insights to enhance the lessons for Draft 
III. 

DEVELOPING TOOL 
This section presents the tools used to integrate CT into mathematics lessons. First, existing studies 
(e.g., Subramaniam et al., 2022; Wang et al., 2022; Ye et al., 2023) were reviewed to list the tools used 
in integrating CT into mathematics. Based on our review, we have found that certain tools, such as 
GeoGebra, Spreadsheet, Microsoft Excel, R, and MATLAB, have been reported to support the 
learning of computational thinking in mathematics education (Subramaniam et al., 2022; van Borkulo 
et al., 2021, 2023; Wang et al., 2022; Ye et al., 2023). In this study, we have chosen to utilize GeoGe-
bra due to its ability to facilitate commands inputting to construct mathematical objects, editing com-
mands, and online classrooms. Additionally, GeoGebra is a familiar resource for mathematics teach-
ers, as it has millions of users located in nearly every country (GeoGebra, 2024).  

Figure 3 displays an illustration of the math+CT activities in GeoGebra. After inputting the correct 
commands, the 13-sided polygon was constructed. However, by only following the hint, students 
would not construct the intended object(s) on the yellow box, and this will be considered an incor-
rect response.  
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Figure 3. GeoGebra feature: 

Input box and algebra view for commands to construct objects 

CONSTRUCTIONIST APPROACH  
The development of the activities in this research is grounded in Papert’s (1980) constructionist the-
ory. Papert pioneered the use of computational thinking in the classroom, particularly in the teaching 
of mathematics, and conceptualized the constructionist theory. Papert’s concept of computational 
thinking focuses on the use of digital artifacts in conjunction with a digital learning environment for 
the purpose of acquiring or accessing knowledge. Consequently, this form of engagement helps stu-
dents build their knowledge. Papert developed a tool based on LISP programming, which computer 
scientists used to tackle difficult issues and help young learners explore mathematics (Kynigos, 2015). 
Young learners interacted with this tool to construct mathematical objects. 

Papert (1980) proposed not only the definition of the constructionist theory of learning but also put 
forth a key principle for learning in a constructionist approach that was based on three main keys: 
engagement in the activity, ownership of one’s ideas and learning style, and exposure. The mathemat-
ics+CT lessons in our research were developed with a focus on these principles, utilizing the GeoGe-
bra platform. Students were encouraged to program geometric objects and fix command errors 
(bugs), use their ideas by organizing the instructions based on their personal preferences, and discuss 
their solutions with their peers. 

First, the engagement describes students actively constructing or reconstructing the digital artifacts. 
Instead of introducing students to artificial mathematical pictures and trying to understand abstract 
mathematical activity, Papert (1972) preferred students to do mathematics. What Papert designed in 
‘Turtle Geometry’ allowed students to work with the programming language and explore the geomet-
rical shapes independently. Similarly, GeoGebra has the potential to do similar things to allow stu-
dents to program mathematical objects. To some extent, the environment could shape or trigger the 
engagement. Figure 4 depicts how a student engaged in our applet to explore the area of a unit circle 
by programming a model that can visualize the changing of the vertices of the inscribed polygon in a 
unit circle using a slider, and this student had moved the slider into 100. This means that this student 
successfully programmed this simulation and played with it, depicting engagement. If students had 
just created the simulation without exploring the slider to observe the changes in the vertices and the 
polygon’ area, the engagement would not been fully incorporated by students. However, if the slider 
remained on n=3, it might be that students have moved the slider back to n=3 after exploring it or 
students did not move the slider so that it remained at n=3, showing an equilateral triangle inscribed 
in a unit circle. 
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Figure 4. A student’s work on creating a model 

for investigating an inscribed polygon in a unit circle 

Additionally, specific digital environments could support students in accomplishing meaningful pro-
jects, keep them motivated, and encourage them to develop and share their projects (Lodi et al., 
2019). The projects could be video games, animated stories, or simulations of simple real-world phe-
nomena. It is essential to design an environment that allows students’ engagement to construct, mod-
ify, and tinker with digital artifacts (Kynigos, 2015). In our study, the researchers provided students 
with GeoGebra applets, which they could use to program, construct, and simulate mathematical ob-
jects such as polygons, circles, angles, and points to understand mathematical concepts (area of cir-
cles).  

The second key to learning is to facilitate students’ ideas and learning styles. This means that students 
use their ideas to construct the artifacts and are free to use their own ways or approaches. Teachers 
should avoid a ready-made environment that students are prescribed to follow. An alternative is to 
provide ‘half-baked’ artifacts, as proposed by Kynigos (2007), where students can change and im-
prove unfinished artifacts as if they were engineers. The half-baked task is intended to let students 
gain ownership of the techniques and ideas of the artifacts’ construction (Kynigos, 2015). In the tasks 
developed in this study, the researchers used somewhat different half-baked artifacts by providing 
students with unfinished command(s) to construct geometrical objects or commands containing er-
rors for students to fix to construct the artifacts successfully. The students can utilize their strategies 
to construct objects, even though some commands should follow orders. They can deviate from the 
example commands as long as the object is constructed. This, the researchers believe, will instill in 
students a sense of ownership over the strategies. 

Lastly, the key to learning is exposure, which could mean that students can present their ideas, work 
with their peers, and demonstrate how they created the objects (Kynigos, 2015). However, 
GeoGebra lesson feature has yet to let students collaborate or work in groups within one task. 
Therefore, this key to learning is facilitated outside the learning environment. Teachers could provide 
rooms for students to share their creations or artifacts and how they developed them with their 
peers. Students were allowed to discuss their strategies with their friends. Based on the explanation of 
constructionist constructs, the researchers would contrast those constructs to the actual learning 
when students approached our Math+CT tasks. 

The constructionist theory has evolved and considered social dimensions, resulting in social con-
structionist theory. This could enrich our perspective on the way knowledge is shaped in this manner. 
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Mackrell and Pratt (2017) discussed the importance of social interaction in constructionism and shed 
light on how social dimensions could contribute to the ‘spaces for reasons’ in their proposal to view 
constructionism. Brady et al. (2016) examined a cooperative project on programable badges (digital 
name tags) and provided evidence in favor of the possibility of incorporating social dimensions into 
learning in a constructionist manner. Students worked together to program the badges, and they ben-
efited from this environment as they took their roles to contribute. Ultimately, they combined their 
experiences to create new knowledge or understanding.  

In summary, the researchers adhered to Papert’s constructionist perspective and core learning con-
cepts, allowing student social interaction during the artifact construction process. The researchers 
agree that we should consider the social component of knowledge construction; in our environment, 
students are free to converse or engage in discussion with one another. A more thorough explanation 
of this will be provided in the methodology section.  

CONTEXT 
In 2019, Indonesia introduced computer science (informatics) subjects in schools’ curricula from pri-
mary level to high school level that focus on computational thinking (CT) skills, in accordance with 
the recent update on the significance of CT in education (Suprayitno, 2019). Currently, some schools 
have implemented computer science (CS) subjects. However, the books or learning resources for 
learning CT are still dominated by unplugged CT activities. Despite the isolation of learning CT in CS 
lessons, Indonesian researchers have attempted to integrate CT into mathematics lessons following 
global trends (Irawan et al., 2024). Irawan et al. (2024) found an increase in Indonesian researchers 
investigating CT integration into mathematics, and it revealed limited studies incorporating the 
plugged CT activities when integrating it into mathematics lessons. Therefore, it is necessary to inves-
tigate further plugged Math+CT lessons in Indonesia, especially with mathematics software. 

Before elaborating on the Indonesian national mathematics curriculum, the researchers provide a 
synopsis of the instructional methods and learning approaches employed in these five schools. 
Teachers participating in our study are not fully acquainted with GeoGebra. According to our con-
versation with the teachers, they have incorporated GeoGebra into their mathematics lessons primar-
ily for demonstrating concepts and only occasionally for creating artifacts. The GeoGebra tasks were 
prepared in partnership with the teachers from these schools, as previously stated. Their astonish-
ment stemmed from the fact that GeoGebra could be configured to utilize programming techniques 
to generate mathematical objects. 

Making a connection to the existing mathematics curriculum is essential to sustain the implementa-
tion of the lesson. The researchers developed the lessons (activities) based on the Indonesian new 
mathematics curriculum content, namely determining the area of a circle and its related problems. 
Usually, students were directly given the area formula of a circle. Students practiced cutting the circle 
into segments and arranged it into a parallelogram or a triangle to find its area. Pi (3.14) is also given 
directly to students, or if the teachers innovated with circular objects, they used the proportion of its 
diameter and circumference. To learn the area of circles, this study provided a different approach, 
simulated using a GeoGebra applet (Figure 5). The researchers tried to provide students with an in-
vestigation to measure area of a circle through the approximation method while interacting with Ge-
oGebra and relate to the formula they have learned.  
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Figure 5. Approaching the area of a circle with an area of a polygon in GeoGebra 

The area of a regular polygon (later, the researchers call it a polygon) with many vertices can be used 
to approach the area of a circle. This approach is usually called Archimedes’ exhaustion method 
(King, 2013), which approaches the circumference of the circle by the perimeter of the polygon in-
scribed in it. Rather similar to King’s (2013) activity that examines the circumference and formula of 
a circle, our study specifically focused on the area of a circle through the utilization of an inscribed 
polygon. Students will utilize programming skills to create a regular polygon that can be manipulated 
inside the unit circle. The manipulatable regular polygon is capable of altering its number of vertices, 
increasing or decreasing them, by the use of the slider command on GeoGebra. Consequently, as ad-
ditional vertices are added, the approximation of the unit circle’s area becomes increasingly accurate. 
Thus, the researchers developed two lessons. Lesson 1 consisted of mastering how to create regular 
polygons through GeoGebra’s script (Figure 6). Lesson 2 continued creating a circle and then in-
scribing a regular polygon on a circle. 

 
Figure 6. A task to construct a hexagon in lesson 1 

The researchers have developed 33 GeoGebra tasks consisting of 11 GeoGebra applets and 22 open 
and follow-up questions. The tasks are divided into two main sections: section 1 consists of 4 Geo-
Gebra applets (https://www.geogebra.org/m/st4g9kph and https://www.geoge-
bra.org/m/ffq7xusc), and section 2 consists of 7 GeoGebra applets. Each applet has its own promi-
nent CT components, which mainly deal with algorithms and debugging (Table 2). The yellow box 
indicated the main task or the goal that students needed to accomplish. In Figure 6, students had to 
create a hexagon with one of its sides passing from A(1,1) and B(2,1). Meanwhile, the grey box indi-
cates a hint or an example of how to use the GeoGebra commands to create similar objects on the 
yellow box.  

https://www.geogebra.org/m/st4g9kph
https://www.geogebra.org/m/ffq7xusc
https://www.geogebra.org/m/ffq7xusc
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Table 2. The applet and its prominent CT components 

Applet Description CT component 
1 Constructing a hexagon Algorithms 

2 Constructing a 13-sided polygon Algorithms 

3 Constructing a polygon with a slider Algorithms 

4 Debugging a polygon construction Debugging 

5 Constructing a unit circle Algorithms 

6 Debugging a unit circle construction Debugging 

7 Constructing an inscribed polygon in a circle Algorithms 

8 Debugging a polygon in a polygon Debugging 

9 Estimating pi Algorithms 

10 Programming without Algebra View Algorithms and debugging 

11 Advanced programming without Algebra View Algorithms and debugging 
 

DATA COLLECTION AND ANALYSIS 
The researchers requested support from the collaborating teachers to carry out the lessons. There-
fore, the role of the researchers was to monitor the execution of the teaching implementations by 
providing guidelines, such as hypothetical learning trajectories and instructions on collecting data 
from video screen recording and storing it in a folder on Google Drive. The researchers could later 
access the recording files in the folder and the students’ work in GeoGebra classrooms. To carry out 
the lessons, students could use the school’s computer laboratory laptops, tablets, or mobile phones 
(Figure 7). This study gathered data by recording the screen as students completed GeoGebra tasks 
and examining the students’ work saved on GeoGebra. Some students had challenges while attempt-
ing to capture the screen on small devices like tablets and mobile phones because of limited memory 
capacity. This condition probably impacted the devices’ speed in accessing GeoGebra. Out of seven-
teen students, only twelve screen videos were collected. Not all the twelve videos recorded audio of 
the students and teachers. 

 
Figure 7. Pilot implementation in different schools 
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Students’ works on GeoGebra were analyzed quantitatively by counting the number of students who 
could successfully accomplish the task. The video that captured students’ processes was used to sup-
port the quantitative data by providing evidence of how students proceeded with the tasks. Addition-
ally, the types of accomplishments that students have submitted were categorized. The researchers 
employed the content analysis methodology outlined by Krippendorff (2004) to analyze the data spe-
cifically from applet 11, with three steps: making, categorizing, and concluding the codes. First, the 
researchers looked at the students’ works one by one to see if any patterns or differences existed 
amongst students’ works. Then, researchers noticed that some students worked correctly, partially 
correctly (incomplete), incorrectly, or even left it empty, using slider command or not. 

In some tasks, especially the last applet (applet 11), the researchers set the RUN button and CLEAR 
or DELETE button to record how many of these students have pressed (Figure 8). This would in-
form us of the differences amongst students in accomplishing the task, whether they tried it once or 
more. For instance, when students could construct the inscribed octagon in a circle without using a 
slider command and only executing the run button one time without pressing the clear button, we 
coded this as SNsR1C0. This code denotes “Successful with No slider, pressing 1 Run and 0 Clear.” 
Another code is FR10C0, which means Failed with pressing the run button ten times and not press-
ing the clear button. The E stands for empty, meaning that the student did not put any commands. 
The result of this will be tabulated and presented in the Finding section.  

 
Figure 8. The DELETE and RUN buttons feature 

Additional data was from an impromptu interview after students finished the lessons. One of the 
teachers interviewed one student on how they experienced the lessons. As it was not planned, the 
teacher asked some questions related to the student’s experiences while working on the activities. 
The interview was voice recorded, and later, it was transcribed and analyzed. This data would add 
more information on how students perceive our tasks.  

FINDINGS 
This section presents sequential GeoGebra tasks for students to do. As previously mentioned, most 
of the students in our study did not learn mathematics using GeoGebra through programming, and 
they often studied GeoGebra for simulation or demonstration. 

Applet 1 requested students to construct a hexagon with given points. To understand the tasks, stu-
dents had to read the instructions on the yellow box as the primary goal to create requested objects 
(Figure 9). There are hints on how to do it (grey box). However, it uses different numbers 
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(coordinates, sizes, radius, variables). Following the hints directly would just construct the objects on 
the hints but not the intended objects. Thus, students need to pay attention to this hint carefully; oth-
erwise, students will create the object from the hint. This supported the pattern recognition in rela-
tion to the CT sub-skill. Only six students could respond correctly to this first task. The remaining 
students followed the hint fully or partially. This could be because it was the first time these students 
had worked on this kind of task. 

For some tasks on the left side, the researchers made the ‘Algebra View’ visible purposely so that 
when students input mistakes on the commands, they could edit them here (Figure 9). In more chal-
lenging tasks, the researchers purposely hid this Algebra View to let students think before inputting 
the commands. The correct commands to create the requested objects are A=(1,1), B=(2,1), and Pol-
ygon(A,B,6). Then, a hexagon with one of the vertices lying on points A and B would be constructed 
(Figure 9).  

 
Figure 9. A successful hexagon creation on applet 1 

Later, students had to confirm whether those two commands, A=(1,3) and A(1,3), could be used to 
create a point or not. It could help them decide which commands are more suitable for them or 
faster. Ten students responded that they could use those two commands to create a point. Other 
commands can only be inputted uniquely; no other commands can do the same. For instance, to cre-
ate a regular polygon on GeoGebra, students need to input “Polygon(<Point>,<Point>,<Number 
of Vertices>)” and cannot be swapped the order to be “Polygon(<Number of Verti-
ces>,”<Point>,<Point>).” Students could learn pattern recognition from this. A follow-up question 
was asked: What happens if the point is reordered? In this case, the command Polygon(A,B,5) be-
comes Polygon(B,A,5). The researchers expected that students could observe the difference between 
these two.  

Next, students would do a similar task to create a polygon with a different number of vertices (13) 
(Figure 10). This was intended to help them practice and familiarize themselves with the commands 
as they are relatively new to them. For this task, students were asked to create a 13-sided regular poly-
gon instead of 6 sides. Most students (14 out of 17) could successfully do this task. 
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Figure 10. Applet 2: creating a 13-sided polygon 

Next, students worked on an animated polygon by using the slider. The task asked students whether 
it was possible to change the slider to 100 (Figure 11). They could modify the slider by changing the 
maximum number from 10 (hint) to 100 or more. They could edit it on Algebra View or re-input it 
again. This required pattern recognition skills to be able to modify the variable. Most students (14 out 
of 17) responded that they could make a 100-sided polygon.  

 
Figure 11. Applet 3: creation with a slider 
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Consecutively, students had to write a command for a slider with a start of 100 and an end of 1000 
with an increment of 10. Most students (14 out of 17) could correctly answer this question by writing 
down n=Slider(10,100,10). The problem with using big numbers would slow down GeoGebra and 
possibly lead to a computer ‘hang’ or the screen freeze. This finding is significant as it suggests using 
fewer numbers in future studies. 

When students were familiar with the commands and programs, the researchers introduced them to 
debugging. The task let them debug or fix a program created by a fictional name, “Andi.” Andi wrote 
commands that contained errors that students should find and fix. Table 3 describes the errors and 
the correct commands. 

Table 3. Errors for students to debug 

Line Correct Command Andi’s command Description 
1 A=(1,1) A=(1,1) Correct 
2 B=(2,2) B=(2:2) The use of colon (:) instead of comma (,) 
3 n=Slider(3,100,1) n=Slide(3,100,1) The missing letter: r 
4 Polygon(A,B,n) Poligon(A,B,n) Case-sensitivity. The use of i instead of y 

Andi had four commands to the GeoGebra, and students had to find the incorrect errors by Andi 
(Figure 12).  

 
Figure 12. Applet 4: debugging when creating a polygon 

In this task, most students (12 out of 17) could fix the errors. It might be challenging as this task pro-
posed many errors (3 errors) when introducing debugging. Therefore, a few students needed help fix-
ing the errors. The worst case was students only created a point A. The researchers would consider 
this in the subsequent implementation to initialize with one or two errors in the debugging task. 

Another experience the researchers found was when a student (Q) discussed with her fellow student 
(Z) sitting at the computer desk next to her. On the debugging task (Figure 12), this student wrote 
down the list of commands’ revisions and ensured she had listed all the revisions to her peer. Her 
peer replied to her that she missed one command, which is the point B command “B=(2:2)”. In Fig-
ure 13, we can see that her peer peeped (her head is partially visible on this student screen recording) 
while helping.  

Q:  They (the revisions) were only the slider and the polygon. (While writing the revisions) 
Z:  The B! 
Q:  What is it with the B? 
Z:  The B used colon “:”! 
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Q:  (Scrolling up to the GeoGebra task to check) This is right?  
Z:  The B is incorrect! 
Q:  Oh (realizing the B was not correct because it used colon “:”) 

This student (Q) could fix Andi’s commands, and later, they had to write down what revision she 
made on the following question (Figure 14). From this conversation, students helped each other con-
firm the errors that needed to be fixed. One student missed one command that needs to be fixed on 
the question of what revision you made to Andi’s commands. This showed a kind of exposure to the 
idea that a peer could improve the ideas of others by noticing friends’ missing details or errors. 

 
Figure 13. Two students discussed the debugging task (Applet 4) 

 
Figure 14. The student could write down what she fixed on the error commands 

After getting familiarized with polygon construction and debugging, students moved to work on con-
structing circles in lesson 2. This lesson could be carried out on the same day as the polygon lesson 
or another day, depending on the teacher’s decision. In Figure 15, the researchers initialized to create 
a unit circle and then with a polygon inscribed on the circle. The task asked students to create a circle 
with a center on A(0,0) with a radius of 1 unit.  

A simple command to create a circle is to use a point as a center and a number for the radius, “Cir-
cle(<point>,<radius>).” Again, this command cannot be reordered as “Circle(<radius>,<point>).” 
Students could get the area of the unit circle by using the area command, Area(Object). In the Alge-
bra View, the area, Area(c), is shown as 3.14 (2-digit rounding up was set on the GeoGebra). Here, 
students encountered data, a measurement for an area. Students could observe the area of a circle 
with a radius of 1 produced an area of 3.14. At this point, students might not understand fully how 
the area formula for the circle “Area(c) could result in 3.14. Later, the task would go deeper into how 
this estimation would be derived from an area of a regular polygon inscribed to that circle.  
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Figure 15. Applet 5: Creating a unit circle 

Students had to answer to the area of a circle with a radius of 1 by observing the Algebra View. 
Eleven students performed well on this task, while some made mistakes on the radius as two instead 
of 1. This task was more straightforward than the polygon, using only three commands. However, 
students still needed to pay attention to the yellow box or the main objective of the task. After creat-
ing the circle, the next activity was to debug Andi’s commands (Figure 16). 

 
Figure 16. Applet 6: debugging a unit circle creation 

In Table 4, the commands were shorter than on the polygon and contained two errors (all are errors).  

Table 4. Errors for students to debug a circle creation 

Line Correct Command Andi’s command Description 
1 A=(1,1) A=(1:1) The use of colon (:) instead of comma (,) 
2 c=Circle(A,3) c=Cicle(A,3) The missing letter r 
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Thirteen students could solve this task except those who left this task empty. All students who in-
putted commands on this task got the correct answer. Compared to previous debugging tasks, this 
task was less demanding as it consisted of fewer errors and was more straightforward. This presuma-
bly allowed students to successfully debug this task. After accomplishing this task, students con-
structed a regular polygon inside the circle (Figure 17). The instruction was more extended than pre-
vious programming tasks and rather complicated.  

 
Figure 17. Applet 7: inscribing a polygon on a unit circle 

This task consisted of commands to create a point on the circle, the polygon interior angle, and the 
circle’s central angle. What made it more complicated was the new dependent point B’, which was 
the result when running the command Angle(B,A,a). Point B’ was required to construct the n-gon as 
BB’ is a vertex of the polygon to be created in Polygon(B,B’,n). This resulted in eight students who 
could correctly accomplish this task.  

Later, students would proceed with another debugging task (Figure 18). In this task, there were many 
errors (4) to be found and fixed. The result showed that only seven students could respond to this 
task correctly. The remaining students could not finish this task or did it incorrectly. It could be that 
many errors were still troublesome for students in our study.  

 
Figure 18. Applet 8: debugging task to create an inscribed square 

Reflecting on this, for future implementation, the researchers reduced the errors to two (Table 5). 
Some students struggled a lot when debugging too many things at once, and they might not under-
stand the pop-up notification informing them of the error. This pop-up notification was in English, 
and our research subjects were not English-speaking students. Although seven students could per-
form well, the researchers would reduce the number of errors for our next cycle.  
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Table 5. Errors command to create an inscribed polygon 

In the next task (Figure 19), students would learn how to estimate pi (3.14) using an inscribed poly-
gon on a unit circle utilizing a slider. Again, students encountered data collection, pattern, and simu-
lation (modeling), which are part of the abstraction CT skill. The more vertices, the closer the area of 
the polygon is to the area of the unit circle, which is close to 3.14. In this task, when the slider was 
moved to 56, it created a 56-sided polygon with an area of 3.14 square units (2-decimals rounding up 
set-up on GeoGebra).  

 
Figure 19. Applet 9: estimating pi 

Eleven students could make the inscribed polygon with a slider in a circle. After completing this task, 
students had to answer whether the area of the polygon changes when the slider is moved. This re-
sulted in 12 out of 17 students responding that the area changes. Additionally, students had to an-
swer, ‘What is the area of the polygon if it has 300 sides?’. Students should modify the slider to move 
it up to 300 or more. They could create n=Slider(3,300,1). This resulted in 15 out of 17 students who 
could get the correct answer (3.14) and only one answered by 0.14.  

The next task was more challenging as the Algebra View was no longer visible (Figure 20). The Alge-
bra View was hidden purposely to let students experience just entering the commands line by line 
and become more careful to input commands.  

Students must be able to use the programs or commands they have learned to create the requested 
object. Seven lines or rows were the minimum commands to be inputted if students learned from the 
previous task (Figure 20 left). Most students (11 out of 17) could accomplish this task. Although this 
task allowed students to have fewer commands, it seems that students followed the pattern from the 
previous task. None of the students in our studies has used five commands. The researchers assume 
it was not because they did not know, but we did not trigger them to have as few commands as pos-
sible. In future implementations, the researchers will stress that students will have fewer commands 
to input.  

Line Correct 
command 

Andi’s 
command Description 

1 n=4 n=5 number of vertices is 4 for a square  
2 a=360deg/n a=36deg/n The angle to be divided should be 360 
3 Angle(B,A,a) Angle(A,B,a) Incorrect order 
4 Polygon(B,B’,n) Polygon(B,B’,a) Incorrect variable for the number of vertices 
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Figure 20. Applet 10: programming without algebra view 

The last GeoGebra task (applet 11) requested students to perform something similar, but students 
could edit and replace the commands they had inputted when they made mistakes (Figure 21). The 
grid was hidden, and the number of runs and clears would be counted. 

 
Figure 21. Applet 11: advance coding 

The researchers listed students’ works and coded them in Table 6. Most students could input the cor-
rect commands, 14 students. Only two students left the task empty. Only one student ran the pro-
gram 16 times (SSR16C0). It seems that this student did not give up easily and kept on trying more 
and more. It depicted the engagement, keep trying to approach the task. Seeing that most students 
were successful, the researchers were convinced they learned how to construct the objects during the 
tasks they experienced previously. Applet 11 allowed students to use a slider or without a slider as it 
accommodated students’ ideas. Depending on what they remembered or thought easy to use, they 
could decide whether to use a slider command or not. Additionally, to students’ ownership of ideas, 
they could press run after each command they inputted, after some commands (many runs), or after 
all commands are inputted (1 run). Applet 11 facilitated students on what they thought was easier or 
more comfortable for them.  
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Table 6. Type or errors on the applet 11 

No Code Description Response Run Clear 
1 SNsR1C0 Successful No-slider Run 1 and Clear 0 6 1 0 
2 SNsR2C0 Successful No-slider Run 2 and Clear 0 2 2 0 
3 SNsR5C0 Successful No-slider Run 5 and Clear 0 1 5 0 
4 SNsR6C0 Successful No-slider Run 6 and Clear 0 1 6 0 
5 SSR16C0 Successful Slider Run 16 and Clear 0 1 16 0 
6 SSR1C0 Successful Slider Run 1 and Clear 0 2 1 0 
7 SSR0C0 Successful Slider Run 0 and Clear 0 1 0 0 
8 FR10C0 Failed Run 10 and Clear 0 1 10 0 
9 E Empty 2 0 0 
 Total  17   

One of the teachers interviewed a student regarding what they had learned and how they perceived 
the tasks. The following is a conversation between the teacher (T1) and a student (S). 

T1:  What did you learn from today’s lesson? 
S:  Making the polygon is easier. There is no need to make points one by one, but I could use 

the commands available here, using “polygon,” and the same goes for the slider. No need to 
create one by one, but I could directly make many (vertices). 

T1:  What else did you experience? Do you think it is interesting? 
S:  Yes, attractive. Because it saved my life, without this I had to make them one by one, so this 

makes my work easier.  
T1:  What are your challenges in doing the tasks? 
S:  In the beginning, I was confused, the main point is to read the instructions carefully, and 

then you could do it successfully.  

From the conversation, this student did not need to work hard on creating a polygon with a different 
number of vertices one by one, as instead of using the ‘slider’ command, it will create the manipulata-
ble polygon. This could help to focus on the concept instead of spending time constructing polygons 
one by one, like on paper and pencil drawings. 

The summary of the accomplishment of each applet (task) can be seen in Table 7. This has provided 
us with an overview of how most students could successfully work on the applets. 

Table 7. Summary of each applet and its supporting CT components 

Applet Description Successful rate 
1 Constructing a hexagon 58.8% 
2 Constructing a 13-sided polygon 82.4% 
3 Constructing polygon with a slider 82.4% 
4 Debugging polygon construction  88.2% 
5 Constructing a unit circle 64.7% 
6 Debugging a unit circle construction 76.5% 
7 Constructing an inscribed polygon in a circle 47.1% 
8 Debugging a polygon in a polygon 41.2% 
9 Estimating pi 64.7% 
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Applet Description Successful rate 
10 Programming without Algebra View 64.7% 
11 Advanced programming without Algebra View 82.4% 

REFLECTION FROM THE FEEDBACK 
Besides the relatively high success rate, our applet is still open for improvement. This can be seen 
from the student’s suggestion to make the applet better. This student thought that animations would 
make it more interesting and argued that many students do not like to read.  

T1: What do you suggest for the applet to make it better? 
S: Providing it with animations to make it more interesting, not only texts, as there are many 

students who do not like to read.  
T1: This needs animations, doesn’t it? 
S:  Yes 
T1: To make it more interesting? 
S: Yes 

Additionally, from the WhatsApp group conversation, the researchers asked the teachers and the ex-
perts how to improve the initial design. The following are some of their feedback to improve the de-
sign: 

“I like the idea of a circle with a regular n-sided polygon inside it. The circle’s 
area is calculated based on the area of the regular n-sided polygon.” (T2) 

“I just cannot believe it, solving problems through coding ... insane ... May I con-
firm my understanding? This applet be conducted online, for the commands that 
are being used, they are in English, while for Chrome set up into Indonesian, 
commands in Indonesian can be used, cannot they?” Note: It seems like using a 
laptop provides a smooth experience with good visuals, according to students. 
On the Samsung 7 tablet, the visuals are still good, but there are concerns about 
the input bar response being slow and difficulties in deleting incorrect objects. 
Additionally, there was an incident where a participant accidentally deleted a 
question in Activity 1 (yellow box).” (T3) 

“Please try designing the applets so that they can be run on a mobile phone, as 
most students already have an Android phone at home.” (T4) 

“The position of the input bar is not the same as in other applets.” (P) 

The teachers and practitioners have provided us with valuable insight that we were not aware of, 
such as the setting of the browser and the position of the input boxes, which were not consistent in 
different tasks. Based on the feedback, our applet design has improved. We became certain that the 
language setting on the browser would not translate the GeoGebra commands into the respective 
language, and we revised our input boxes to be consistent and located at the bottom of each task. 
Additionally, teachers have pointed out the type of devices used to execute the applets. From this, 
using small devices such as tablets or mobile phones could be more challenging in inputting the Geo-
Gebra commands, and this leads us to suggest teachers to use bigger devices such as laptops or com-
puters to carry out our Math+CT lessons. 

DISCUSSION 
This section discusses our findings with related theories and studies. The researchers organized it into 
five parts: engagement, ownership of ideas, and exposure based on the constructionism theory by Pa-
pert (1980), as well as algorithms and debugging based on the CT framework by Shute et al. (2017). 
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ENGAGEMENT 
From the result, the researchers have witnessed that most students could accomplish the GeoGebra 
tasks we designed. It was not surprising that they did not do well on the first task, but they per-
formed well on the later tasks, especially on applet 11. They might have been familiarized with what 
the tasks want them to do. For the engagement aspect, it shows students’ involvement in participat-
ing in the tasks. The researcher collected how many clear and run buttons had been pressed, and it 
showed how students kept trying to accomplish the last task. They also sometimes revisited the pre-
vious tasks to help them solve the task they were working on. 

Instead of introducing students to geometrical figures and giving them their properties, students con-
structed the points, polygons, angles, and circles. The researchers viewed that students have accom-
plished meaningful projects, as described by Lodi et al. (2019). Students could connect how the area 
of the regular polygon changes when the number of vertices increases. Additionally, students could 
reinvent the estimation of pi by exploring the slider on the polygon inscribed in the unit circle. This 
differs from the traditional teaching of the area of a circle and the pi, giving students the formula and 
the number directly. From this, the researchers showed that students could learn mathematics con-
cepts through programming and debugging. This aligns with Kaufmann and Stenseth (2021) study 
that learning programming in mathematics lessons could enhance both programming and mathemat-
ics.  

Programming could help students to work less to construct the object and focus more on mathemat-
ics. From the interview, one student utilized the slider command, making it faster for her instead of 
repeating the commands. This could be interpreted as attractive for this student, making her work 
easier. Kilhamn et al. (2021) found that programming could also engage students. This study also 
showed that the accomplishment rate for all the activities is quite high. Even though they struggled 
with the challenging debugging task, students did not easily give up and could still proceed with the 
following activities.  

As Kynigos (2015) proposed to let students construct, modify, and tinker with digital artifacts, stu-
dents in our study inputted the commands. They edited the mistakes on the Algebra View and did it 
on the edit, insert, and delete features that the researchers set on Applet 11. This shows that our de-
sign in GeoGebra has provided a learning environment for students to construct, modify, and tinker 
with digital artifacts. Even though the researchers have not yet used the half-baked artifact, instead, a 
program containing errors, students could tinker with that as a debugging activity. Nonetheless, the 
researchers should provide only fewer errors so that students would be able to handle this, as this 
was novel for them. The researchers have shown that fewer errors were more doable for students to 
handle as an amateur. The researchers also suspect the language used in the GeoGebra commands 
were in English would hinder students from seeing the mistakes (missing letters and typological) for 
“Cicle” or “Poligon” and understanding the pop-up notification. It might be different if the com-
mands or syntaxes and notifications are in the student’s native language. Related to debugging, Kauf-
mann and Stenseth (2021) found many cases in which students could change the code to make the 
program run properly. Our study has a similar finding that students could fix the program containing 
bugs or errors and successfully create the requested objects.  

OWNERSHIP OF IDEAS AND LEARNING STYLE 
In terms of ownership of ideas and learning style, students can use any method to accomplish the 
tasks. Some restrictions might apply, such as the construction order or variables. However, the tasks 
still provided some space for flexibility and creativity. For instance, students have their own ways of 
finishing the last two GeoGebra tasks. The last tasks let students start differently and use any strate-
gies to finish. For instance, in Table 6, some students applied a slider, and others did not. Students 
also could press the run button depending on their strategies. Our design tasks are open for using 
fewer commands if students could see this opportunity. However, students used only seven com-
mands similar to the commands they previously worked on.  
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EXPOSURE 
Lastly, our pilot study has no discussion or presentation after students have completed all the lessons. 
Therefore, the researchers have yet to witness how exposure has emerged in our study. Students 
mostly worked individually on their gadgets, but some asked their friends if they faced difficulties. 
However, the researchers could listen to students’ conversations. The two students discussed the 
missing error that had almost been forgotten. Students should write down what revisions they made 
to Andi’s commands. It showed that a friend’s ideas could be improved by listening to other friends. 
Additionally, it aligns with what Ackermann (2001) argued about shared knowledge being con-
structed through engaging in conversation around their or another’s artifact. Moreover, this is rele-
vant to epistemological plagiarism by Turkle and Papert (1990), which validates different ways of 
knowing and thinking. Additionally, purposefully designed peer feedback and discussion could en-
courage students to articulate their thinking and to understand their friends’ perspectives (Butler & 
Leahy, 2021). Our two students have shared knowledge from the fruitful conversation and the peep-
ing of a friend’s artifact. 

ALGORITHMS 
Most of our applets were dominated to support students’ algorithms skills. van Borkulo et al. (2021) 
researched integrated CT in mathematics lessons utilizing a workbook (paper-based) and GeoGebra 
(technology-based) for pre-college students in the Netherlands and resulted in positive effects on stu-
dents’ algorithmic thinking (AT). Additionally, a recent study also supports the finding that students 
could develop their algorithmic thinking (AT) while learning calculus lessons in integrated CT and 
mathematics lessons utilizing a workbook and GeoGebra (Chytas et al., 2024). In our study, students 
worked only on the GeoGebra applets to construct geometrical objects to learn mathematics con-
cepts (area of a circle and estimation of pi) by inputting GeoGebra commands. The differences be-
tween the previous two studies and our study were that students observed the patterns from the hints 
to create geometrical objects and requested them to construct similar objects with different sizes and 
coordinates. Therefore, despite supporting students’ algorithmic thinking (AT), students also en-
hanced their pattern recognition sub-skill of abstraction skills by Shute et al. (2017). 

Similar to Chytas et al. (2024), at the beginning, students struggle to input the commands on GeoGe-
bra. As we can see in the first task, the success rate is rather low. Later, after getting familiar with the 
tasks and the tool, they performed better. Encountering longer commands to observe and construct 
similar problems (Applet 7) would be challenging for our students. In the last task, most students 
could construct the requested object successfully without any available hints. It has shown the pro-
gress of students in managing the order of the commands and variables to construct an inscribed 
hexagon on a circle in GeoGebra.  

DEBUGGING 
Some applets in this study support students in developing their debugging skills. This skill requires 
students to detect and identify errors and then fix the errors. This study designed learning opportuni-
ties specifically for students to develop debugging skills by providing them with a fictional character, 
‘Andi,’ with his GeoGebra commands containing some errors. Other studies that specifically pro-
vided students with debugging tasks are Liu et al. (2017) with their debugging BOTS game and Arfé 
et al. (2020) with their inhibition tasks. Both studies revealed positive effects on students’ debugging 
skills. This is in line with our finding that students could detect errors, especially the debugging tasks, 
with few errors after they learned some commands to construct geometrical objects. However, ac-
cording to Liu et al. (2017), the BOTS game did provide a pop-up message that informed the stu-
dents of the errors, and the program still ran but did not successfully accomplish the goal. It is in line 
with the weakness of block programming, which provides little space for debugging or error notifica-
tions as it was not designed to do so (Liu et al., 2017), and block programming prevents syntax errors 
from happening (Resnick, 2012). Our study utilized GeoGebra, which provided students with a pop-
up notification to detect the errors in two ways, namely immediate style interruption and negotiated-
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style interruption, coined by Robertson et al. (2004). These interruptions have supported students to 
debug the command errors on GeoGebra (Yunianto, Bautista, et al., 2023; Yunianto, Prodromou, et 
al., 2023). Additionally, the English language could be a barrier for non-English speaking students to 
understand the meaning of the pop-up.  

Despite the specific tasks to develop debugging skills, when students inputted commands to GeoGe-
bra, they made mistakes, and they had to edit or delete their incorrect commands. Applet 11 pro-
vided students with edit, delete, and insert features for fixing their commands. They could utilize the 
edit feature to amend their inputted commands or insert a feature to add a missing command. This 
study has not recorded how many times students used these features as we have not developed a pro-
gram to record this behavior on GeoGebra. Additionally, we noticed that students’ mathematics con-
cepts might be related to students’ ability to debug. For instance, if students have understood the uni-
versal way to write a point on a Cartesian coordinate as (x,y) with a comma as a separator, they might 
be able to easily detect Andi’s command A(1:1), which used a colon as the separator. This is in line 
with mathematics, and CT skills could develop together and co-develop (Ye et al., 2023), but when 
students’ mathematical concepts are poor, it would hinder students’ ability to debug. In the last task, 
most students could construct the requested object successfully by inputting commands without 
pressing the clear button to start over.  

REFLECTION ON OUR MATH+CT  LESSONS 
After implementing the pilot study with a few students, we learned from the experiences and re-
flected on those experiences to improve the applets and the subsequent implementations. First, our 
GeoGebra applets will not work optimally if they are run on small devices such as smartphones, tab-
lets, and iPads, as the keypad will differ from the keypad on laptops or personal computers (PCs) 
(Figure 22). The keypad differs from the QWERTY keyboard, and this locates numbers, functions, 
alphabets, and symbols in different tabs, making students struggle to input a simple command like 
A=(1,1). 

 
Figure 22. Keypad composition on a smartphone while inputting GeoGebra commands 

Our applets require an internet connection to be run. Therefore, schools that have stable internet 
connections may apply or adapt our applet for their students. Technical errors, such as not showing 
the task, might happen when a poor internet connection occurs. Moreover, our applet can be used in 
different countries as they can be modified and translated into different languages. We also 
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experienced our students struggling with debugging too many errors. It would be wise to provide stu-
dents with fewer errors to fix and gradually progress to more errors to be fixed.  

If educators intend to deliver Math+CT lessons, they should take into account the specific recom-
mendations provided by this study. We can start by incorporating computational thinking (CT) skills 
into mathematics learning by utilizing tools such as GeoGebra to actively involve students in working 
with mathematical inquiries from computational perspectives. Additionally, bigger devices are recom-
mended for the implementation of our GeoGebra applets. Moreover, we should promote coopera-
tive problem-solving and inquiry-based learning methods in which students utilize computational 
thinking skills to solve real-world problems, with support from peer discussions and feedback. 

Additionally, we developed our Math+CT lessons collaboratively, and educators who wish to de-
velop Math+CT lessons should work with other educators or seek help from experts. Moreover, we 
could integrate computational thinking into the current math curriculum by including essential CT 
skills throughout different mathematics topics. We can employ technological tools such as GeoGebra 
and other mathematics software such as spreadsheets to generate interactive learning experiences in 
which students customize variables and emulate real-world problems. 

CONCLUSION 
The summary of the paper offered evidence of students’ learning in a constructionist manner with 
our math+CT lessons spread across eleven applets. The engagement and the ownership of ideas were 
observable. Even though the researcher did not set up classroom presentations for students, two stu-
dents in this study had a fruitful discussion on their artifacts and debugging process. They built 
shared understanding by working and checking on one another’s work. In terms of CT skills sup-
ported in this study, the researchers witnessed that our designed lessons have facilitated students to 
be active and engaged in algorithms and debugging with good performances. Our GeoGebra applets 
are relatively easy to use and adjust. Therefore, interested teachers might apply our applets directly or 
modify them for students. However, we realized that our design is imperfect and has much room for 
improvement. Our study involved only a few students, with three to four students from five different 
schools. Therefore, the generalization of this study is limited. Expanding the intervention to a larger 
sample size could yield more comprehensive findings about the effectiveness of Mathematics + 
Computational Thinking (Math+CT) lessons across different student demographics. This strategy 
would entail broadening the study to include a larger number of participants with diverse educational 
backgrounds, providing a more thorough insight into how various student groups gain benefits from 
the integrated approach. Furthermore, performing subsequent investigations in different schools, 
mathematics topics, and task sequences will enhance the external validity of the results. The different 
task sequencing might result in different findings, and researchers can further investigate task se-
quencing and its effect.  

Additionally, examining the effectiveness of Math+CT lessons in various educational settings with 
diverse student demographics or technological tools may highlight subtle differences in implementa-
tion and results. This comparison research not only confirms the intervention’s transferability but 
also provides guidance for making the necessary adjustments to optimize its success in other learning 
contexts. Further research also could investigate the changes in students’ attitudes toward mathemat-
ics and examine the effect of Math+CT lessons in a longitudinal study. 
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