

Volume 23, 2024

Accepting Editor Stamatis Papadakis │ Received: June 20, 2024 │ Revised: August 13, August 23,
September 3, 2024 │ Accepted: September 9, 2024.
Cite as: Higgins, C., O’Leary, C., McAvinia, C. & Ryan, B. J. (2024). Generating a template for an educational
software development methodology for novice computing undergraduates: An integrative review. Journal of In-
formation Technology Education: Innovations in Practice, 23, Article 12. https://doi.org/10.28945/5374

(CC BY-NC 4.0) This article is licensed to you under a Creative Commons Attribution-NonCommercial 4.0 International
License. When you copy and redistribute this paper in full or in part, you need to provide proper attribution to it to ensure
that others can later locate this work (and to ensure that others do not accuse you of plagiarism). You may (and we encour-
age you to) adapt, remix, transform, and build upon the material for any non-commercial purposes. This license does not
permit you to use this material for commercial purposes.

GENERATING A TEMPLATE FOR AN EDUCATIONAL
SOFTWARE DEVELOPMENT METHODOLOGY FOR

NOVICE COMPUTING UNDERGRADUATES:
AN INTEGRATIVE REVIEW

Catherine Higgins* Technological University Dublin,
Dublin, Ireland

catherine.higgins@tudublin.ie

Ciaran O’Leary Technological University Dublin,
Dublin, Ireland

ciaran.oleary@tudublin.ie

Claire McAvinia Trinity College Dublin,
Dublin, Ireland

claire.mcavinia@tcd.ie

Barry J. Ryan Technological University Dublin,
Dublin, Ireland

barry.ryan@tudublin.ie

* Corresponding author

ABSTRACT
Aim/Purpose The teaching of appropriate problem-solving techniques to novice learners in

undergraduate software development education is often poorly defined when
compared to the delivery of programming techniques. Given the global need
for qualified designers of information technology, the purpose of this research
is to produce a foundational template for an educational software development
methodology grounded in the established literature. This template can be used
by third-level educators and researchers to develop robust educational method-
ologies to cultivate structured problem solving and software development habits
in their students while systematically teaching the intricacies of software crea-
tion.

Background While software development methodologies are a standard approach to struc-
tured and traceable problem solving in commercial software development, edu-
cational methodologies for inexperienced learners remain a neglected area of re-
search due to their assumption of prior programming knowledge. This research

https://doi.org/10.28945/5374
https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/
mailto:catherine.higgins@tudublin.ie
mailto:ciaran.oleary@tudublin.ie
mailto:claire.mcavinia@tcd.ie
mailto:barry.ryan@tudublin.ie

Template for an Educational Software Development Methodology

2

aims to address this deficit by conducting an integrative review to produce a
template for such a methodology.

Methodology An integrative review was conducted on the key components of Teaching Software
Development Education, Problem Solving, Threshold Concepts, and Computational Think-
ing. Systematic reviews were conducted on Computational Thinking and Software
Development Education by employing the Preferred Reporting Items for System-
atic Reviews and Meta-Analyses (PRISMA) process. Narrative reviews were
conducted on Problem Solving and Threshold Concepts.

Contribution This research provides a comprehensive analysis of problem solving, software
development education, computational thinking, and threshold concepts in
computing in the context of undergraduate software development education. It
also synthesizes review findings from these four areas and combines them to
form a research-based foundational template methodology for use by educators
and researchers interested in software development undergraduate education.

Findings This review identifies seven skills and four concepts required by novice learners.
The skills include the ability to perform abstraction, data representation, decomposition,
evaluation, mental modeling, pattern recognition, and writing algorithms. The concepts in-
clude state and sequential flow, non-sequential flow control, modularity, and object interac-
tion.

The teaching of these skills and concepts is combined into a spiral learning
framework and is joined by four development stages to guide software problem
solving: understanding the problem, breaking into tasks, designing, coding, test-
ing, and integrating, and final evaluation and reflection. This produces the principal
finding, which is a research-based foundational template for educational soft-
ware development methodologies.

Recommendations
for Practitioners

Focusing introductory undergraduate computing courses on a programming syl-
labus without giving adequate support to problem solving may hinder students
in their attainment of development skills. Therefore, providing a structured
methodology is necessary as it equips students with essential problem-solving
skills and ensures they develop good development practices from the start,
which is crucial to ensuring undergraduate success in their studies and beyond.

Recommendations
for Researchers

The creation of educational software development methodologies with tool
support is an under-researched area in undergraduate education. The template
produced by this research can serve as a foundational conceptual model for re-
searchers to create concrete tools to better support computing undergraduates.

Impact on Society Improving the educational value and experience of software development un-
dergraduates is crucial for society once they graduate. They drive innovation
and economic growth by creating new technologies, improving efficiency in
various industries, and solving complex problems.

Future Research Future research should concentrate on using the template produced by this re-
search to create a concrete educational methodology adapted to suit a specific
programming paradigm, with an associated learning tool that can be used with
first-year computing undergraduates.

Keywords computing education research, educational software development methodology,
computational thinking, CS1 education

Higgins, O’Leary, McAvinia, & Ryan

3

INTRODUCTION: CONTEXT FOR RESEARCH
The World Economic Forum (2020) has highlighted the importance of digital skills in the future job
market, emphasizing the need for a larger workforce proficient in software development. Therefore,
increasing the number of software graduates is crucial in an advancing technological world. However,
universities globally face significant challenges with student retention and competency, especially in
computing courses (Price & Smith, 2014; Zarb et al., 2018). High dropout rates and varying levels of
preparedness among students hinder the ability to produce a consistent stream of capable graduates
(Petersen et al., 2016). Studies suggest that many students struggle with the rigorous and often ab-
stract nature of computer science courses, leading to high attrition rates (Mahatanankoon & Wolf,
2021). Addressing these issues through improved teaching pedagogies is essential to ensure that more
students not only complete their studies but also possess the necessary skills that the software indus-
try requires.

Learning how to develop software means that students have to learn how to problem-solve. Problem
solving in the context of providing software solutions requires software developers to have a variety
of skills, such as analysing a problem to understand its functional requirements, designing or reusing
algorithms as a strategy to fulfil these requirements, learning programming syntax, employing soft-
ware constructs, and applying testing techniques (Stachel et al., 2013). Therefore, problem solving
can be considered fundamental to anyone considering a career as a software developer (Hazzan et al.,
2011) and consequently must be a core element of undergraduate courses in software development.
This is reflected in the growing interest in the computing education research (CER) community in
examining the educational advantages of scaffolding problem planning (Loksa et al., 2016; Prather et
al., 2020), particularly at the novice freshman undergraduate level, typically known as CS1 in the liter-
ature (Hertz, 2010), as this is where many of the issues with retention, competency, and recruitment
occur. However, it has been found in a systematic review conducted by Luxton-Reilly et al. (2018)
that the teaching and learning of problem solving is a topic that is less mature than research into de-
veloping programming techniques.

When examining potential pedological mechanisms for CS1 education to ensure best practice, it is
natural to turn to the software industry and its approach to producing quality software. Commercial
software development is typically based on using a software development methodology that provides
defined stages for problem solving from initial analysis, design of a solution, implementation, and
testing, through to delivery of a quality software solution (Boehm, 2006). Therefore, the design of
software development methodologies has been an active topic of research for the software industry
since the 1980s (Abbas et al., 2008). However, there is an issue with using commercial methodolo-
gies directly in education as they assume its users have prior programming and development
knowledge, which renders them incompatible with inexperienced learners. This means that using a
commercial software development methodology in an educational setting with novice learners would
not be suitable without some adaptation.

In our examination of the literature for existing software development methodologies specifically de-
veloped for use in CS1 education, termed in this paper as Educational Software Development Meth-
odologies (ESDM), current and active research into the area were not found, with isolated examples
of ESDMs being at least ten years old and not commonly used. This lack of research may be partly
due to the fact that software development courses for CS1 students are typically framed by a pro-
gramming paradigm and language, so methodologies would need to be adaptable to various para-
digms. Examples of paradigms are object-oriented paradigms that could use Java as a language of
choice and procedural paradigms that use C as their language. In CS1 courses, Siegfried et al. (2021)
found that the most common languages used in CS1 courses are Java and Python, which can both be
classified as belonging to an object-oriented paradigm. Moreover, an ESDM needs to incorporate a
learning curriculum to teach novice learners the essentials of software development. This indicates

Template for an Educational Software Development Methodology

4

that the development of an ESDM is not a trivial exercise and may explain the current gap in active
research into these methodologies.

PROBLEM STATEMENT
The literature reports that research into mechanisms for teaching CS1 students how to design and
develop solutions to programming problems are less advanced than mechanisms that focus just on
teaching programming techniques, despite the need for CS1 students to have those skills. Given the
success of software development methodologies in designing and developing solutions in the indus-
try, coupled with the lack of current research into ESDMs for novice learners, this clarified for us
that there is a gap in the research into ESDMs and their potential for CS1 learners. This academic pa-
per builds upon the work presented in the corresponding author’s PhD thesis on this topic (Higgins,
2021) by synthesizing and extending the insights from that research into a comprehensive and action-
able template methodology. While the PhD work and two initial conference proceedings (Higgins et
al., 2017a, 2017b) focused on proposing a prototype educational software development methodology
and a conceptual framework, this manuscript significantly broadens and deepens that foundation. It
collates the findings from that body of work into an integrative review, which coalesces into a foun-
dational template for a methodology where a template in this context is a blueprint designed to guide
the development of a concrete methodology by future researchers. The aim of the template is to
serve as a research-based starting point that outlines the essential components and stages required,
which can be customized to suit various educational contexts for CS1 cohorts. Sharing these findings
allows other researchers to build upon this foundation and further explore innovative approaches in
this field. The research question for this paper is presented in Table 1.

Table 1. Research question

Number Research question
RQ1 What are the essential constitutional elements of a foundational template for an Edu-

cational Software Development Methodology (ESDM) suitable for CS1 learners?

This paper is organized as follows. In the next section, we present a background literature review that
examines the specific issues in undergraduate problem-solving education and the topic of software
development methodologies. The subsequent section details the process used to guide the integrative
review. This is followed by the findings from the review, then a discussion of these findings, which
culminates in a presentation of a foundational template for an educational software development
methodology. The paper concludes with the limitations of this research and its conclusions.

LITERATURE REVIEW
Problem solving and analytical thinking skills are students’ major weaknesses in undergraduate com-
puting courses (Castro, 2015; Koulouri et al., 2015; Lister et al., 2004; Uysal, 2014; Whalley & Kasto,
2014), with no new evidence being reported in current literature to contradict this view.

In examining how wide-spread the issue with teaching problem solving is at the undergraduate level,
a systematic literature review into research trends over 15 years by Luxton-Reilly et al. (2018) found
that the process for teaching problem solving to computing undergraduates is unclear in the litera-
ture. They contended that it was rarely as defined as the teaching of programming and that tools for
problem solving were still at an immature stage of development. A similar review carried out by Silva
et al. (2019) into research on teaching algorithms to CS1 students from 2014 to 2018 found that most
of the research was dominated by investigations into how to teach programming using various lan-
guages and tools. They concluded that sourcing effective pedagogical strategies for teaching CS1 was
still a major concern for educators. This is an issue for students as, without a methodological frame-
work, many learners may engage in maladaptive cognitive practices when first learning how to de-
velop software. Examples of such practices include immediately attempting to program a solution

Higgins, O’Leary, McAvinia, & Ryan

5

and ignoring the need to develop a plan first; and crafting a solution by reusing existing code whether
it is appropriate or not (Huang et al., 2013). These practices can become very ingrained in student
practice and can hamper student efforts on their learning journeys (Huang et al., 2013; Lister et al.,
2006), which has an impact on failure rates (Bennedsen & Caspersen, 2019; Watson & Li, 2014), and
issues with retention (Petersen et al., 2016).

Examining commercial problem-solving methodologies specifically designed for the software devel-
opment industry has been a robust and very important area of research and growth for the commer-
cial software community since the 1980s (Shama & Shivamanth, 2015). Having a well-defined meth-
odology ensures that software can be developed in a systematic fashion where there is traceability
from problem specification right through to the final work product. This means that all work can be
measured, improved, and potentially reused. The continuous evolution and reliability of the most
commonly used software development methodologies and processes come from a strong evidence-
base of use across an international software engineering community over many years. Recent exam-
ples of work being published in this area are the adaption of methodologies to suit cloud computing
(Panigrahi et al., 2021) and for managing large projects during the COVID-19 lockdowns (Butt et al.,
2021).

Two principal methodologies have dominated the software industry over the past three decades. One
is the oldest and more generic Software Development Life Cycle (SDLC) methodology, which contains the
stages of carrying out a preliminary analysis of the problem, defining requirements for solving the
solving, designing a solution, implementing the design, testing and continued maintenance of the so-
lution (Royce, 1987). However, in the intervening years, many improvements and amendments have
been made to the SDLC methodology. This has included the realisation that due to the complex na-
ture of eliciting user requirements, gathering fixed requirements up-front that then cannot be changed
later in the project is unfeasible and can lead to unusable systems. A more effective route is iterative
and incremental development, where initial planning generates initial requirements. These require-
ments are developed through iterative development cycles involving continuous user feedback, and
then other features are incrementally added until the entire project is complete (Gilb, 1985). An early
example of such a process is the Unified Process (Jacobson et al., 1999), which somewhat blurred the
lines between the SDLC and other methodologies. It can be argued that all other methodologies and
processes have their roots in the SDLC as they use the same essential stages, albeit in different con-
figurations (Shah et al., 2016). Therefore, this suggests that an ESDM should contain stages that re-
flect the essential SDLC stages.

The second principal methodology is Agile, which is arguably the most popular and widely used
methodology in current commercial software development (Bustard et al., 2013; Napoleão et al.,
2020; Umran Alrubaee et al., 2020). The main characteristics of this methodology originate from iter-
ative and incremental development, which involves breaking development work into small incre-
ments that are iteratively developed until they are correct. From an educational perspective, it has
been found that the nature of fast, iterative development with Agile makes the inclusion of software
development processes based on this methodology (such as XP, Scrum) into undergraduate-level cur-
ricula inappropriate for CS1 learners and more appropriate to students in their final or penultimate
year of undergraduate study where they have a degree of experience and proficiency in software de-
velopment (Devedzic, 2011). However, the basic philosophy of iterative and incremental develop-
ment is viewed as best practice and is appropriate for CS1 learners, so it should be incorporated into
an ESDM in an appropriate manner.

One interesting observation emerged when carrying out a review of software development methodol-
ogies and processes in the literature. It was found that despite the wealth of established software de-
velopment processes aimed at experienced developers working on large projects, there are few availa-
ble for CS1 courses. There is evidence of current research into improving CS1 outcomes (Edwards et
al., 2020; Izu & Weerasignhe, 2020; Lishinski et al., 2016; Margulieux et al., 2019). However, while
problem solving and developing algorithms are an explicit part of most introductory CS1 courses, the

Template for an Educational Software Development Methodology

6

problem-planning aspects of software development generally appear informally in the literature with
little mention of providing students with a suitable software development methodology or process.
Table 2 synthesises the educational software development methodologies found in the literature
which are appropriate for CS1 learners.

Table 2. ESDMs with a list of their positive and negative characteristics (Higgins, 2021)

Methodology Positives Negatives

STREAM - Stubs, Tests,
Representation, Evalua-
tion, Attributes, and Meth-
ods (Caspersen & Kolling,
2009)

This methodology has a focus on in-
cremental development. It contains
six clear stages that allow students to
incrementally build up a solution to a
problem.

Can only be applied in an object-oriented
environment with an objects- first philoso-
phy and is closely linked to Java, as op-
posed to being a more general methodol-
ogy that could be used with any develop-
ment paradigm and programming language.

P3F framework
Principles, Patterns, and
Process (D. R. Wright,
2011)

This methodology has a focus on de-
sign. It uses four elements to allow
students to employ expert design
strategies to ensure they design effi-
cient and sustainable solutions.

Requires students to understand the nature
of design patterns. A topic with which nov-
ices would not be familiar.

Programming methodol-
ogy (Hu et al., 2013)

This methodology focuses on the
planning stage of development. It
uses a five-stage process to facilitate
students in creating plans and goals
for their solution to ensure they fully
understand the nature of the prob-
lem.

Uses a block-based language (similar to
Scratch) to develop the plans. This lan-
guage has its own syntax, which students
must master, as well as mastering the pro-
gramming language that will implement the
solution.

(Morgado & Barbosa,
2012)
There is no name at-
tributed to this methodol-
ogy.

This methodology focuses on plan-
ning and design. It contains two
stages supplied with rules that allow
students to fill in template forms to
help with their planning. A prototype
solution to the problem is supplied by
the instructor.

This methodology requires the use of pre-
made prototypes for each solution which
makes the process not applicable outside of
the classroom.

POPT – Problem-Ori-
ented Programming and
Testing
(Neto et al., 2013)

This emphasizes the importance of
testing in software development and
supplies steps for planning and un-
dertaking tests.

Testing is only one aspect of devising a so-
lution in software development, so this is a
limited methodology.

From Table 2, all of these methodologies have a specific focus on a particular aspect of development
or a specific programming paradigm. For example, the P3F framework focuses on design; POPT fo-
cuses on testing; Hu et al.’s (2013) programming methodology can only be used with its block-based
language; and Caspersen and Kolling (2009) focus on development in an object-oriented environ-
ment. The diversity of all of these concrete implementations of ESDMs, coupled with their age, illus-
trates the gap in the research into understanding the essential constitutional elements required in
ESDMs for CS1 learners, which support all aspects of developing software solutions using any pro-
gramming paradigm.

RESEARCH METHODS
In the context of designing ESDMs, Zhang and Liu (2012) state that along-side the development
stages found in a commercial software development methodology, an educational methodology must
also incorporate a knowledge of educational practice, software development, and problem solving.
Therefore, it is important to contextualise the environment in which a methodology based on the
foundational template would be deployed. This is an undergraduate computing first-year setting
where CS1 students may have little or no prior experience designing and programming solutions, so

Higgins, O’Leary, McAvinia, & Ryan

7

they need a methodical approach when learning software development in order to allay the prospect
of maladaptive cognitive habits being inadvertently engrained in their learning. This means that an
ESDM template requires the inclusion of two core features.

• Given students’ inexperience in software development, it is imperative that the essential key
knowledge and skills required to become competent developers is included as part of the
methodological template.

• When solving problems, students must learn how to apply the knowledge and skills in a me-
thodical fashion to encourage good developmental habits. For that reason, and consistent
with a commercial software development methodology, an ESDM template requires a set of
developmental stages to guide the student developers through the stages of systematic prob-
lem solving when producing software solutions.

The research question for this paper was presented in Table 1. This is now expanded into two sub-
questions, presented in Table 3, based on understanding the context and demographic for the main
question.

Table 3. Research sub-questions

Sub-question
number Research question

RQ1.1 What key knowledge and skills are necessary for CS1 learners to become competent soft-
ware developers, given their inexperience in the area?

RQ1.2 How can problem-solving developmental stages be structured within an educational soft-
ware development methodology (ESDM) to ensure that students systematically practice
and apply the knowledge and skills while encouraging good developmental habits?

In order to answer these two research sub-questions, four research topics were reviewed which are
summarised in Table 4.

Table 4. Summary of research topics and the rationale for including them in the integrative
review

Topic Rationale for review
Teaching CS1 To understand the characteristics, issues, and current best practice in software de-

velopment education at the introductory undergraduate level (CS1).
Computational
Thinking

Given that computational thinking is defined as a set of skills that are used to for-
mulate solutions to problems in an algorithmic form (Mohanty & Bala Das, 2018),
this topic was included in order to identify these skills and examine how they
could be incorporated into a template for an ESDM.

Threshold Concepts This research was interested in methodical routes for establishing core constructs
that should be taught in CS1. One appropriate mechanism identified in the litera-
ture was the theory of Threshold Concepts in identifying such concepts.

Problem Solving To understand problem solving and its role in guiding the developmental stages
when solving problems using an ESDM.

Given this wide suite of topics, an integrative review that enables the synthesis of knowledge gath-
ered using different research approaches in a fragmented field (Cronin & George, 2023) was deemed
the most appropriate type of review. Whittemore and Knafl’s (2005) five stages of the integrative re-
view process – “problem identification”, “literature search”, “data evaluation”, “data analysis” and
“presentation of findings” – formed the guide for the review.

Figure 1 summarises the review process by mapping the five stages of the integrative review onto the
work completed. An explanation of the methods used for the literature search into the four topics is
presented in the following sections.

Template for an Educational Software Development Methodology

8

Figure 1. Components of the integrative review process conducted for this research paper

PROBLEM SOLVING
A narrative review was chosen as being most suitable for this stage of the integrative review, given
the broad scope of this topic. A wide range of books and research papers, referenced in the results
section of this paper, formed the basis of the findings for this narrative review. The findings were
synthesised to yield recommendations for the developmental stages of the proposed software devel-
opment methodology.

TEACHING CS1
Given the extensive research that has been carried out in the areas of teaching software development,
it was decided that a systematic literature review of the area would be required to capture the state of
software development education in CS1. The aim of this review is to identify the knowledge and
skills that an ESDM template would need to incorporate.

The systematic review was guided by the Preferred Reporting Items for Systematic Reviews and
Meta-Analyses (PRISMA) standard (Moher et al., 2009), which provides a comprehensive framework
for conducting systematic reviews. The PRISMA process was chosen for its rigor and clarity, ensur-
ing that the review is transparent and minimizes bias. The PRISMA guidelines involve four phases:
identification, screening, eligibility, and inclusion.

In the identification phase, we searched multiple databases, including ACM Digital Library, ERIC,
IEEE Xplore, ScienceDirect, and Taylor & Francis, for relevant literature published between 2000
and 2020. The search terms used were comprehensive, including keywords such as “teaching pro-
gramming,” “teaching of programming,” “teaching computer programming,” “teaching of compu-
ting programming,” “teaching coding,” “teaching of coding,” “teaching algorithms,” and “teaching
software design.” This ensured a broad capture of relevant studies.

During the screening phase, we reviewed the titles and abstracts of the retrieved papers to identify
those that met our inclusion criteria. Papers were included if they related to the tuition of software
development to CS1 level students. We applied exclusion criteria to eliminate duplicate papers across
databases, non-peer-reviewed papers, and papers not specifically aimed at the process of teaching
software development to undergraduate first-year students.

In the eligibility phase, we conducted a review of the remaining papers to confirm their relevance and
ensure they met all inclusion criteria. This screening process helped us focus on quality studies di-
rectly pertinent to our research.

Finally, in the inclusion phase, we compiled the selected studies for detailed analysis, which resulted
in 356 such studies. This systematic approach, guided by the PRISMA standard, ensures that our

Higgins, O’Leary, McAvinia, & Ryan

9

review is comprehensive and that the conclusions drawn are based on a robust set of evidence. A
flowchart of this review process is provided in Figure 2.

Figure 2. PRISMA (Moher et al., 2009) flow diagram

illustrating the steps in the systematic literature review undertaken
from 2000–2020 into software development education at the CS1 level

ROLE OF COMPUTATIONAL THINKING
Computational thinking (CT) is defined as “the thought processes involved in formulating problems
and their solutions so that the solutions are represented in a form that can be effectively carried out
by an information-processing agent” (Cuny et al., 2010, as cited in Wing, 2011). However, despite ex-
tensive research into the area over the past 20 years, it was found that there remain questions on
what constitutes a definitive set of its skills (Allan et al., 2010; D. Barr et al., 2011; Denning, 2017;
Denning & Tedre, 2019; Grover & Pea, 2013; Weintrop et al., 2016). Consequently, the aim of this
review was to provide a set of the most commonly agreed skills for CT and to see if they overlapped
with the skills identified in the review of teaching CS1.

Similar to the review conducted on teaching CS1, this research was guided by the Preferred Report-
ing Items for Systematic Reviews and Meta-Analyses (PRISMA) standard (Moher et al., 2009). This
review focused on papers published from 2006, the origin date of active research into computational
thinking (CT), to 2020.

The identification phase involved searching multiple databases, including ACM Digital Library,
ERIC, IEEE Xplore, ScienceDirect, and Taylor & Francis, using the keyword “computational think-
ing.”

In the screening phase, titles and abstracts of the retrieved papers were reviewed to determine their
relevance. The inclusion criteria were that papers must be peer reviewed and suggest a set of skills
associated with CT based on a review of earlier work or empirical evidence. Exclusion criteria were
applied to eliminate papers that did not suggest a skillset or based their skillset on just one resource.

Template for an Educational Software Development Methodology

10

During the eligibility phase, a review of the remaining papers was conducted to confirm they met all
inclusion criteria to ensure that quality studies directly pertinent to our research questions were in-
cluded.

Finally, in the inclusion phase, the selected studies were compiled for detailed analysis which included
103 such studies. A flowchart of this review process is provided in Figure 3.

Figure 3. PRISMA (Moher et al., 2009) flow diagram

illustrating the steps in the systematic literature review undertaken
from 2006–2020 into the identification of computational thinking skills

ROLE OF THRESHOLD CONCEPTS
Threshold concepts (TCs) have been suggested as an approach for charting the learning journey of
students in any topic. J. H. F. Meyer and Land (2003, 2005) argue that within a topic there are spe-
cific yet difficult concepts that once grasped are not forgotten, and which can transform student
learning and understanding. They state that “crossing the threshold” to understanding these concepts
is crucial if students are to progress and become proficient in their field of study. This suggests that
understanding which TCs are fundamental to a topic would be useful in identifying the core concepts
for that topic. Therefore, a broad narrative review was conducted into threshold concepts, and their
potential role in identifying key knowledge required by CS1 students. All relevant range of books and
research databases were used in this review, referenced in the results and discussion section, which
resulted in the most commonly cited threshold concepts for CS1 education being identified.

RESULTS
This section presents the findings from the integrative review to answer the two sub-research ques-
tions posed in Table 3. This incorporates an understanding of the key knowledge and skills required
by students, coupled with a recommended suite of developmental stages to allow students to practice

Higgins, O’Leary, McAvinia, & Ryan

11

their problem solving. The Discussion section of this paper analyses these findings to answer the
main research question posed in Table 1.

RQ1.1 KEY KNOWLEDGE AND SKILLS
In identifying key knowledge and skills for CS1 students, it is first important to understand how such
students are typically taught in order to suggest a best practice mechanism for how the knowledge
and skills should be taught. Teaching software development has traditionally been instructor-led and
instructor-centred (Saulnier et al., 2008). In the typical classroom, this generally translates into tradi-
tional lectures supplemented by laboratory work (Schiller, 2009). With this approach, when trying to
understand programming constructs, students often use low-level learning strategies to memorize
course information. However, such an approach suggests that students do not necessarily understand
what they are doing or why they are doing it. When the traditional instructional approach is exclu-
sively used, students are passive recipients of information from the instructor (Prince, 2004) and the
underlying pedagogy is mainly behaviourist in nature.

In contrast, the idea of “learning through experience” is an example of active learning. The core ele-
ment of active learning is encouraging student engagement through activities such as peer instruction
and paired programming, which puts the responsibility for learning onto the learner (Greer et al.,
2019; Schiller, 2009; Williams & Chinn, 2009). Thevathayan and Hamilton (2015) claimed that pas-
sive learning contributes to the creation of incorrect mental models and suggest that meaning and
correct models can only be forged though active learning. However, Mayer (2004) and Kirschner et
al. (2006) indicated that the general approach of “learning by doing” requires a note of caution as
there is little empirical evidence to support this statement in the context of novice learners carrying
out pure discovery. Sweller et al. (2011) also argued that novices do not possess the underlying men-
tal models for unsupported experimentation in learning. Therefore, any application of active learning
techniques needs to ensure that tuition is properly supported to ensure learning progresses in an ef-
fective manner (D. L. Meyer, 2009). This would suggest that an ESDM template should promote ac-
tive learning though scaffolded problem solving.

A spiral curriculum (see Figure 4), using the spirit of Bruner’s (1960) spiral curriculum, is particularly
suitable for learning software development due to the nature of development, where each topic is a
building block to more complex topics (Armoni, 2014; Jaime et al., 2016).

Figure 4. Spiral model for learning, which illustrates the

knowledge and skills taught to students act as prerequisites to
learning more sophisticated knowledge and skills in a growing spiral

Template for an Educational Software Development Methodology

12

In such a curriculum, learning begins with basic elementary knowledge and associated skills, with new
knowledge and skills building on top of previous ones, so previous knowledge and skills are revisited
and used with increasing levels of difficulty (Santana & Bittencourt, 2018). Learning how to develop
software requires skills to create a working solution, as well as key knowledge, which includes the
computational concepts used when employing the skills. Therefore, the attainment of competence as
a developer involves learning a subset of knowledge and skills to initially solve basic problems. When
a student is being taught a new unit of learning, they will access all of the knowledge and skills that
make up that unit but will also need to use the knowledge and skills of previous units as a prerequi-
site to understanding the current unit.

Identification of key knowledge
Key knowledge consists of the constructs and concepts that students need to understand in order to
develop software solutions. These include programming constructs, which is the theory behind general
computational concepts such as data declaration, iteration, and modularity), and program syntax, which
is the syntax of the programming language being used to develop software (Qian & Lehman, 2017).
This domain does not include the skills involved in the practical application of that knowledge. Iden-
tifying this knowledge was facilitated by the systematic review of the characteristics and current prac-
tice in teaching CS1. It was further verified by a study of threshold concepts in computing to estab-
lish a recommended list of knowledge constructs.

The fundamental programming constructs for introductory software courses are recommended by
the ACM, IEEE, and AAAI Joint Task Force on Computing Science Curricula (Kumar et al., 2023).
These include an understanding of variables, expressions, and assignments (sequential statements),
conditional statements, iterative statements, and modularity. While it can be argued that these key
computational constructs are already known and are broadly similar across CS1 courses (Soares et al.,
2015), we were interested in methodical routes for establishing key constructs. One potential mecha-
nism identified in the literature is the theory of Threshold Concepts (TCs). TCs are considered to be
core concepts in a domain of interest where understanding these concepts is key to transforming the
way students understand the domain, allowing them to be successful in their learning (Cousin, 2006;
J. H. F. Meyer & Land, 2003). However, while some researchers have argued that the looseness of
the interpretation of TCs and the subsequent difficulty in identifying them is worrisome (O’Donnell,
2010; Rowbottom, 2007), others argue that there are certain concepts that will tend to be particularly
troublesome and transformative to most students and those concepts are worthy of study (Rountree
& Rountree, 2009; Sorva, 2010; A. L. Wright & Gilmore, 2012). This suggested to us that the inclu-
sion of TCs to define the key knowledge would be beneficial in identifying and streamlining the con-
cepts that need to be learned.

To date, there are no consensus TCs for software development (Yeomans et al., 2019), and no cur-
rent research was found to refute this statement. This is partially due to the relative infancy of TCs as
a research area, but it is also due to the difficulty of identifying such concepts (Shinners-Kennedy &
Fincher, 2013). Despite this issue, there have been many attempts to clarify the TCs in software de-
velopment. Much of the original and longest-standing work has been carried out by a number of in-
ternational researchers from Sweden, Wales, and the US who formed a “Swedish Group” in 2005 to
gain consensus on what constituted TCs (Boustedt et al., 2007; Eckerdal et al., 2006; Sanders et al.,
2008, 2012; L. Thomas et al., 2014). As a summary of their findings, they suggested abstraction (later
clarified as data abstraction), object orientation (which they recognised as being a very wide area
that probably contains other TCs), and memory/pointers as candidate concepts.

In attempting to ascertain appropriate TCs for the knowledge element of learning, the review of the
literature found that the research on identifying TCs for software development is approximately ten
years old. More recent papers with a focus on TCs for software development tend mainly to cite the
established work of the Swedish Group (2007-2014) and Sorva (2010), as exemplified by Sim (2017). A
synthesis of candidate threshold concepts for software development is presented in Table 5.

https://telrp.springeropen.com/articles/10.1186/s41039-020-0122-3#ref-CR11
https://telrp.springeropen.com/articles/10.1186/s41039-020-0122-3#ref-CR28

Higgins, O’Leary, McAvinia, & Ryan

13

Table 5. Summary of candidate threshold concepts for
software development as identified in the literature

Researcher Candidate TCs
Swedish Group (Boustedt et
al., 2007; Eckerdal et al., 2006;
Sanders et al., 2008, 2012; L.
Thomas et al., 2014)

Using pointers Understanding
Object Orientation

Applying data abstraction

Alston et al. (2015) Understanding basic
programming principles

Understanding and
applying abstraction

Sorva (2010) Understanding
program dynamics

Understanding and
applying information
hiding (data
abstraction)

Understanding Object
Orientation

Holloway et al. (2010) Applying recursion Understanding
Object Orientation

Shinners-Kennedy (2008) Understanding
program state

Vagianou (2006) Understanding
program/memory
interaction

Khalife (2006) Understanding and
modelling the notional
machine

In attempting to find commonality in the choice of potential concepts given in Table 5, the concept
of data abstraction appears three times. This concept is the ability to mentally zoom in and out of a
complex data item (such as an aggregate object) to understand it at different levels of detail. We re-
jected this concept as it is our contention that data abstraction is a skill that is acquired through practice
rather than a concept. We also contend that understanding the nature of abstraction is encapsulated
under both object interaction and program dynamics as it necessitates understanding how data is conceptu-
ally represented in memory during program execution. The concept of understanding basic programming
principles is rejected as being too vague to be useful to this research. Applying recursion is also rejected as it
is viewed as being too advanced a topic to be considered for an introductory software development
course.

The topic of object orientation has been proposed by three researchers in the table. Given that object
orientation itself is a large topic rather than a concept, the subtopic of object interaction is a pro-
posed threshold concept, as this is a foundational aspect of the use of object orientation in general.

Understanding program dynamics (Sorva, 2010) is a superset of many of the other concepts. For example,
program/memory interaction by Vagianou (2006), the notion of state by Shinners-Kennedy, pointers by the
Swedish Group, and the notional machine by Khalife (2006). Given that program dynamics is a very
broad concept, we refined it further as a suite of three threshold concepts that represent program dy-
namics and which map onto the order of concepts taught as recommended by ACM/IEEE/AAAI
Joint Task Force on Computer Science Curricula (Kumar et al., 2023). These concepts are termed in
this paper as State and Sequential Flow, Non-Sequential Flow Control, and Modularity, which
by their nature incorporate the notion of state, program/memory interaction, and use of the notional
machine (Higgins et al., 2017a).

The refined list of threshold concepts and their definitions accepted in this research are now pre-
sented and defined in Table 6. From examining the descriptions of the TCs in Table 6, each concept
builds on the knowledge learned in the previous concept, which means that there is an order to learn-
ing each TC. State and Sequential Flow should be the first concept to be taught, followed by Non-sequen-
tial Flow Control, followed by Modularity, with Object Interaction optionally being the final concept taught

Template for an Educational Software Development Methodology

14

if the development paradigm is object-oriented. This final concept is included as Siegfried et al.
(2021) found that approximately 80% of CS1 courses teach in an object-oriented paradigm. How-
ever, this concept can be easily removed in an ESDM if not appropriate to a specific cohort. To
highlight this order, the TCs have been codified as TC1 to TC4. Having an order of learning has also
been reflected in the spiral curriculum at the start of this section.

Table 6. Threshold concepts accepted in this research

TC1: State and Sequential
Flow

This stage focuses on the state changes that oc-
cur on basic data items (e.g., characters, numbers,
strings) when fundamental sequential actions
such as printing, assignment, and updates are per-
formed.

TC2: Non-sequential Flow
Control

This stage focuses on state changes to data items
through the use of non-sequential actions such as
iterative and conditional actions and how they
both state and flow control through a program.

TC3: Modularity This stage focuses on partitioning a solution into
modules and functions, which has a unique effect
on state and flow control.

TC4: Object Interaction This is an optional stage that is only included in
the template if the development paradigm is ob-
ject orientation, which involves the creation and
manipulation of objects.

Identification of skills
This section identifies the skills that are required in order to apply knowledge to successfully problem
solve and produce computational solutions to problems. This was facilitated by the systematic review
into teaching CS1. In order to verify the skills identified by that review, a separate systematic review
of computational thinking (CT) was conducted.

Morgado and Barbosa (2012), citing Whitfield et al. (2007), stated that one specific issue facing com-
puting students is the multiple skills required by learners in creating computational solutions. While
the knowledge required by CS1 learners is easier to quantify, the required set of skills is somewhat
more opaque. This was supported by an observation from the systematic review into teaching CS1,
which found that 71% (n=253) of papers had a primary focus on teaching programming in terms of
the constructs of the language or development environment, with the use of relevant problem-solv-
ing skills such as problem analysis and design being largely implicit. Even though these papers
stressed the importance of problem solving, it was a topic that was less clearly defined. The remain-
ing 29% (n=103) of papers focussed on writing algorithms in the context of teaching specific foun-
dational general algorithms, such as searching or sorting data items. Therefore, the skills for the pro-
posed ESDM were identified by the analysis of systematic reviews into teaching CS1, and separately,
into computational thinking.

In conducting the systematic review of teaching CS1, the following set of seven skills emerged from
the analysis:

Illustrate evidence of mental modelling of programming constructs and notional machines. When developing com-
putational solutions to problems, the ability to create mental models is a key requirement (Cabo,
2015). Creating mental models includes the ability to visually conceptualise the problem to be solved,
to understand general programming constructs, and to understand the state of data and how (and
why) that state changes in a solution which is represented as an algorithm or program. Before a solu-
tion can be devised for a problem, it is vital that the problem itself is fully understood. In other
words, understanding “what” needs to be solved comes before working out “how” to solve it. Being

Higgins, O’Leary, McAvinia, & Ryan

15

able to view a problem conceptually as a mental model at various levels of detail involves the use of
abstraction as a mechanism for reducing complexity (Koppelman & van Dijk, 2010).

Equally important in mental modelling involves the understanding and application of common pro-
gramming constructs (e.g., selection, iteration, modularity), which are fundamental to converting a
high-level understanding of the problem domain into a computational strategy. It has been docu-
mented in the literature that being unable to mentally visualise these concepts is a major obstacle in
understanding software (Biju, 2013; Caserta & Zendra, 2011). Indeed, Ma et al. (2011) stated that
having incorrect or insufficient mental models of basic constructs is a major reason for poor software
construction proficiency. One important mental model required to understand and visualise pro-
gramming constructs is a valid and consistent model of the machine executing the constructs in an
algorithm or program. Formally, this mental model is called a notional machine (Cañas et al., 1994;
Du Boulay, 1986; Mendelsohn et al., 1991), which presents concepts at a high conceptual level, so
they are more accessible to students. This view was articulated by Dickson et al. (2020), who state
that in teaching students, the aim is not to make the student’s mental model of how the physical
computer behaves as accurate as possible. Instead, the aim is focussed on making the student’s men-
tal model of the notional machine as accurate as possible. This viewpoint illustrates the importance
of using appropriate notional machines for CS1 students, which are simplified and accessible by a co-
hort who have no prior mental models of the area. Berry and Kölling (2013) have observed that there
are some visualisation tools available to help educators and students illustrate the state of notional
machines (e.g., Jeliot, AVLIS Live) but that educators predominately use personalized approaches to
presenting notional machines to students. It is universally accepted that to successfully develop soft-
ware, a central role is played by this notional machine (Bower & Falkner, 2015). However, it was
noted in a submission in the Cambridge Handbook of Computing Education Research (Fincher et al., 2020;
Krishnamurthi & Fisler, 2019) that notional machines do not have a strong presence in either text-
books or curricula for CS1 courses. Therefore, having a visualisation system that helps students ex-
plicitly conceptualise their understanding of their designs and solutions would be a valuable mecha-
nism in any proposed ESDM, and would also support the premise of active learning.

Apply Levels of Abstraction. An approach to examining the complex cognitive processes required by
students learning how to develop software was suggested by Lister (2011) in his Neo-Piagetian theory
of cognitive development. This contains four stages of cognitive development, with students needing
to achieve stage 4 – Formal Operational Reasoning – if they are to become proficient developers. This
fourth stage includes the ability to reason about unfamiliar situations, to use abstractions routinely
and systematically, and an ability to engage in meta-cognitive activities. Put succinctly, formal opera-
tional reasoning is “what competent programmers do, and what we’d like our students to do” (Cor-
ney et al., 2012, p. 79). This skill is required for all aspects of problem solving as it reduces complex-
ity by giving the developer a mechanism for mapping a problem and its solution onto levels of in-
creasing detail. This allows learners to focus on a level without having to understand the details in
lower levels. However, the application of abstraction is difficult for students and so needs to be
taught explicitly (Koppelman & van Dijk, 2010; Kramer & Hazzan, 2006). Having a visualisation sys-
tem as part of an ESDM would be useful in helping make abstraction a more explicit activity.

Apply DRY principle. A core principle of software development is known as the DRY (Don’t Repeat
Yourself) principle, which is aimed at reducing duplication of effort and work products though all as-
pects of development (D. Thomas & Hunt, 2019). The most common application of DRY can be
seen with the use of program code reuse through modularity, where individual, useful functions to
carry out a task are written (by the user, by other developers, or provided in the software library pro-
vided by the programming language); and then these functions can be called and executed in many
different applications. DRY is closely associated with Reade’s (1989) formal definition of Separation of
Concerns, which is a design principle that separates software into distinct sections or concerns. Using
DRY requires developers to be able to recognise patterns developing as they plan solutions, so they
can map these patterns to pre-existing artefacts such as individual designs or programming functions.

Template for an Educational Software Development Methodology

16

This ensures that at least some of the work involved in solving a problem can be reduced to pre-writ-
ten and verified artefacts that can be used in solutions, both at the design and code levels (Cabezas et
al., 2020). Using this form of pattern recognition also allows abstraction to be applied, as artefacts
can be used without the user having to be concerned about their inner details. This skill can be ap-
plied to problem analysis, designing algorithms and writing program code.

Perform problem analysis and decomposition. This is the ability to understand and articulate the nature of a
problem, including its goal and outcome, so it can be decomposed into a series of independent sub-
problems or tasks and any number of levels of sub-tasks depending on the complexity of the prob-
lem (V. Barr & Stephenson, 2011). In CS1 education, there are two approaches to analysis: top-down
and bottom-up (Foster, 2014). The top-down approach (also known as stepwise refinement) was
founded in the 1970s (Wirth, 2001) and has been recognized as one of the essential principles in soft-
ware engineering. In this approach, a problem is broken into a series of high-level tasks. Each task is
then refined in yet greater detail, sometimes in many additional sub-task levels, until the entire prob-
lem is reduced to base elements that can be programmed. Critics of top-down design state that this
approach gives the developer an overall picture of the form the solution will take. They need to un-
derstand and design the entire problem first before programming can commence, which can be very
time-consuming (Floyd, 2007). In contrast, the bottom-up approach (Dijkstra, 1979, pp. 41-48) starts
from a thorough analysis of the problem to identify the low-level tasks that can first be implemented,
then combining them together to form larger tasks and continuing the process until the entire prob-
lem is solved. This approach to software development is especially useful when there are pre-made
solutions for tasks already available. However, unlike the top-down approach, a high-level view of
the solution is not available at the start of the process. When low-level modules are being written, de-
velopers do not understand the higher-level modules, so it can be more difficult to monitor and man-
age the project. The object-oriented paradigm is naturally aligned with a bottom-up approach as the
design is based around a system of separate classes that must be designed (or reused) and then com-
bined up in a hierarchy to form a full system. Proponents of the bottom-up approach argue that this
produces reusable code that saves time later in the process, and a modern iterative and incremental
approach to design and coding can take place (as used in Agile processes).

An alternative approach called hybrid design or hybrid development (Ginat & Menashe, 2015) has
also been suggested, which is a blend of top-down and bottom-up. A top-down design can be used
to decompose a problem into small tasks, and tasks can be slowly implemented and tested using a
bottom-up approach. The integration is guided by the organisation of tasks identified at the analysis
level so that the sequence of integration steps can be clearly mapped back to different levels of tasks,
allowing for the traceability of requirements from specification to program code. Given that a hybrid
approach incorporates the best of top-down and bottom-up, it is suggested as the basis for carrying
out analysis in the equivalent developmental stage in the ESDM.

Writing algorithms. This is the ability to create a language-independent design for a problem (or a prob-
lem broken into separate tasks) that indicates the principal programming constructs to be used to
provide a solution. However, despite the recognised importance of algorithmic thinking when de-
signing solutions, it is a topic that is often not taught explicitly in CS1 courses resulting in many stu-
dents having difficulties when developing solutions (Koulouri et al., 2015; Robins, 2019; Veerasamy
et al., 2019). Coffey (2015) highlighted this dilemma by stating that design is often treated very lightly
in introductory courses. De Raadt et al. (2009) concurred by saying that such courses focus on the
teaching of syntax but do not provide adequate strategies to formulate an analysis of the program do-
main or construct designs for solutions. This issue with design is not new, as seen in a previous study
conducted by Lahtinen et al. (2005), who found that the process of designing a solution proved to be
a far more difficult step for learners than programming the solution. One issue with design observed
by Garner (2007) was the lack of automatic feedback available to students when writing algorithms,
so they often overlook the need for the structured thought processes required in software design and
instead move to experimental coding. Having a support tool that can provide feedback on the

Higgins, O’Leary, McAvinia, & Ryan

17

correctness of algorithms is important to keep students engaged and to help them understand and
correct their mistakes (Hummel, 2006; Safari & Meskini, 2016; Sewell & St George, 2009). However,
while there are several visualisation tools reported in the literature to aid with understanding the state
of the program execution (e.g., Jeliot (Moreno et al., 2004), Python tutor (Guo, 2013) and Ville (Ra-
jala et al., 2008)), there is a low but growing number of tools to support students in the design of al-
gorithms, e.g., Algorithm Animation System (Mornar et al., 2014); AlgoTouch (Frison, 2015); and Al-
gorithmic Design Language (Jeff & Nguyen, 2018).

Liikkanen and Perttula (2009) note that novices also have specific problems when integrating the de-
composed solutions of a suite of sub-problems back into a complete solution, which can lead the
novice to apply a trial-and-error strategy, trying out different solutions until one is found that works.
This implies that students can stray from designing and coding sub-problems systematically and
move into ‘hacking’ together with a complete solution. D. R. Wright (2012) noted that there was very
little research available that examines how new learners make decisions when producing designs.
However, it is known that novices will typically reason backward (start from a hypothesis about the
solution and work backward towards what is known about the problem). In contrast, experts can rea-
son forward (start from what is known and work toward the unknown) and backward as appropriate
(Ericsson & Charness, 1997). To help learners articulate their strategies in a comprehensible way, a
design should be represented as an algorithm written using common mechanisms such as pseudo-
code or flowcharts to avoid the syntax rules of a programming language, with flowcharts helping stu-
dents visualize execution (Vahid et al., 2019). Using diagrams in design has been shown to improve
students’ comprehension of computing concepts (Smetsers-Weeda & Smetsers, 2017), with
flowcharts (for general development) and activity diagrams (in object-oriented development) com-
monly used (Armaya’u et al., 2022). Consequently, flowcharts for design are suggested for the
ESDM template, with such charts as part of a visualisation system to allow students to explicitly de-
velop their designs, integrate them into a final solution, and help stop them from deviating from their
design plans.

Data Identification and Representation. When writing an algorithm or programming a solution, an essen-
tial dependent skill is the ability to identify the data that is required in the solution. Once the data is
identified, then it must be computationally represented using valid variable declarations, which store
a single item of data, or data structures, which store multiple items of data (Arnold et al., 2007;
Feaster et al., 2012). However, it is recognised in the literature that the correct identification and dec-
laration of variables has been a consistently difficult topic for students (Du Boulay, 1986; Kohn,
2017) for nearly 40 years. Corroborating this issue, a study conducted by Kaczmarczyk et al. (2010)
found that students often had misconceptions regarding the use and memory allocation of variables.
Therefore, learning how to identify the required data items as part of algorithm composition is an es-
sential skill related to any ESDM.

Evaluate Solution. Evaluating a solution has two strands. The first strand involves the ability to cri-
tique and debug algorithms and programs to eliminate both logical and syntactical errors. The second
strand involves the learner being able to reflect on their journey as they navigate solving a problem.
A learner’s success in any field lies in their ability to engage in metacognition in order to identify any
gaps in their knowledge and skills required to succeed in a topic (Sternberg & Sternberg, 2016). Meta-
cognition is ‘cognition about cognition’; it refers to the “conscious planning, control and evaluation
of one’s own thoughts that engage in the learning processes” (Sternberg & Sternberg, 2016, p. 234).
Bergin and Reilly (2005) found that students who perform well in software development use more
metacognitive management strategies than their peers. As problems become more complex, the need
for purposeful reflection and positive feedback becomes even greater (Havenga et al., 2011). Safari
and Meskini (2016) suggest that problem-solving heuristics can be taught to students through a meta-
cognitive approach. Using extensive research, they suggest components to teach students how to
problem solve, such as thinking deeply about the problem and questioning if the problem can be
broken down into tasks; questioning and monitoring their strategy for solving the problem; and

Template for an Educational Software Development Methodology

18

continuously reflecting on their strategy and revising if necessary until a complete, integrated solution
is produced. Consequently, teaching students how to articulate their learning journey and engaging in
metacognition to self-reflect on their learning should be part of the ESDM template.

A summary of the skills collated from the review into teaching CS1 are presented in Table 7.

Table 7. Summary of skills identified in review of teaching CS1
and a recommendation for their representation in an ESDM

 Skills identified in
teaching CS1 review Recommended representation in ESDM

1. Illustrate evidence of mental
modelling of programming
constructs and notional ma-
chines

Incorporate a visualisation tool to allow students
explicitly model analysis and design outputs when
they are planning solutions.

2. Apply levels of abstraction Use explicit models in ESDM developmental
stages (as part of a visualisation system) to apply
to analysis, design, and coding outputs, which will
allow students to view these stages at various lev-
els of detail and to connect them into a coherent
workflow towards a solution.

3. Apply DRY principle Include teaching pattern recognition to reduce re-
dundancy at the analysis, design, and coding
stages.

4. Perform problem analysis
and decomposition

Use hybrid development in analysis, design, and
coding developmental stages.

5. Writing algorithms Use flowcharts in design.
6. Data Identification and Rep-

resentation
Data identification and representation should be
explicitly incorporated as part of using flowcharts.

7. Evaluate Solution Teach students how to debug their solutions and
apply metacognition to reflect on their solutions
and learning.

In validating the above set of seven skills that emerged from the review of CS1 education, it was im-
portant to identify a second body of research that could independently identify skills. One area of
active research that appears to have a role in understanding the skills required in software develop-
ment is computational thinking (CT). It is accepted that to become proficient software developers,
students need to develop good computational thinking skills to produce software solutions (Grover,
2019; Liu & He, 2014; Lu & Fletcher, 2009). Denning (2017) states that the research community rec-
ognises CT as a set of skills rather than a set of applicable knowledge. This has ensured that CT has
become an area of active interest to educators both inside and outside the computer science commu-
nity (Agbo et al., 2019), with the ACM recognizing CT as one of the fundamental skills desired of all
graduates (Kumar et al., 2023).

However, despite the phrase originating with the seminal educational researcher Papert (1996), inter-
est and research in this area only became widespread since the publication of Wing’s paper (2006).
Therefore, given the relatively recent time period of active research into the topic, there is still a lack
of consensus in the literature on exactly what constitutes CT and how it can be defined and assessed
(Denning, 2017; Gouws et al., 2013; Grover, 2019; Grover & Pea, 2013; Lockwood & Mooney, 2018;
Palts & Pedaste, 2020).

In the context of this research, a systematic review of the literature on CT was conducted to identify
the most commonly cited skills. This review resulted in the identification of eight skills, which are
presented in a bar chart in Figure 5. The skills are listed and ranked from highest to lowest based on
the percentage of times they appear in a skill-set definition for CT in the reviewed papers.

Higgins, O’Leary, McAvinia, & Ryan

19

Figure 5. Most commonly listed CT skills produced by a

systematic review by the researcher (number of papers n = 93)

One way of corroborating the above list was to compare it to other similar reviews. A comparable
systematic review of CT was carried out by Kalelioglu et al. (2016) where they suggested the follow-
ing skills listed in order of importance: abstraction, algorithmic thinking, problem solving, pattern
recognition, design-based thinking, conceptualising, decomposition, automation, analysis, testing &
debugging, generalisation, mathematical reasoning, implementing solutions and modelling. This list is
a superset of all terms indicated in Figure 5, with our conclusion that the skill Implementation/Automa-
tion identified from this research project’ review and the extra skills indicated by Kalelioglu are not
appropriate in this research for the reasons outlined in Table 8.

In comparing the set of seven CT skills identified in Figure 5 (excluding Implementation/Automation for
the reasons given in Table 8) against the seven skills identified via the review of CS1 in Table 7, it can
be seen from Table 9 that the skills map onto each other. The one difference is the absence of inte-
gration of algorithms to form higher-level solutions in the definition of Writing Algorithms in Table 9.
However, given its importance, as highlighted in the review of teaching CS1, the skill of Writing Algo-
rithms in this research is assumed to also include the skill of algorithm integration. Therefore, the
skills identified as being appropriate for this research are listed alphabetically in Table 10.

Table 8. List of CT skills presented by
Kalelioglu et al.’s (2016) review that is rejected in this paper

CT Skill Reason for exclusion
Problem solving This is an umbrella term for the skill-set required for CT, and it is too general

for it to be useful.
Design-based thinking The skill of writing algorithms is design-based thinking, as it involves design-

ing solutions before implementation.
Conceptualising This is too vague a term to be useful, and it can be argued it is an inherent

part of all the skills listed in Figure 5.
Mathematical-
reasoning

While it has been found that mathematical ability is a predictor of success in
introductory computer science modules (Bergin & Reilly, 2005), its lack of ex-
plicit inclusion in Figure 5 and its comparatively low importance level (2%) in
Kalelioglu’s review renders it inadmissible.

Template for an Educational Software Development Methodology

20

CT Skill Reason for exclusion
Analysis This term had a myriad of definitions in the literature review, with some au-

thors indicating that it involves understanding the problem domain, and oth-
ers (including Kalelioglu) suggested that it was a skill that resulted in the de-
composition of the problem. For this review, conducting analysis is assumed
to be equivalent to problem decomposition, which is defined as representing
a breakdown of a problem into required sub-problems that need to be ulti-
mately solved and integrated into a final solution. This equates to require-
ments elicitation in commercial software development.

Implementation/
Automation

This skill is viewed as the final work product of solving a computational prob-
lem, and it is the culmination of the other skills. It is a way to implement a
problem solving strategy rather than being an inherent skill of CT itself.

Generalisation In Kalelioglu’s review, this is a term used to represent reuse in solution build-
ing, which, in this research project, is part of pattern recognition and does not
warrant a separate term.

Table 9. Mapping the suite of skills identified in CS1 review to CT skills

Skills identified in CS1 review CT skills
Apply levels of abstraction Abstraction
Identify data Data representation
Perform problem analysis and decomposition Decomposition
Evaluate solution Evaluation of solution
Illustrate evidence of mental modelling of
a) programming concepts
b) notional machine

Mental modelling

Apply DRY principle Pattern recognition
Design algorithms for tasks Writing algorithms

Table 10. Key Skills required by CS1 learners

Skill Explanation
Abstraction The ability to reduce the complexity of a problem and its solution by being able to

zoom in and out of different levels of detail so focus need only be applied to essen-
tial characteristics. A visualisation system which employs modelling is recom-
mended for an ESDM to help students learn and apply this important skill.

Data Representation The ability to elicit, analyse and represent the data needed to solve a problem. This
must be included when writing algorithms and subsequent code.

Decomposition (of
problem)

This is the ability to decompose a problem into a series of tasks or sub-problems
that need to be solved. It is the ability to analyse a problem to break it into a suite
of requirements. This is part of a hybrid development approach recommended for
the ESDM template.

Evaluation This is the ability to evaluate a solution (where a solution contains all of the outputs
from problem planning and programming) by testing, debugging, and critiquing it at
various levels of abstraction. It also includes the application of metacognitive prac-
tices to enable students to critique their solutions and improve their learning.

Higgins, O’Leary, McAvinia, & Ryan

21

Skill Explanation
Mental Modelling There was confusion in the literature in providing a definition for modelling as, in

some instances, it was perceived as being the building of concrete artefacts, and in
other places, it was taken to mean mentally modelling constructs. This confusion
resulted in its low ranking in Figure 5. However, we view it as being an important
skill when it is taken to mean mental modelling in problem solving. It is closely
aligned to the ability to apply abstraction, and the template ESDM recommends ex-
plicit modelling in a visualisation system as a segue to mental modelling.

Pattern recognition This is the capability for recognising when all or part of a problem has been solved
before so a new design does not need to be developed. This is encapsulated by the
Don’t Repeat Yourself (DRY) principle (D. Thomas & Hunt, 2019).

Writing Algorithms This is an ability to design solutions to (decomposed) tasks using computational
constructs and integrate them into a higher-level solution. The use of flowcharts is
recommended for this skill.

Given that learning to develop software is heavily based on solving problems, the next section fo-
cuses on research question RQ1.2 by examining appropriate developmental stages for solving prob-
lems in the ESDM.

RQ1.2 KEY DEVELOPMENTAL STAGES
In devising a suite of developmental stages, the first step was to understand the classification of
problems that CS1 students are expected to solve. In cognitive psychology, two major types of prob-
lems are distinguished: well-defined and ill-defined (Jonassen, 2000). Well-defined problems have one
correct interpretation, and their specification provides all the information needed to solve them. In
contrast, ill-defined problems have several possible interpretations and often include only fragmen-
tary information. In the context of software development, CS1 students typically start their studies by
solving well-defined problems. With experience and increased proficiency, the aim is that they should
be able to ultimately move on to solving ill-defined, real-world problems (Mendonça et al., 2009).
This means that as part of the curriculum of the ESDM, students should be provided with a range of
interesting problems, both well-defined and ill-defined, to ensure they get the necessary practice re-
quired to become proficient in development (Kinnunen & Malmi, 2006; Rogerson & Scott, 2010).

The literature was examined as part of the narrative review of problem solving for examples of evi-
dence based, general problem-solving methodologies that could be adapted for software develop-
ment. For example, Bransford and Stein’s (1993) IDEAL is a general problem-solving method that is
used to Identify (the problem), Define (the problem), Explore (options), Act (on a plan), and Look (at the conse-
quences). Other methodologies include GROW (Alexander & Renshaw, 2005) which is used in the
context of cooperate coaching to help workers set goals for themselves (Goal, Reality, Options, Way
Forward), and the OODA loop model (Boyd, 1996), which is used for decision making and refers to
the decision cycle of Observe, Orient, Decide, and Act.

An appropriate strategy for problem solving that can be applied to a diverse set of educational do-
mains – including software development – was found in Pólya’s How to Solve It (1957). This text pos-
tulated that there are four main stages to problem solving (the context was mathematical problem
solving). These four stages are “understand the problem”, “make a plan to solve the problem”, “carry out the
plan” and “reflect on the success of the plan”. As observed in the introduction to this paper, commercial
software development methodologies are based on providing strategies to carry out the basic soft-
ware development practices of requirements analysis, design, coding (i.e., programming), and testing.
Therefore, Pólya’s four-stage model can be aligned for use as a foundational strategy for problem
solving in software development (Higgins et al., 2017b). Comparable examples were found in the lit-
erature, which included Middleton’s (2012) strategy that aligned deliverables from the model against
the deliverables from a Waterfall process (Royce, 1987) of software development and Thompson’s
(1996) book How to Program It, applied Pólya’s stages to functional programming using Haskell.

Template for an Educational Software Development Methodology

22

Consequently, the developmental stages of the proposed ESDM template are based on Pólya’s basic
problem-solving strategy, which was adapted to align with the commonly agreed stages in commer-
cial software development methodologies but rebrand them to suit novice learners. The four devel-
opmental stages of the methodology are illustrated in Figure 6.

Figure 6. ESDM developmental stages

The numbers associated with each stage in Figure 6 indicate that there is an order to the stages with
Stage 1 being the first stage and Stage 4 being the last stage. The developmental stages are also itera-
tive and incremental, as is common practice in commercial software development (Al-Saqqa et al.,
2020). In previous sections, having a visualisation system that helps students explicitly conceptualise
their understanding of their designs and solutions was highlighted as being a valuable resource.
Therefore, it is recommended that a visual support tool that operationalises the four development
stages would be advantageous in facilitating students in capturing their work products from each
stage.

Stage 1 - Understand the problem
To understand the problem being solved, it is important that the objective of what the problem is
trying to achieve and the goal of the problem in terms of its learning outcomes is understood (Gick,
1986). When a student fully understands the aims and expectations of a problem, this can help push
and motivate them to learn the new skills required to achieve those expectations (Hattie, 2012).

However, in the context of software development, novices can often rush to implement a solution to
a problem before they fully understand the problem because they find it difficult to separate the con-
ceptualisation of potential solutions from a concrete implementation of those solutions (Fornaro et
al., 2006; Kokotovich, 2008). This jump to implementation means that design decisions can be
quickly made concrete and communicated through program code, with novices then generally being
unable or unwilling to change decisions that have been implemented even if that decision is later
found to be incorrect. Equally, novices can engage in a cognitive characteristic known as functional
fixedness (Duncker & Lees, 1945). This characteristic means that software novices can see examples
of computational constructs being used in one scenario and fail to understand their use in other sce-
narios. Solutions can often be developed very superficially and with little connection to the actual
problem to be solved (Chetty & van der Westhuizen, 2015), and this contributes to an attitude in a
novice that the understanding and design of the problem is of little importance relative to the im-
portance of implementing the solution. This view is supported by many educators who observe that
getting students to take the time to understand and design solutions rather than immediately engage
with syntax to generate a solution through trial and error is very difficult (Blanchard et al., 2020;

Higgins, O’Leary, McAvinia, & Ryan

23

Parham et al., 2010; D. R. Wright, 2012). Equally, novices will often memorise solutions to problems
and will move from problem exercise to exercise with little reflection on the possible connections be-
tween problems or the concepts that may inform them (Garner, 2009). Therefore, the aim of this de-
velopmental stage is to encourage students to take the time to understand the nature of the problem
and its objectives before moving to trying to solve the problem. This is achieved by employing a sub-
set of skills from Table 10. Abstraction is used to produce a high-level summarised version of the
problem, with Pattern Recognition being used to see if any reusable components can be employed in the
solution. This stage also involves the Mental Modelling of the problem domain at a high level to ensure
that the student understands the problem and its goal or expected outcome.

Stage 2 - Break into tasks
For CS1 learners, the most common approach to solving problems is an informal top-down, depth-
first decomposition of the problem (Pearce et al., 2015). Therefore, this stage requires the student to
use the problem solving heuristic of divide and conquer (Gick, 1986; Wang & Chiew, 2010), which
enables a student to use their understanding of the problem to break it into a hierarchy of subprob-
lems (known as tasks) to help reduce the complexity of the problem. It also requires morphological
analysis to understand the requirements of the system.

This breakdown of the problem represents an analysis of the problem (What do I have to do?) and em-
ploys the skill of Decomposition with tasks articulating what must be done as opposed to developing a
strategy for how it will be done. This stage will use the skills of Abstraction and Mental Modelling, as
viewing a problem conceptually as a mental model at various levels of detail needs abstraction as a
mechanism for reducing complexity (Koppelman & van Dijk, 2010). However, Cabo (2015) noted
that students’ inability to create such a mental model makes it difficult for them to truly understand
the problem domain. To support the creation of this mental model and to prevent cognitive over-
load, there is ample evidence that visualisation systems assist learners in solving problems and under-
standing developmental concepts (Edmison & Edwards, 2019; Guo, 2013; Sorva et al., 2013; Vrach-
nos & Jimoyiannis, 2008). Therefore, to make this stage visual, it is suggested that the support tool
scaffolds students in brainstorming tasks by using a tool such as a mind map. Mind mapping can be
useful in helping learners to brainstorm problems, and specifically in analysing software problems (Li
et al., 2015). In this way, the support tool facilitates learners in utilising Evaluation to visually trace
backward and forward between the summary of the problem in Stage 1 and the output of this stage
to ensure consistency between the stages. Pattern recognition is also employed here to ensure the DRY
principle is being applied if appropriate.

Stage 3 - Design, code, test and integration
This stage focuses on the design, coding, and testing of solutions for tasks devised in stage 2 and
their integration into a full solution. It has been reported in the literature that failure to design a solu-
tion (or even understand the rationale for design) can lead to novices adopting maladaptive cognitive
practices with no problem planning (Loksa et al., 2016; Prather et al., 2020).

Similar to Stage 1, using a support tool facilitates learners to visually utilise Abstraction to move be-
tween the tasks identified in Stage 2 and their associated designs in order to ensure consistent map-
ping between the developmental stages.

The skill of Pattern Matching will allow users to know if they can reuse a design or coded solution for
all or part of the current problem. Each task that requires a solution to be designed will need to em-
ploy the problem-solving heuristics of analogy, means-end analysis, reduction, research, and brain-
storming (if peer development or group projects are being employed). The skills of Mental Modelling,
Writing Algorithms, Data Representation and Evaluation will be used to devise and evaluate designs and
their associated representation as a programmed solution.

Template for an Educational Software Development Methodology

24

Stage 4 - Final evaluation and reflect on the solution
This final stage tests the integrated coded solution and allows the learner to return to previous devel-
opmental stages if they discover logical errors during the testing process. This stage also facilitates
students to reflect on their learning journey by encouraging them to engage in metacognition so they
can regulate their own learning, which is seen as a key factor in predicting learning performance
when problem solving (Jacobse & Harskamp, 2012). Gammill (2006) suggested strategies for pro-
moting metacognition include self-questioning (e.g., “What do I already know about this topic? How have I
solved problems like this before?”), thinking aloud while performing a task and making graphic representa-
tions (e.g., concept maps, flow charts, semantic webs) of one’s thoughts and knowledge. In software
development, Bergin and Reilly (2005) found that students who perform well use more metacogni-
tive management strategies than lower-performing students. In fact, the more complex a problem is
the greater the need for metacognitive control, purposeful reflection, and positive feedback (Havenga
et al., 2011). Techniques such as the use of questioning prompts and semantic webs could be in-
cluded as part of the support tool to encourage and develop metacognition.

This concludes the presentation of findings based on RQ1.1 and RQ1.2 (see Table 3). The next sec-
tion discusses these findings in order to answer RQ1 (see Table 1) and consequently present the pro-
posed foundational template for an educational software development methodology.

DISCUSSION
This research aimed to answer RQ1 (see Table 1) in order to produce a foundational ESDM template
suitable for novice undergraduate learners by first addressing two critical aspects encompassed in
RQ1.1 and RQ1.2 (see Table 3). Our findings highlight the necessity of both components in foster-
ing capable and knowledgeable students of software development.

RQ1.1 (see Table 3) focused on identifying the key knowledge and skills necessary for CS1 learners.
Key knowledge in software development comprises foundational constructs and concepts that stu-
dents need to grasp in order to develop software solutions effectively. Identifying this knowledge in-
volved a comprehensive review of existing teaching practices in introductory computer science
courses (CS1), supplemented by studies on threshold concepts in computing to compile a recom-
mended list of key knowledge constructs. Given that the topic of threshold concepts, in general, re-
fers to the essential knowledge that students must acquire in a domain of interest, we felt it was ap-
propriate to represent the key knowledge for the ESDM template as threshold concepts. This re-
sulted in four threshold concepts labelled TC1 to TC4 (see Table 6): State and Sequential Flow, Non-Se-
quential flow, Modularity, and Object Interaction, with the final concept appearing as an optional concept
that can be removed if the underlying paradigm being used is not object based. However, given that
our review found that the majority of CS1 courses do use an object-oriented paradigm, it is appropri-
ate to include it in this list. It was also seen in the review that this suite of concepts aligns with the
ACM/IEEE/AAAI Computing Curricula, which included the teaching of variables, expressions, and
assignments (sequential statements), conditional statements, iterative statements, and modularity.
Moreover, it was seen in the review that these constructs are broadly recognized across most CS1
courses. These threshold concepts guide the order in which concepts should be taught without being
prescriptive regarding how they should be taught or what programming language should be used.
Each concept builds upon the previous one, establishing an order of learning from TC1 to TC3 and
optionally TC4 for object-oriented paradigms.

Two comprehensive reviews were undertaken to identify the key skills in teaching CS1 and under-
standing computational thinking. The findings from the review conducted on CT skills closely
aligned with the findings from the teaching CS1 review. This resulted in an agreed suite of seven key
skills (see Table 10) - Abstraction, Data Representation, Decomposition (of problem), Evaluation, Mental Model-
ling, Pattern recognition, and Writing Algorithms. This alignment between the two reviews validates the
importance of these skills in developing competent software developers and supports their inclusion

Higgins, O’Leary, McAvinia, & Ryan

25

in the ESDM template. These skills allow the knowledge to be applied to solving problems.

In order to understand the relationship that these key knowledge and skills have to each other and
how they can be learned and embodied in the template, it is important to devise a learning frame-
work, which is a model that provides scaffolded approaches to help students “form knowledge struc-
tures that are accurately and meaningfully organized” while informing “when and how to apply the
skills and knowledge they learn” (Ambrose et al., 2010, p. 45).

Measuring the attainment of competence involves learners using a subset of knowledge and skills for
a TC to solve appropriate problems, with the development of solutions being recorded to test that
the required knowledge and skills have been applied correctly as learning outcomes. As suggested by
the review, learning should incorporate problem exercises that start as well-defined and then move to
ill-defined as students move from TC1 to TC4. This means that when a student is being taught a new
concept, they will access all the knowledge and application of skills with respect to that concept but
will also need to use the knowledge and skills of previous concepts as a prerequisite to mastering the
current concept. This sequential learning approach aligns with the spiral curriculum model, ensuring
a structured progression in understanding software development concepts and associated skills.

An illustration of the learning framework is presented in Figure 7.

Figure 7. Learning framework consisting of key knowledge and skills

The knowledge is presented as four threshold concepts, with their organisation
indicating a spiral curriculum where each concept is an essential part of each
subsequent concept. The seven skills, listed alphabetically on the right of the

figure, are used to solve problems for each of the four concepts.

In this framework, based on a spiral curriculum, when a student is being taught a new TC, they will
be given a sequence of problems appropriate to that TC. They will need to apply all of the seven
skills from Figure 7 as part of the ESDM developmental stages in order to solve the problems. This
means that each threshold concept will be evaluated via a suite of problems, where evidence of all
seven skills being correctly applied must be recorded for each problem. Once all problems for a TC
can be completed correctly, a TC is said to be understood and acquired. After mastering a TC, stu-
dents move to the next TC where once more they cycle through the skills, but they are now also using
the knowledge gained from any earlier TC(s).

The choice of specific problems is outside the scope of this research as they would depend on the
specific methodology being devised from this ESDM template including knowing the programming
paradigm being suggested. However, as part of this review, the importance of contextualizing

Template for an Educational Software Development Methodology

26

learning within real-world scenarios was observed, as it enhances students’ ability to transfer class-
room knowledge to practical applications. This aligns with the constructivist approach, which advo-
cates for learning experiences that are active, contextual, and reflective. Therefore, providing students
with a variety of real-world problems, ranging from well-defined to open-ended (as suggested in the
learning framework in the previous sub-section), would help students apply their knowledge in differ-
ent contexts and develop flexibility in their problem-solving approaches. Moreover, encouraging col-
laboration and peer review during these stages could also enhance learning outcomes by exposing
students to diverse perspectives and solutions.

RQ1.2 focused on the developmental stages required for problem solving with a template ESDM.
Our analysis indicates that a methodical approach to problem solving is crucial for instilling good de-
velopmental habits and mimicking professional software development practices. The review high-
lighted the importance of aligning educational practices with industry standards. By integrating prin-
ciples from established software development methodologies, such as the Software Development
Life Cycle (SDLC) and Agile practices, educators can provide students with a more relevant and
practical learning experience. However, it is crucial to adapt these methodologies to fit the educa-
tional context, ensuring they are suitable for novice learners who may not yet possess the requisite
development knowledge.

A staged approach, adapted from Pólya’s model and consistent with commercial software develop-
ment methodologies, was devised for this research. Four stages were suggested, with an initial stage
focussed on understanding and defining the problem, followed by a second stage that involved
breaking the problem into tasks. The two subsequent stages involve designing and implementing the
tasks and, finally, testing and debugging each task while continually reviewing and reflecting on the
process and outcomes. This structured progression not only helps students develop systematic prob-
lem-solving skills but also reinforces the iterative nature of software development, where continuous
improvement and adaptation are key.
Having answered RQ1.1 and RQ1.2, we are now able to answer RQ1, which presents the essential
constitutional elements in a foundational ESDM template.

The proposed template serves as a foundational starting point designed to guide researchers and edu-
cators in developing concrete methodologies for CS1 learners. It provides a structured learning
framework and a set of developmental stages essential for teaching knowledge and skills systemati-
cally through scaffolded active learning. The intersection of the learning framework and the develop-
mental stages forms the core of the Educational Software Development Methodology (ESDM) tem-
plate, where students incrementally solve problems pertinent to each Threshold Concept (TC) using
these stages to enhance their understanding and solution-building capabilities. A schematic represen-
tation of this foundational template is illustrated in Figure 8.

Instruction is provided in each TC, starting with TC1. As part of the instruction, sample problems
and solutions should be provided to students to demonstrate how the knowledge associated with the
TC is used in conjunction with the seven skills to solve problems, using the developmental stages to
plan and implement solutions. Students will then solve other problems relevant to that TC, sup-
ported by the developmental stages, to systematically develop their solutions and to prove compe-
tence in that TC. Once all four TCs and their associated problems have been successfully completed,
the student is considered to have fulfilled the requirements of a typical CS1 curriculum. Students can
then continue to use the developmental stages as the basis for solving other problems outside of
CS1. It should be noted that the ESDM template can also be solely used as a software development
methodology (i.e., it is not invoking the learning framework), where learners are able to provide their
own specification for a problem and use the developmental stages to systematically produce their so-
lution.

Higgins, O’Leary, McAvinia, & Ryan

27

Figure 8. The proposed foundational template for an ESDM which contains

a learning framework and four developmental stages which intersect to provide
CS1 students with a structured environment to learn how to develop software solutions

It should be noted that while this paper lays out the essential elements of the ESDM, it is beyond its
scope to provide concrete examples of its application. The template is intended to be a flexible and
adaptable starting point for other researchers to build upon and develop specific methodologies tai-
lored to their educational contexts. Future research should focus on creating detailed methodologies
and practical applications of the ESDM template, ensuring that they are robust and adaptable to di-
verse learning environments. Furthermore, as discussed in the skills identification section, the use of
visualization systems is recommended to help students model and conceptualize their problem-solv-
ing processes. To this end, developing a software tool that operationalizes the developmental stages
of the ESDM would be highly beneficial. Such a tool would enable students to explicitly capture their
understanding of problems, break down problems into manageable tasks, design and code these
tasks, evaluate their solutions, and track their workflow through the various stages. This tool would
not only enhance the learning experience but also provide valuable insights into students’ problem-
solving approaches, aiding educators in refining and improving the methodology.

LIMITATIONS
This integrative review attempted to be as wide-ranging as possible in reviewing problem solving,
CS1 education, computational thinking, and threshold concepts. In order to do this, comprehensive
reviews of both a narrative and systematic nature were carried out on material primarily published
from 2000 to 2020 on a range of research databases and libraries. However, as extensive as these
searches were, it cannot be guaranteed that all relevant literature was reviewed, especially in the

Template for an Educational Software Development Methodology

28

narrative reviews of CS1 education and threshold concepts. Also, the decision just to review CS1 ed-
ucation and exclude research into non-computing majors studying software development or compu-
ting studies at first or second-level education may have resulted in some data being omitted.

It is also recognised that the ESDM template that was produced would need refinement by educators
who wish to use it in determining the problem sets that would be used with the methodology and in
providing a visual support tool. This ESDM, however, does give a comprehensive description of its
components and, therefore, is a useful starting point for interested educators and researchers to
adopt, adapt, and use in their own practice.

CONCLUSIONS
Despite a wealth of research into the teaching and learning of software development and computer
science over the past 30 years, work is still required to identify the right blend of technology and ped-
agogy to help progress both student success and retention (Price & Smith, 2014; Zarb et al., 2018).
Given the importance of undergraduate students forming good developmental habits and competen-
cies (Dorodchi et al., 2019), we were motivated to immerse ourselves in this area as we saw an anom-
alous situation in existence that concerned the lack of software development methodologies suitable
for novice undergraduate education. Consequently, the purpose of this integrative review was to cre-
ate a template for an educational software development methodology that could be refined and oper-
ationalised by researchers and educators.

Devising this template was achieved by addressing two research sub-questions (see Table 3), which
encompass the critical aspects of educating novice software developers: understanding the key skills
and knowledge required by students, and the structuring of problem-solving developmental stages.
To answer these questions, a combination of systematic and narrative literature reviews were under-
taken in the following four areas: (1) teaching CS1, (2) problem solving, (3) computational thinking, and (4)
threshold concepts. The findings from these reviews produced seven skills and four concepts required by
novice learners. The skills include the ability to perform abstraction, data representation, decomposition, eval-
uation, mental modelling, pattern recognition, and writing algorithms. The concepts included state and sequential
flow, non-sequential flow control, modularity, and object interaction (if the underlying paradigm is object
based). Once the key knowledge and skills were identified, the next step was to create a learning
framework into which these concepts and skills were integrated. The result was a spiral framework
with the four concepts taught in order where problems pertinent to each concept are incrementally
solved using all of the seven skills (see Figure 7).

The learning framework was married with four development stages, devised from the research, to
guide software problem solving – (1) understand the problem; (2) break into tasks; (3) design, code, test, and
integrate; and (4) final evaluation and reflect on the solution – in order to provide the foundational template
for educational methodologies. This template provides a structured learning framework that incorpo-
rates scaffolded instruction and practical application. Integrating problem solving developmental
stages with the learning framework provides students with a clear roadmap for applying their skills
systematically. Moreover, this approach aligns with the principles of experiential learning, where stu-
dents learn through reflection on doing. By methodically guiding students through the stages of
problem solving, educators can help them develop the habits and skills necessary for professional
software development. The learning framework is designed to have a temporary existence that slowly
fades as learners become more proficient in software development. This means that the ESDM can
continue to be used by students once they get past the CS1 stage of their studies.

While older examples of ESDMs to support different aspects of developing software were found in
the literature, no methodology or subsequent process aimed at CS1 learners to support all aspects of
developing software solutions in any programming paradigm was found. This makes this proposed
template a vital initial step toward creating comprehensive methodologies for teaching CS1 students.
It outlines the necessary components and structure but requires further development and

Higgins, O’Leary, McAvinia, & Ryan

29

customization to become a fully realized educational tool. It is our belief that the provision of this
template methodology provides a basis for other educators and researchers to build on this research
and create such tools. To achieve this, the developmental stages are at a sufficiently high level, so
their realisation in an operational methodology can be adjusted given the context of the nature and
structure of the CS1 course.

However, it should be stated that the development and application of the proposed template into a
concrete methodology presents some challenges. First, while the template offers a foundational
framework for teaching CS1 students, translating this high-level structure into concrete, actionable
methodologies that can be effectively implemented in diverse undergraduate settings is a complex
task. Researchers and educators must navigate the variability in student backgrounds and create prob-
lem sets suitable for each TC stage and in alignment with their underlying programming paradigm,
which necessitates the customization of the template to suit specific contexts. Additionally, creating a
visual software tool to operationalize the ESDM, as recommended, involves technical challenges,
such as designing intuitive interfaces that can accurately model students’ problem solving while
providing meaningful feedback. Finally, evaluating the effectiveness of these methodologies and tools
in enhancing CS1 education requires robust, long-term empirical studies, which can be resource-in-
tensive and logistically challenging. These challenges underscore the need for collaborative efforts
among educators, software developers, and researchers to refine and validate the proposed template
in practical settings.

Despite these challenges, it is important to emphasise that the template itself provides a robust and
comprehensive foundation. The learning framework, coupled with the developmental stages outlined
in the template, offers clear guidance on how to systematically approach the teaching and learning of
CS1 constructs. The intersection of these components ensures that researchers have a well-defined
pathway to follow, enabling them to adapt the template to various educational contexts with confi-
dence. Moreover, the template’s flexibility allows for iterative refinement, meaning that as researchers
apply the framework, they can continuously adjust and optimize their methodologies based on em-
pirical feedback and specific classroom dynamics. Thus, while the creation of customized methodolo-
gies will require effort and adaptation, the template’s inherent structure and clarity serve as a reliable
map, guiding researchers through the process of developing effective and context-sensitive educa-
tional strategies for CS1 learners. Therefore, researchers and educators are encouraged to use this
template as a foundation for developing and testing their own methodologies, contributing to the on-
going improvement of computer science education.

REFERENCES
Abbas, N., Gravell, A. M., & Wills, G. B. (2008). Historical roots of agile methods: Where did “Agile thinking”

come from? In P. Abrahamsson, R. Baskerville, K. Conboy, B. Fitzgerald, L. Morgan, & X. Wang (Eds.),
Agile processes in software engineering and extreme programming (pp. 94-103). Springer.
https://doi.org/10.1007/978-3-540-68255-4_10

Agbo, F. J., Oyelere, S. S., Suhonen, J., & Adewumi, S. (2019). A systematic review of computational thinking
approach for programming education in higher education institutions. Proceedings of the 19th Koli Calling
International Conference on Computing Education Research (pp. 1-10). Association for Computing Machinery.
https://doi.org/10.1145/3364510.3364521

Alexander, G., & Renshaw, B. (2005). Supercoaching. Business Books.

Allan, V., Barr, V., Brylow, D., & Hambrusch, S. (2010). Computational thinking in high school courses.
Proceedings of the 41st ACM Technical Symposium on Computer Science Education (pp. 390-391). Association for
Computing Machinery. https://doi.org/10.1145/1734263.1734395

Al-Saqqa, S., Sawalha, S., & Abdel-Nabi, H. (2020). Agile software development: Methodologies and trends.
International Journal of Interactive Mobile Technologies, 14(11), 147-170.
https://doi.org/10.3991/ijim.v14i11.13269

https://doi.org/10.1007/978-3-540-68255-4_10
https://doi.org/10.1145/3364510.3364521
https://doi.org/10.1145/1734263.1734395
https://doi.org/10.3991/ijim.v14i11.13269

Template for an Educational Software Development Methodology

30

Alston, P., Walsh, D., & Westhead, G. (2015). Uncovering “threshold concepts” in web development: An
instructor perspective. ACM Transactions on Computing Education, 15(1), Article 2.
https://doi.org/10.1145/2700513

Ambrose, S. A., Bridges, M. W., DiPietro, M., Lovett, M. C., & Norman, M. K. (2010). How learning works: Seven
research-based principles for smart teaching. John Wiley & Sons.

Armaya’u, Z. U., Gumel, M. M., & Tuge, H. S. (2022). Comparing flowchart and swim lane activity diagram for
aiding transitioning to object-oriented implementation. American Journal of Education and Technology, 1(2), 99-
106. https://doi.org/10.54536/ajet.v1i2.612

Armoni, M. (2014). Spiral thinking: K-12 computer science education as part of holistic computing education.
ACM Inroads, 5(2), 31-33. https://doi.org/10.1145/2614512.2614521

Arnold, R., Langheinrich, M., & Hartmann, W. (2007). InfoTraffic: Teaching important concepts of computer
science and math through real world examples. Proceedings of the 38th SIGCSE Technical Symposium on
Computer Science Education (pp. 105-109). Association for Computing Machinery.
https://doi.org/10.1145/1227310.1227349

Barr, D., Harrison, J., & Conery, L. (2011). Computational thinking: A digital age skill for everyone. Learning &
Leading with Technology, 38(6), 20-23. https://eric.ed.gov/?id=EJ918910

Barr, V., & Stephenson, C. (2011). Bringing computational thinking to K-12: What is involved and what is the
role of the computer science education community? ACM Inroads, 2(1), 48-54.
https://doi.org/10.1145/1929887.1929905

Bennedsen, J., & Caspersen, M. E. (2019). Failure rates in introductory programming: 12 years later. ACM
Inroads, 10(2), 30-36. https://doi.org/10.1145/3324888

Bergin, S., & Reilly, R. (2005). Programming: Factors that influence success. Proceedings of the 36th SIGCSE
Technical Symposium on Computer Science Education (pp. 411-415). Association for Computing Machinery.
https://doi.org/10.1145/1047124.1047480

Berry, M., & Kölling, M. (2013). The design and implementation of a notional machine for teaching
introductory programming. Proceedings of the 8th Workshop in Primary and Secondary Computing Education (pp.
25-28). Association for Computing Machinery. https://doi.org/10.1145/2532748.2532765

Biju, S. M. (2013). Difficulties in understanding object-oriented programming concepts. In K. Elleithy, & T.
Sobh (Eds.), Innovations and advances in computer, information, systems sciences, and engineering (pp. 319-326).
Springer. https://doi.org/10.1007/978-1-4614-3535-8_27

Blanchard, J., Gardner-McCune, C., & Anthony, L. (2020). Dual-modality instruction and learning: A case
study in CS1. Proceedings of the 51st ACM Technical Symposium on Computer Science Education (pp. 818-824).
Association for Computing Machinery. https://doi.org/10.1145/3328778.3366865

Boehm, B. (2006). A view of 20th and 21st century software engineering. Proceedings of the 28th International
Conference on Software Engineering (pp. 12-29). Association for Computing Machinery.
https://doi.org/10.1145/1134285.1134288

Boustedt, J., Eckerdal, A., McCartney, R., Moström, J. E., Ratcliffe, M., Sanders, K., & Zander, C. (2007).
Threshold concepts in computer science: Do they exist and are they useful? Proceedings of the 38th SIGCSE
Technical Symposium on Computer Science Education (pp. 504-508). Association for Computing Machinery.
https://doi.org/10.1145/1227310.1227482

Bower, M., & Falkner, K. (2015). Computational thinking, the notional machine, pre-service teachers, and
research opportunities. Australian Computer Science Communications, 37(2), 37-46. https://crpit.scem.western-
sydney.edu.au/confpapers/CRPITV160Bower.pdf

Boyd, J. R. (1996). The essence of winning and losing. Unpublished lecture notes, 12(23), 123-125.

Bransford, J. D., & Stein, B. S. (1993). The ideal problem solver. Centre for Teaching and Technology Book
Library. https://digitalcommons.georgiasouthern.edu/ct2-library/46

Bruner, J. S. (1960). The process of education. Vintage Books. https://doi.org/10.3726/978-1-4539-1735-0/12

https://doi.org/10.1145/2700513
https://doi.org/10.54536/ajet.v1i2.612
https://doi.org/10.1145/2614512.2614521
https://doi.org/10.1145/1227310.1227349
https://eric.ed.gov/?id=EJ918910
https://doi.org/10.1145/1929887.1929905
https://doi.org/10.1145/3324888
https://doi.org/10.1145/1047124.1047480
https://doi.org/10.1145/2532748.2532765
https://doi.org/10.1007/978-1-4614-3535-8_27
https://doi.org/10.1145/3328778.3366865
https://doi.org/10.1145/1134285.1134288
https://doi.org/10.1145/1227310.1227482
https://crpit.scem.westernsydney.edu.au/confpapers/CRPITV160Bower.pdf
https://crpit.scem.westernsydney.edu.au/confpapers/CRPITV160Bower.pdf
https://digitalcommons.georgiasouthern.edu/ct2-library/46
https://doi.org/10.3726/978-1-4539-1735-0/12

Higgins, O’Leary, McAvinia, & Ryan

31

Bustard, D., Wilkie, G., & Greer, D. (2013, April). The maturation of Agile software development principles
and practice: Observations on successive industrial studies in 2010 and 2012. Proceedings of the 20th IEEE
International Conference and Workshops on Engineering of Computer Based Systems, Scottsdale, AZ, USA, 139-146.
IEEE. https://doi.org/10.1109/ecbs.2013.11

Butt, S. A., Misra, S., Anjum, M. W., & Hassan, S. A. (2021). Agile project development issues during COVID-
19. In A. Przybyłek, J. Miler, A. Poth, & A. Riel (Eds.), Lean and agile software development (pp. 59-70).
Springer. https://doi.org/10.1007/978-3-030-67084-9_4

Cabezas, I., Segovia, R., Caratozzolo, P., & Webb, E. (2020, October). Using software engineering design
principles as tools for freshman students learning. Proceedings of the IEEE Frontiers in Education Conference,
Uppsala, Sweden, 1-5.. https://doi.org/10.1109/fie44824.2020.9274177

Cabo, C. (2015, June). Quantifying student progress through Bloom’s taxonomy cognitive categories in
computer programming courses. Paper presented at 2015 ASEE Annual Conference & Exposition, Seattle,
Washington. https://doi.org/10.18260/p.24632

Cañas, J. J., Bajo, M. T., & Gonzalvo, P. (1994). Mental models and computer programming. International Journal
of Human-Computer Studies, 40(5), 795-811. https://doi.org/10.1006/ijhc.1994.1038

Caserta, P., & Zendra, O. (2011). Visualization of the static aspects of software: A survey. IEEE Transactions on
Visualizations and Computer Graphics, 17(7), 913-933. https://doi.org/10.1109/tvcg.2010.110

Caspersen, M. E., & Kolling, M. (2009). STREAM: A first programming process. ACM Transactions on
Computing Education, 9(1), Article 4. https://doi.org/10.1145/1513593.1513597

Castro, F. E. V. G. (2015). Investigating novice programmers’ plan composition strategies. Proceedings of the
Eleventh Annual International Conference on International Computing Education Research (pp. 249-250). Association
for Computing Machinery. https://doi.org/10.1145/2787622.2787735

Chetty, J., & van der Westhuizen, D. (2015). Towards a pedagogical design for teaching novice programmers:
Design-based research as an empirical determinant for success. Proceedings of the 15th Koli Calling Conference on
Computing Education Research (pp. 5-12). Association for Computing Machinery.
https://doi.org/10.1145/2828959.2828976

Coffey, J. W. (2015). Relationship between design and programming skills in an advanced computer
programming class. Journal of Computer Sciences in Colleges, 30(5), 39-45.

Corney, M., Teague, D., Ahadi, A., & Lister, R. (2012). Some empirical results for neo-Piagetian reasoning in
novice programmers and the relationship to code explanation questions. Proceedings of the Fourteenth
Australasian Computing Education Conference (pp. 77-86). Australian Computer Society.

Cousin, G. (2006). An introduction to threshold concepts. Planet, 17(1), 4-5.
https://doi.org/10.11120/plan.2006.00170004

Cronin, M. A., & George, E. (2023). The why and how of the integrative review. Organizational Research Methods,
26(1), 168-192. https://doi.org/10.1177/1094428120935507

Denning, P. J. (2017). Remaining trouble spots with computational thinking: Addressing unresolved questions
concerning computational thinking. Communications of the ACM, 60(6), 33-39.
https://doi.org/10.1145/2998438

Denning, P. J., & Tedre, M. (2019). Computational thinking. MIT Press.
https://doi.org/10.4324/9781003102991-1

De Raadt, M., Watson, R., & Toleman, M. (2009). Teaching and assessing programming strategies explicitly.
Proceedings of the 11th Australasian Computing Education Conference (pp. 45-54). Australian Computer Society.

Devedzic, V. (2011). Teaching agile software development: A case study. IEEE Transactions on Education, 54(2),
273-278. https://doi.org/10.1109/te.2010.2052104

Dickson, P. E., Brown, N. C., & Becker, B. A. (2020). Engage against the machine: Rise of the notional
machines as effective pedagogical devices. Proceedings of the ACM Conference on Innovation and Technology in
Computer Science Education (pp. 159-165). Association for Computing Machinery.
https://doi.org/10.1145/3341525.3387404

https://doi.org/10.1109/ecbs.2013.11
https://doi.org/10.1007/978-3-030-67084-9_4
https://doi.org/10.1109/fie44824.2020.9274177
https://doi.org/10.18260/p.24632
https://doi.org/10.1006/ijhc.1994.1038
https://doi.org/10.1109/tvcg.2010.110
https://doi.org/10.1145/1513593.1513597
https://doi.org/10.1145/2787622.2787735
https://doi.org/10.1145/2828959.2828976
https://doi.org/10.11120/plan.2006.00170004
https://doi.org/10.1177/1094428120935507
https://doi.org/10.1145/2998438
https://doi.org/10.4324/9781003102991-1
https://doi.org/10.1109/te.2010.2052104
https://doi.org/10.1145/3341525.3387404

Template for an Educational Software Development Methodology

32

Dijkstra, E. (1979). Programming considered as a human activity. Classics in Software Engineering (pp. 1-9).
Yourdon Press. https://doi.org/10.7551/mitpress/11740.001.0001

Dorodchi, M., Al-Hossami, E., Nagahisarchoghaei, M., Diwadkar, R. S., & Benedict, A. (2019, October).
Teaching an undergraduate software engineering course using active learning and open source projects.
Proceedings of the IEEE Frontiers in Education Conference, Covington, KY, USA, 1-5.
https://doi.org/10.1109/fie43999.2019.9028517

Du Boulay, B. (1986). Some difficulties of learning to program. Journal of Educational Computing Research, 2(1), 57-
73. https://doi.org/10.2190/3lfx-9rrf-67t8-uvk9

Duncker, K., & Lees, L. S. (1945). On problem solving. Psychological Monographs, 58(5), i-113.
https://doi.org/10.1037/h0093599

Eckerdal, A., McCartney, R., Moström, J. E., Ratcliffe, M., Sanders, K., & Zander, C. (2006). Putting threshold
concepts into context in computer science education. ACM SIGCSE Bulletin, 38(3), 103-107.
https://doi.org/10.1145/1140124.1140154

Edmison, B., & Edwards, S. H. (2019). Experiences using heat maps to help students find their bugs: Problems
and solutions. Proceedings of the 50th ACM Technical Symposium on Computer Science Education (pp. 260-266).
Association for Computing Machinery. https://doi.org/10.1145/3287324.3287474

Edwards, J., Ditton, J., Trninic, D., Swanson, H., Sullivan, S., & Mano, C. (2020). Syntax exercises in CS1.
Proceedings of the ACM Conference on International Computing Education Research (pp. 216-226). Association for
Computing Machinery. https://doi.org/10.1145/3372782.3406259

Ericsson, K. A., & Charness, N. (1997). Cognitive and developmental factors in expert performance. In P. J.
Feltovich, K. M. Ford, & R. R. Hoffman (Eds.), Expertise in context: Human and machine (pp. 3–41).
American Association for Artificial Intelligence; MIT Press. https://doi.org/10.1017/cbo9780511816796

Feaster, Y., Ali, F., & O Hallstrom, J. (2012). Serious toys: Teaching the binary number system. Proceedings of the
17th ACM Annual Conference on Innovation and Technology in Computer Science Education (pp. 262–267).
Association for Computing Machinery. https://doi.org/10.1145/2325296.2325358

Fincher, S., Jeuring, J., Miller, C. S., Donaldson, P., Du Boulay, B., Hauswirth, M., & Petersen, A. (2020).
Capturing and characterising notional machines. Proceedings of the ACM Conference on Innovation and Technology
in Computer Science Education (pp. 502-503). Association for Computing Machinery.
https://doi.org/10.1145/3341525.3394988

Floyd, R. W. (2007). The paradigms of programming. ACM Turing award lectures. Association for Computing
Machinery. https://doi.org/10.1145/1283920.1283934

Fornaro, R. J., Heil, M. R., & Tharp, A. L. (2006, April). What clients want - what students do: Reflections on
ten years of sponsored senior design projects. Proceedings of the 19th Conference on Software Engineering Education
& Training, Turtle Bay, HI, USA, 226-236. https://doi.org/10.1109/cseet.2006.40

Foster, E. C. (2014). Software engineering: A methodical approach. https://doi.org/10.1007/978-1-4842-0847-2_1

Frison, P. (2015). A teaching assistant for algorithm construction. Proceedings of the ACM Conference on Innovation
and Technology in Computer Science Education (pp. 9-14). Association for Computing Machinery.
https://doi.org/10.1145/2729094.2742588

Gammill, D. M. (2006). Learning the write way. The Reading Teacher, 59(8), 754-762.
https://doi.org/10.1598/rt.59.8.3

Garner, S. (2007). A program design tool to help novices learn programming. ICT: Providing Choices for Learners
and Learning. Proceedings of ASCILITE, Singapore (pp. 321-324). https://ascilite.org/conferences/singa-
pore07/procs/garner.pdf

Garner, S. (2009). A quantitative study of a software tool that supports a part-complete solution method on
learning outcomes. Journal of Information Technology Education, 8, 285-310. https://doi.org/10.28945/698

Gick, M. L. (1986). Problem solving strategies. Educational Psychologist, 21(1-2), 99-120.
https://doi.org/10.1080/00461520.1986.9653026

https://doi.org/10.7551/mitpress/11740.001.0001
https://doi.org/10.1109/fie43999.2019.9028517
https://doi.org/10.2190/3lfx-9rrf-67t8-uvk9
https://doi.org/10.1037/h0093599
https://doi.org/10.1145/1140124.1140154
https://doi.org/10.1145/3287324.3287474
https://doi.org/10.1145/3372782.3406259
https://doi.org/10.1017/cbo9780511816796
https://doi.org/10.1145/2325296.2325358
https://doi.org/10.1145/3341525.3394988
https://doi.org/10.1145/1283920.1283934
https://doi.org/10.1109/cseet.2006.40
https://doi.org/10.1007/978-1-4842-0847-2_1
https://doi.org/10.1145/2729094.2742588
https://doi.org/10.1598/rt.59.8.3
https://ascilite.org/conferences/singapore07/procs/garner.pdf
https://ascilite.org/conferences/singapore07/procs/garner.pdf
https://doi.org/10.28945/698

Higgins, O’Leary, McAvinia, & Ryan

33

Gilb, T. (1985). Evolutionary delivery versus the “waterfall model.” SIGSOFT Software Engineering Notes, 10(3),
49-61. https://doi.org/10.1145/1012483.1012490

Ginat, D., & Menashe, E. (2015). SOLO taxonomy for assessing novices’ algorithmic design. Proceedings of the
46th ACM Technical Symposium on Computer Science Education (pp. 452-457). Association for Computing
Machinery. https://doi.org/10.1145/2676723.2677311

Gouws, L. A., Bradshaw, K., & Wentworth, P. (2013). Computational thinking in educational activities: An
evaluation of the educational game Light-Bot. Proceedings of the 18th ACM Conference on Innovation and
Technology in Computer Science Education (pp. 10-15). Association for Computing Machinery.
https://doi.org/10.1145/2462476.2466518

Greer, T., Hao, Q., Jing, M., & Barnes, B. (2019). On the effects of active learning environments in computing
education. Proceedings of the 50th ACM Technical Symposium on Computer Science Education (pp. 267-272).
Association for Computing Machinery. https://doi.org/10.1145/3287324.3287345

Grover, S. (2019). Thinking about computational thinking: Lessons from education research. Proceedings of the
50th ACM Technical Symposium on Computer Science Education (p. 1283). Association for Computing
Machinery. https://doi.org/10.1145/3287324.3293763

Grover, S., & Pea, R. (2013). Computational thinking in K–12: A review of the state of the field. Educational
Researcher, 42(1), 38-43. https://doi.org/10.3102/0013189x12463051

Guo, P. J. (2013). Online Python tutor: Embeddable web-based program visualization for CS education.
Proceedings of the 44th ACM Technical Symposium on Computer Science Education (pp. 579-584). Association for
Computing Machinery. https://doi.org/10.1145/2445196.2445368

Hattie, J. (2012). Visible learning for teachers: Maximizing impact on learning. Routledge.
https://doi.org/10.1080/02667363.2012.693677

Havenga, M., Mentz, E., & De Villiers, R. (2011). Thinking processes used by high-performing students in a
computer programming task. The Journal for Transdisciplinary Research in Southern Africa, 7(1), 25-40.
https://doi.org/10.4102/td.v7i1.252

Hazzan, O., Lapidot, T., & Ragonis, N. (2011). Guide to teaching computer science: An activity-based approach. Springer.
https://doi.org/10.1007/978-0-85729-443-2

Hertz, M. (2010). What do “CS1” and “CS2” mean? Investigating differences in the early courses. Proceedings of
the 41st ACM Technical Symposium on Computer Science Education (pp. 199-203). Association for Computing
Machinery. https://doi.org/10.1145/1734263.1734335

Higgins, C. (2021). The design and evaluation of an educational software development process for first year computing undergrad-
uates [Doctoral dissertation, Technological University Dublin]. https://arrow.tudublin.ie/sciendoc/257/

Higgins, C., Mtenzi, F., Hanratty, O., & McAvinia, C. (2017a). A conceptual framework for a software develop-
ment process based on computational thinking. Proceedings of the 11th International Technology, Education and
Development Conference, Valencia, Spain, 455-464. https://doi.org/10.21125/inted.2017.0244

Higgins, C., Mtenzi, F., O’Leary, C., Hanratty, O., & Mcavinia, C. (2017b). A software development process for
freshman undergraduate students. In A. Tatnall, & M. Webb (Eds.), Tomorrow’s learning: Involving everyone.
Learning with and about technologies and computing (pp. 599-608). Springer. https://doi.org/10.1007/978-3-319-
74310-3_60

Holloway, M., Alpay, E., & Bull, A. (2010). A quantitative approach to identifying threshold concepts in
engineering education. Journal of Engineering Education 2010: Inspiring the Next Generation of Engineers.
https://openresearch.surrey.ac.uk/esploro/outputs/99516906902346

Hu, M., Winikoff, M., & Cranefield, S. (2013). A process for novice programming using goals and plans.
Proceedings of the Fifteenth Australasian Computing Education Conference (pp. 3-12). Australian Computer Society.
https://www.researchgate.net/publication/266081141_A_Process_for_Novice_Programming_Us-
ing_Goals_and_Plans

Huang, T.-C., Shu, Y., Chen, C.-C., & Chen, M.-Y. (2013). The development of an innovative programming
teaching framework for modifying students’ maladaptive learning pattern. International Journal of Information
and Education Technology, 3(6), 591-596. https://doi.org/10.7763/ijiet.2013.v3.342

https://doi.org/10.1145/1012483.1012490
https://doi.org/10.1145/2676723.2677311
https://doi.org/10.1145/2462476.2466518
https://doi.org/10.1145/3287324.3287345
https://doi.org/10.1145/3287324.3293763
https://doi.org/10.3102/0013189x12463051
https://doi.org/10.1145/2445196.2445368
https://doi.org/10.1080/02667363.2012.693677
https://doi.org/10.4102/td.v7i1.252
https://doi.org/10.1007/978-0-85729-443-2
https://doi.org/10.1145/1734263.1734335
https://doi.org/10.21125/inted.2017.0244
https://doi.org/10.1007/978-3-319-74310-3_60
https://doi.org/10.1007/978-3-319-74310-3_60
https://openresearch.surrey.ac.uk/esploro/outputs/99516906902346
https://www.researchgate.net/publication/266081141_A_Process_for_Novice_Programming_Using_Goals_and_Plans
https://www.researchgate.net/publication/266081141_A_Process_for_Novice_Programming_Using_Goals_and_Plans
https://doi.org/10.7763/ijiet.2013.v3.342

Template for an Educational Software Development Methodology

34

Hummel, H. G. K. (2006). Feedback model to support designers of blended learning courses. The International
Review of Research in Open and Distributed Learning, 7(3). https://doi.org/10.19173/irrodl.v7i3.379

Izu, C., & Weerasignhe, A. (2020). Assessing CS1 design skills with a string manipulation task. Proceedings of the
ACM Conference on Innovation and Technology in Computer Science Education (pp. 432-438). Association for
Computing Machinery. https://doi.org/10.1145/3341525.3387382

Jacobse, A. E., & Harskamp, E. G. (2012). Towards efficient measurement of metacognition in mathematical
problem solving. Metacognition and Learning, 7(2), 133-149. https://doi.org/10.1007/s11409-012-9088-x

Jacobson, I., Booch, G., & Rumbaugh, J. (1999). The unified process. IEEE Software, 16(3), 96.

Jaime, A., Blanco, J. M., Domínguez, C., Sánchez, A., Heras, J., & Usandizaga, I. (2016). Spiral and project-
based learning with peer assessment in a computer science project management course. Journal of Science
Education and Technology, 25, 439-449. https://doi.org/10.1007/s10956-016-9604-x

Jeff, B., & Nguyen, K. (2018, December). ADL – Algorithmic design language. Proceedings of the International
Conference on Computational Science and Computational Intelligence, Las Vegas, NV, USA, 651-654.
https://doi.org/10.1109/CSCI46756.2018.00130

Jonassen, D. H. (2000). Toward a design theory of problem solving. Educational Technology Research and
Development, 48(4), 63-85. https://doi.org/10.1007/bf02300500

Kaczmarczyk, L. C., Petrick, E. R., East, J. P., & Herman, G. L. (2010). Identifying student misconceptions of
programming. Proceedings of the 41st ACM Technical Symposium on Computer Science Education (pp. 107-111).
Association for Computing Machinery. https://doi.org/10.1145/1734263.1734299

Kalelioglu, F., Gülbahar, Y., & Kukul, V. (2016). A framework for computational thinking based on a
systematic research review. Baltic Journal of Modern Computing, 4(3), 583-594. http://acikeri-
sim.baskent.edu.tr/handle/11727/3831

Khalife, J. T. (2006, June). Threshold for the introduction of programming: Providing learners with a simple
computer model. Proceedings of the 28th International Conference on Information Technology Interfaces, Cavtat, Croatia,
71-76. https://doi.org/10.1109/ITI.2006.1708454

Kinnunen, P., & Malmi, L. (2006). Why students drop out CS1 course? Proceedings of the Second International
Workshop on Computing Education Research (pp. 97-108). Association for Computing Machinery.
https://doi.org/10.1145/1151588.1151604

Kirschner, P. A., Sweller, J., & Clark, R. E. (2006). Why minimal guidance during instruction does not work: An
analysis of the failure of constructivist, discovery, problem-based, experiential, and inquiry-based teaching.
Educational Psychologist, 41(2), 75-86. https://doi.org/10.1207/s15326985ep4102_1

Kohn, T. (2017). Variable evaluation: An exploration of novice programmers’ understanding and common
misconceptions. Proceedings of the ACM SIGCSE Technical Symposium on Computer Science Education (pp. 345-
350). Association for Computing Machinery. https://doi.org/10.1145/3017680.3017724

Kokotovich, V. (2008). Problem analysis and thinking tools: An empirical study of non-hierarchical mind
mapping. Design Studies, 29(1), 49-69. https://doi.org/10.1016/j.destud.2007.09.001

Koppelman, H., & van Dijk, B. (2010). Teaching abstraction in introductory courses. In Proceedings of the Fifteenth
Annual Conference on Innovation and Technology in Computer Science Education (pp. 174-178).
https://doi.org/10.1145/1822090.1822140

Koulouri, T., Lauria, S., & Macredie, R. D. (2015). Teaching introductory programming: A quantitative
evaluation of different approaches. ACM Transactions on Computing Education, 14(4), Article 26.
https://doi.org/10.1145/2662412

Kramer, J., & Hazzan, O. (2006). The role of abstraction in software engineering. ACM SIGSOFT Software
Engineering Notes, 31(6), 38-39. https://doi.org/10.1145/1218776.1226833

Krishnamurthi, S., & Fisler, K. (2019). Programming paradigms and beyond. In S. A. Fincher, & A. V. Robins
(Eds.), The Cambridge handbook of computing education research (pp. 377-413). Cambridge University Press.
https://doi.org/10.1017/9781108654555.014

https://doi.org/10.19173/irrodl.v7i3.379
https://doi.org/10.1145/3341525.3387382
https://doi.org/10.1007/s11409-012-9088-x
https://doi.org/10.1007/s10956-016-9604-x
https://doi.org/10.1109/CSCI46756.2018.00130
https://doi.org/10.1007/bf02300500
https://doi.org/10.1145/1734263.1734299
http://acikerisim.baskent.edu.tr/handle/11727/3831
http://acikerisim.baskent.edu.tr/handle/11727/3831
https://doi.org/10.1109/ITI.2006.1708454
https://doi.org/10.1145/1151588.1151604
https://doi.org/10.1207/s15326985ep4102_1
https://doi.org/10.1145/3017680.3017724
https://doi.org/10.1016/j.destud.2007.09.001
https://doi.org/10.1145/1822090.1822140
https://doi.org/10.1145/2662412
https://doi.org/10.1145/1218776.1226833
https://doi.org/10.1017/9781108654555.014

Higgins, O’Leary, McAvinia, & Ryan

35

Kumar, A. N., Raj, R. K., Aly, S. G., Anderson, M. D., Becker, B. A., Blumenthal, R. L., Eaton, E., Epstein, S.
L., Goldweber, M., Jalote, P., Lea, D., Oudshoorn, M., Pias, M., Reiser, S., Servin, C., Winters, T., &
Xiang, Q. (2023). Computer Science Curricula 2023. Association for Computing Machinery.
https://doi.org/10.1145/3664191

Lahtinen, E., Ala-Mutka, K., & Järvinen, H. M. (2005). A study of the difficulties of novice programmers.
ACM SIGCSE Bulletin, 37(3), 14-18. https://doi.org/10.1145/1151954.1067453

Li, C. L., Yang, L. P., & Wang, W. (2015). Application of mind mapping to improve the teaching effect of Java
program design course. In H.-C. Liu, W.-P. Sung, & W. Yao (Eds.), Computing, control, information and
education engineering (p. 451). CRC Press. https://doi.org/10.1201/b18828-101

Liikkanen, L. A., & Perttula, M. (2009). Exploring problem decomposition in conceptual design among novice
designers. Design Studies, 30(1), 38-59. https://doi.org/10.1016/j.destud.2008.07.003

Lishinski, A., Yadav, A., Enbody, R., & Good, J. (2016). The influence of problem-solving abilities on students’
performance on different assessment tasks in CS1. Proceedings of the 47th ACM Technical Symposium on
Computing Science Education (pp. 329-334). Association for Computing Machinery.
https://doi.org/10.1145/2839509.2844596

Lister, R. (2011). Concrete and other neo-Piagetian forms of reasoning in the novice programmer. In J. Hamer
& M. de Raadt (Eds.), Conferences in research and practice in information technology series (pp. 9-18). Australian
Computer Society. https://opus.lib.uts.edu.au/handle/10453/17580#

Lister, R., Adams, E. S., Fitzgerald, S., Fone, W., Hamer, J., Lindholm, M., & Thomas, L. (2004). A
multinational study of reading and tracing skills in novice programmers. ACM SIGCSE Bulletin, 36(4), 119-
150. https://doi.org/10.1145/1041624.1041673

Lister, R., Simon, B., Thompson, E., Whalley, J. L., & Prasad, C. (2006). Not seeing the forest for the trees:
Novice programmers and the SOLO taxonomy. ACM SIGCSE Bulletin, 38(3), 118-122.
https://doi.org/10.1145/1140123.1140157

Liu, B., & He, J. (2014). Teaching mode reform and exploration on the University Computer Basic based on
Computational Thinking training in Network Environment. Proceedings of the 9th International Conference on
Computer Science & Education, Vancouver, BC, Canada, 59-62. https://doi.org/10.1109/iccse.2014.6926430

Lockwood, J., & Mooney, A. (2018). Computational thinking in secondary education: Where does it fit? A
systematic literary review. International Journal of Computer Science Education in Schools, 2(1), 41-60.
https://doi.org/10.21585/ijcses.v2i1.26

Loksa, D., Ko, A. J., Jernigan, W., Oleson, A., Mendez, C. J., & Burnett, M. M. (2016). Programming, problem
solving, and self-awareness: Effects of explicit guidance. Proceedings of the CHI Conference on Human Factors in
Computing Systems (pp. 1449-1461). Association for Computing Machinery.
https://doi.org/10.1145/2858036.2858252

Lu, J. J., & Fletcher, G. H. L. (2009). Thinking about computational thinking. ACM SIGCSE Bulletin, 41(1),
260-264. https://doi.org/10.1145/1539024.1508959

Luxton-Reilly, A., Albluwi, I., Becker, B. A., Giannakos, M., Kumar, A. N., Ott, L., & Szabo, C. (2018).
Introductory programming: A systematic literature review. Proceedings Companion of the 23rd Annual ACM
Conference on Innovation and Technology in Computer Science Education (pp. 55-106). Association for Computing
Machinery. https://doi.org/10.1145/3293881.3295779

Ma, L., Ferguson, J., Roper, M., & Wood, M. (2011). Investigating and improving the models of programming
concepts held by novice programmers. Computer Science Education, 21(1), 57-80.
https://doi.org/10.1080/08993408.2011.554722

Mahatanankoon, P., & Wolf, J. (2021). Cognitive learning strategies in an introductory computer programming
course. Information Systems Education Journal, 19(3), 11-20. https://eric.ed.gov/?id=EJ1301236

Margulieux, L. E., Morrison, B. B., & Decker, A. (2019). Design and pilot testing of subgoal labeled worked
examples for five core concepts in CS1. Proceedings of the ACM Conference on Innovation and Technology in
Computer Science Education (pp. 548-554). Association for Computing Machinery.
https://doi.org/10.1145/3304221.3319756

https://doi.org/10.1145/3664191
https://doi.org/10.1145/1151954.1067453
https://doi.org/10.1201/b18828-101
https://doi.org/10.1016/j.destud.2008.07.003
https://doi.org/10.1145/2839509.2844596
https://opus.lib.uts.edu.au/handle/10453/17580
https://doi.org/10.1145/1041624.1041673
https://doi.org/10.1145/1140123.1140157
https://doi.org/10.1109/iccse.2014.6926430
https://doi.org/10.21585/ijcses.v2i1.26
https://doi.org/10.1145/2858036.2858252
https://doi.org/10.1145/1539024.1508959
https://doi.org/10.1145/3293881.3295779
https://doi.org/10.1080/08993408.2011.554722
https://eric.ed.gov/?id=EJ1301236
https://doi.org/10.1145/3304221.3319756

Template for an Educational Software Development Methodology

36

Mayer, R. E. (2004). Should there be a three-strikes rule against pure discovery learning? American Psychologist,
59(1), 14-19. https://doi.org/10.1037/0003-066x.59.1.14

Mendelsohn, P., Green, T. R. G., & Brna, P. (1991). Programming languages in education: The search for an
easy start. In J. E. Anderson, & J. N. Finlay (Eds.), Psychology of programming (pp. 175-200). Elsevier.
https://doi.org/10.1016/b978-0-12-350772-3.50016-1

Mendonça, A., de Oliveira, C., Guerrero, D., & Costa, E. (2009, October). Difficulties in solving ill-defined
problems: A case study with introductory computer programming students. Proceedings of the 39th IEEE
Frontiers in Education Conference, San Antonio, TX, USA, 1-6. https://doi.org/10.1109/fie.2009.5350628

Meyer, D. L. (2009). The poverty of constructivism. Educational Philosophy and Theory, 41(3), 332-341.
https://doi.org/10.1111/j.1469-5812.2008.00457.x

Meyer, J. H. F., & Land, R. (2003). Threshold concepts and troublesome knowledge: Linkages to ways of
thinking and practicing within the disciplines. In C. Rust (Ed.), Improving student learning: Theory and practice –
ten years on (pp. 412-424). OCSLD.

Meyer, J. H. F., & Land, R. (2005). Threshold concepts and troublesome knowledge (2): Epistemological
considerations and a conceptual framework for teaching and learning. Higher Education, 49(3), 373-388.
https://doi.org/10.1007/s10734-004-6779-5

Middleton, D. (2012). Trying to teach problem solving instead of just assigning it: Some practical issues. Journal
of Computing Sciences in Colleges, 27(5), 60-65. https://dl.acm.org/doi/abs/10.5555/2168874.2168891

Mohanty, R., & Bala Das, S. (2018). A proposed what-why-how (WWH) learning model for students and
strengthening learning skills through computational thinking. In P. K. Sa, M. N. Sahoo, M. Murugappan,
Y. Wu, & B. Majhi (Eds.), Progress in intelligent computing techniques: Theory, practice, and applications (pp. 135-
141). Springer. https://doi.org/10.1007/978-981-10-3376-6_15

Moher, D., Liberati, A., Tetzlaff, J., Altman, D. G., & The PRISMA Group. (2009). Reprint – Preferred
reporting items for systematic reviews and meta-analyses: The PRISMA statement. Physical Therapy, 89(9),
873-880.

Moreno, A., Myller, N., Sutinen, E., & Ben-Ari, M. (2004). Visualizing programs with Jeliot 3. Proceedings of the
Working Conference on Advanced Visual Interfaces (pp. 373-376). Association for Computing Machinery.
https://doi.org/10.1145/989863.989928

Morgado, C., & Barbosa, F. (2012). A structured approach to problem solving in CS1. Proceedings of the 17th
ACM Annual Conference on Innovation and Technology in Computer Science Education (p. 399). Association for
Computing Machinery. https://doi.org/10.1145/2325296.2325401

Mornar, J., Granić, A., & Mladenović, S. (2014). System for automatic generation of algorithm visualizations
based on pseudocode interpretation. Proceedings of the 2014 Conference on Innovation & Technology in Computer
Science Education (pp. 27-32). Association for Computing Machinery.
https://doi.org/10.1145/2591708.2591743

Napoleão, B. M., Petrillo, F., & Hallé, S. (2020, October). Open source software development process: A
systematic review. Proceedings of the IEEE 24th International Enterprise Distributed Object Computing Conference,
Eindhoven, Netherlands, 135-144. https://doi.org/10.1109/edoc49727.2020.00025

Neto, V. L., Coelho, R., Leite, L., Guerrero, D. S., & Mendonça, A. P. (2013, May). POPT: A problem-oriented
programming and testing approach for novice students. Proceedings of the 35th International Conference on
Software Engineering, San Francisco, CA, USA, 1099-1108. https://doi.org/10.1109/icse.2013.6606660

O’Donnell, R. (2010). A critique of the threshold concept hypothesis and an application in economics. Working
Paper Series 164, Finance Discipline Group, UTS Business School, University of Technology, Sydney,
Australia. https://ideas.repec.org/p/uts/wpaper/164.html

Palts, T., & Pedaste, M. (2020). A model for developing computational thinking skills. Informatics in Education,
19(1), 113-128. https://doi.org/10.15388/infedu.2020.06

Panigrahi, C. R., Mall, R., & Pati, B. (2021). Software development methodology for cloud computing and its
impact. In Information Resources Management Association (Ed.), Research anthology on recent trends, tools, and

https://doi.org/10.1037/0003-066x.59.1.14
https://doi.org/10.1016/b978-0-12-350772-3.50016-1
https://doi.org/10.1109/fie.2009.5350628
https://doi.org/10.1111/j.1469-5812.2008.00457.x
https://doi.org/10.1007/s10734-004-6779-5
https://dl.acm.org/doi/abs/10.5555/2168874.2168891
https://doi.org/10.1007/978-981-10-3376-6_15
https://doi.org/10.1145/989863.989928
https://doi.org/10.1145/2325296.2325401
https://doi.org/10.1145/2591708.2591743
https://doi.org/10.1109/edoc49727.2020.00025
https://doi.org/10.1109/icse.2013.6606660
https://ideas.repec.org/p/uts/wpaper/164.html
https://doi.org/10.15388/infedu.2020.06

Higgins, O’Leary, McAvinia, & Ryan

37

implications of computer programming (pp. 151-172). IGI Global. https://doi.org/10.4018/978-1-7998-3016-
0.ch008

Papert, S. (1996). An exploration in the space of mathematics educations. International Journal of Computers for
Mathematical Learning, 1, 95-123. https://doi.org/10.1007/bf00191473

Parham, J., Gugerty, L., & Stevenson, D. E. (2010). Empirical evidence for the existence and uses of
metacognition in computer science problem solving. Proceedings of the 41st ACM Technical Symposium on
Computer Science Education (pp. 416-420). Association for Computing Machinery.
https://doi.org/10.1145/1734263.1734406

Pearce, J. L., Nakazawa, M., & Heggen, S. (2015). Improving problem decomposition ability in CS1 through
explicit guided inquiry-based instruction. Journal of Computing Sciences in Colleges, 31(2), 135-144.
https://dl.acm.org/doi/10.5555/2831432.2831453

Petersen, A., Craig, M., Campbell, J., & Tafliovich, A. (2016). Revisiting why students drop CS1. Proceedings of the
16th Koli Calling International Conference on Computing Education Research (pp. 71-80). Association for
Computing Machinery. https://doi.org/10.1145/2999541.2999552

Pólya, G. (1957). How to solve it (2nd ed.). Princeton University Press. https://doi.org/10.2307/3609122

Prather, J., Becker, B. A., Craig, M., Denny, P., Loksa, D., & Margulieux, L. (2020). What do we think we think
we are doing? Metacognition and self-regulation in programming. Proceedings of the ACM Conference on
International Computing Education Research (pp. 2-13). Association for Computing Machinery.
https://doi.org/10.1145/3372782.3406263

Price, K., & Smith, S. (2014). Improving student performance in CS1. Journal of Computing Sciences in Colleges,
30(2), 157-163. https://dl.acm.org/doi/10.5555/2667432.2667454

Prince, M. (2004). Does active learning work? A review of the research. Journal of Engineering Education, 93(3),
223-231. https://doi.org/10.1002/j.2168-9830.2004.tb00809.x

Qian, Y., & Lehman, J. (2017). Students’ misconceptions and other difficulties in introductory programming: A
literature review. ACM Transactions on Computing Education, 18(1), Article 1.
https://doi.org/10.1145/3077618

Rajala, T., Laakso, M.-J., Kaila, E., & Salakoski, T. (2008). Effectiveness of program visualization: A case study
with the ViLLE tool. Journal of Information Technology Education, 7, 15-32. https://doi.org/10.28945/3237

Reade, C. (1989). Elements of functional programming. Addison-Wesley.
https://dl.acm.org/doi/abs/10.5555/113909

Robins, A. V. (2019). Novice programmers and introductory programming. In S. A. Fincher, & A. V. Robins
(Eds.), The Cambridge handbook of computing education research (pp. 327-376). Cambridge University Press.
https://doi.org/10.1017/9781108654555.013

Rogerson, C., & Scott, E. (2010). The fear factor: How it affects students learning to program in a tertiary
environment. Journal of Information Technology Education Research, 9, 147-171. https://doi.org/10.28945/1183

Rountree, J., & Rountree, N. (2009). Issues regarding threshold concepts in computer science. Proceedings of the
Eleventh Australasian Conference on Computing Education (pp. 139-146). Association for Computing Machinery.
https://doi.org/10.5555/1862712.1862733

Rowbottom, D. P. (2007). Demystifying threshold concepts. Journal of Philosophy of Education, 41(2), 263-270.
https://doi.org/10.1111/j.1467-9752.2007.00554.x

Royce, W. W. (1987). Managing the development of large software systems: Concepts and techniques.
Proceedings of the 9th International Conference on Software Engineering (pp. 328-338). Association for Computing
Machinery. https://dl.acm.org/doi/10.5555/41765.41801

Safari, Y., & Meskini, H. (2016). The effect of metacognitive instruction on problem solving skills in Iranian
students of health sciences. Global Journal of Health Science, 8(1), 150-156.
https://doi.org/10.5539/gjhs.v8n1p150

Sanders, K., Boustedt, J., Eckerdal, A., McCartney, R., Moström, J. E., Thomas, L., & Zander, C. (2008).
Student understanding of object-oriented programming as expressed in concept maps. Proceedings of the 39th

https://doi.org/10.4018/978-1-7998-3016-0.ch008
https://doi.org/10.4018/978-1-7998-3016-0.ch008
https://doi.org/10.1007/bf00191473
https://doi.org/10.1145/1734263.1734406
https://dl.acm.org/doi/10.5555/2831432.2831453
https://doi.org/10.1145/2999541.2999552
https://doi.org/10.2307/3609122
https://doi.org/10.1145/3372782.3406263
https://dl.acm.org/doi/10.5555/2667432.2667454
https://doi.org/10.1002/j.2168-9830.2004.tb00809.x
https://doi.org/10.1145/3077618
https://doi.org/10.28945/3237
https://dl.acm.org/doi/abs/10.5555/113909
https://doi.org/10.1017/9781108654555.013
https://doi.org/10.28945/1183
https://doi.org/10.5555/1862712.1862733
https://doi.org/10.1111/j.1467-9752.2007.00554.x
https://dl.acm.org/doi/10.5555/41765.41801
https://doi.org/10.5539/gjhs.v8n1p150

Template for an Educational Software Development Methodology

38

SIGCSE Technical Symposium on Computer Science Education (pp. 332-336). Association for Computing
Machinery. https://doi.org/10.1145/1352135.1352251

Sanders, K., Boustedt, J., Eckerdal, A., McCartney, R., Moström, J. E., Thomas, L., & Zander, C. (2012).
Threshold concepts and threshold skills in computing. Proceedings of the Ninth Annual International Conference
on International Computing Education Research (pp. 23-30). Association for Computing Machinery.
https://doi.org/10.1145/2361276.2361283

Santana, B. L., & Bittencourt, R. A. (2018, October). Increasing motivation of CS1 non-majors through an
approach contextualized by games and media. Proceedings of the IEEE Frontiers in Education Conference, San
Jose, CA, USA, 1-9. https://doi.org/10.1109/fie.2018.8659011

Saulnier, B. M., Landry, J. P., Longenecker, H. E., Jr., & Wagner, T. A. (2008). From teaching to learning:
Learner-centered teaching and assessment in information systems education. Journal of Information Systems
Education, 19(2), 169-174. https://jise.org/volume19/n2/JISEv19n2p169.html

Schiller, S. Z. (2009). Practicing learner-centered teaching: Pedagogical design and assessment of a second life
project. Journal of Information Systems Education, 20(3), 369-381.
https://jise.org/Volume20/n3/JISEv20n3p369.html

Sewell, A., & St George, A. (2009). Developing efficacy beliefs in the classroom. The Journal of Educational
Enquiry, 1(2), 58-71. https://ojs.unisa.edu.au/index.php/EDEQ/article/view/576

Shah, U. S., Jinwala, D. C., & Patel, S. J. (2016). An excursion to software development life cycle models: An
old to ever-growing models. ACM SIGSOFT Software Engineering Notes, 41(1), 1-6.
https://doi.org/10.1145/2853073.2853080

Shama, P. S., & Shivamanth, A. (2015). A review of agile software development methodologies. International
Journal of Advanced Studies in Computers, Science and Engineering, 4(11), 1-6.

Shinners-Kennedy, D. (2008). The everydayness of threshold concepts: State as an example from computer
science. In R. Land, J. H. F. Meyer, & J. Smith (Eds.), Threshold concepts within the disciplines (pp. 119-128).
Brill. https://doi.org/10.1163/9789460911477_010

Shinners-Kennedy, D., & Fincher, S. A. (2013). Identifying threshold concepts: From dead end to a new
direction. Proceedings of the Ninth Annual International ACM Conference on International Computing Education
Research (pp. 9-18). Association for Computing Machinery. https://doi.org/10.1145/2493394.2493396

Siegfried, R. M., Herbert-Berger, K. G., Leune, K., & Siegfried, J. P. (2021, August). Trends of commonly used
programming languages in CS1 and CS2 learning. Proceedings of the 16th International Conference on Computer
Science & Education, Lancaster, United Kingdom, 407-412. https://doi.org/10.1109/IC-
CSE51940.2021.9569444

Silva, D. B., de Lima Aguiar, R., Dvconlo, D. S., & Silla, C. N. (2019, October). Recent studies about teaching
algorithms (CS1) and data structures (CS2) for computer science students. Proceedings of the IEEE Frontiers
in Education Conference, Covington, KY, USA, 1-8. https://doi.org/10.1109/fie43999.2019.9028702

Sim, T. Y. (2017, November). Online supported learning and threshold concepts in novice programming.
Proceedings of the IEEE Conference on e-Learning, e-Management and e-Services, Miri, Malaysia, 85-90.
https://doi.org/10.1109/ic3e.2017.8409243

Smetsers-Weeda, R., & Smetsers, S. (2017). Problem solving and algorithmic development with flowcharts.
Proceedings of the 12th Workshop on Primary and Secondary Computing Education (pp. 25-34). Association for
Computing Machinery. https://doi.org/10.1145/3137065.3137080

Soares, A., Martin, N. L., & Fonseca, F. (2015). Teaching introductory programming with game design and
problem-based learning. Issues in Information Systems, 16(3), 128-137.
https://doi.org/10.48009/3_iis_2015_128-137

Sorva, J. (2010). Reflections on threshold concepts in computer programming and beyond. Proceedings of the 10th
Koli Calling International Conference on Computing Education Research (pp. 21-30). Association for Computing
Machinery. https://doi.org/10.1145/1930464.1930467

https://doi.org/10.1145/1352135.1352251
https://doi.org/10.1145/2361276.2361283
https://doi.org/10.1109/fie.2018.8659011
https://jise.org/volume19/n2/JISEv19n2p169.html
https://jise.org/Volume20/n3/JISEv20n3p369.html
https://ojs.unisa.edu.au/index.php/EDEQ/article/view/576
https://doi.org/10.1163/9789460911477_010
https://doi.org/10.1145/2493394.2493396
https://doi.org/10.1109/ICCSE51940.2021.9569444
https://doi.org/10.1109/ICCSE51940.2021.9569444
https://doi.org/10.1109/fie43999.2019.9028702
https://doi.org/10.1109/ic3e.2017.8409243
https://doi.org/10.1145/3137065.3137080
https://doi.org/10.48009/3_iis_2015_128-137
https://doi.org/10.1145/1930464.1930467

Higgins, O’Leary, McAvinia, & Ryan

39

Sorva, J., Karavirta, V., & Malmi, L. (2013). A review of generic program visualization systems for introductory
programming education. ACM Transactions on Computing Education, 13(4), Article 15.
https://doi.org/10.1145/2490822

Stachel, J., Marghitu, D., Brahim, T. B., Sims, R., Reynolds, L., & Czelusniak, V. (2013). Managing cognitive
load in introductory programming courses: A cognitive aware scaffolding tool. Journal of Integrated Design and
Process Science, 17(1), 37-54. https://doi.org/10.3233/jid-2013-0004

Sternberg, R. J., & Sternberg, K. (2016). Cognitive psychology (7th ed.). Wadsworth Publishing.

Sweller, J., Ayres, P., & Kalyuga, S. (2011). Cognitive load theory. Springer. https://doi.org/10.1007/978-1-4419-
8126-4

Thevathayan, C., & Hamilton, M. (2015). Supporting diverse novice programming cohorts through flexible and
incremental visual constructivist pathways. Proceedings of the ACM Conference on Innovation and Technology in
Computer Science Education (pp. 296-301). Association for Computing Machinery.
https://doi.org/10.1145/2729094.2742609

Thomas, D., & Hunt, A. (2019). The pragmatic programmer (2nd ed.). Addison-Wesley.

Thomas, L., Boustedt, J., Eckerdal, A., McCartney, R., Moström, J. E., Sanders, K., & Zander, C. (2014). A
broader threshold: Including skills as well as concepts in computing education. Paper presented at the Paper presented
at Fourth Bienniel Conferencer on Threshold Concepts: From personal practice to communities of
practice, United Kingdom of Great Britain and Northern Ireland. https://hdl.handle.net/2160/13528

Thompson, S. (1996). How to program it. Computing Laboratory, University of Kent.
https://www.cs.kent.ac.uk/people/staff/sjt/Haskell_craft/HowToProgIt.html

Umran Alrubaee, A., Cetinkaya, D., Liebchen, G., & Dogan, H. (2020). A process model for component-based
model-driven software development. Information, 11(6), 302. https://doi.org/10.3390/info11060302

Uysal, M. P. (2014). Improving first computer programming experiences: The case of adapting a web-
supported and well-structured problem-solving method to a traditional course. Contemporary Educational
Technology, 5(3), 198-217. https://doi.org/10.30935/cedtech/6125

Vagianou, E. (2006). Program working storage: A beginner’s model. Proceedings of the 6th Baltic Sea Conference on
Computing Education Research: Koli Calling (pp. 69-76). Association for Computing Machinery.
https://doi.org/10.1145/1315803.1315816

Vahid, F., Edgcomb, A., Lysecky, R., & Rajasekhar, Y. (2019, October). New web-based learning content for
core programming concepts using Coral. Proceedings of the IEEE Frontiers in Education Conference, Covington,
KY, USA, 1-5. https://doi.org/10.1109/fie43999.2019.9028529

Veerasamy, A. K., D’Souza, D., Lindén, R., & Laakso, M. J. (2019). Relationship between perceived problem-
solving skills and academic performance of novice learners in introductory programming courses. Journal of
Computer Assisted Learning, 35(2), 246-255. https://doi.org/10.1111/jcal.12326

Vrachnos, E., & Jimoyiannis, A. (2008, July). DAVE: A dynamic algorithm visualization environment for
novice learners. Proceedings of the Eighth IEEE International Conference on Advanced Learning Technologies,
Covington, KY, USA, 319-323. https://doi.org/10.1109/icalt.2008.148

Wang, Y., & Chiew, V. (2010). On the cognitive process of human problem solving. Cognitive Systems Research,
11(1), 81-92. https://doi.org/10.1016/j.cogsys.2008.08.003

Watson, C., & Li, F. W. B. (2014). Failure rates in introductory programming revisited. Proceedings of the 2014
Conference on Innovation & Technology in Computer Science Education (pp. 39-44). Association for Computing
Machinery. https://doi.org/10.1145/2591708.2591749

Weintrop, D., Beheshti, E., Horn, M., Orton, K., Jona, K., Trouille, L., & Wilensky, U. (2016). Defining
computational thinking for mathematics and science classrooms. Journal of Science Education and Technology,
25, 127-147. https://doi.org/10.1007/s10956-015-9581-5

Whalley, J., & Kasto, N. (2014, January). How difficult are novice code writing tasks? A software metrics
approach. Proceedings of the Sixteenth Australasian Computing Education Conference, Auckland, New Zealand, 105-
112. https://crpit.scem.westernsydney.edu.au/confpapers/CRPITV148Whalley.pdf

https://doi.org/10.1145/2490822
https://doi.org/10.3233/jid-2013-0004
https://doi.org/10.1007/978-1-4419-8126-4
https://doi.org/10.1007/978-1-4419-8126-4

Template for an Educational Software Development Methodology

40

Whitfield, A. K., Blakeway, S., Herterich, G. E., & Beaumont, C. (2007). Programming, disciplines and
methods adopted at Liverpool Hope University. Innovation in Teaching and Learning in Information and Computer
Sciences, 6(4), 145-168. https://doi.org/10.11120/ital.2007.06040145

Whittemore, R., & Knafl, K. (2005). The integrative review: Updated methodology. Journal of Advanced Nursing,
52, 546-553. https://doi.org/10.1111/j.1365-2648.2005.03621.x

Williams, J., & Chinn, S. J. (2009). Using Web 2.0 to support the active learning experience. Journal of Information
Systems Education, 20(2), 165-174. https://jise.org/volume20/n2/JISEv20n2p165.html

Wing, J. (2006). Computational thinking. Communications of the ACM, 49(3), 33-35.
https://doi.org/10.1145/1118178.1118215

Wing, J. (2011). Research notebook: Computational thinking – What and why? The Link: The Magazine of the
Carnegie Mellon University School of Computer Science. https://people.cs.vt.edu/~kafura/CS6604/Papers/CT-
What-And-Why.pdf

Wirth, N. (2001). Program development by stepwise refinement. In M. Broy & E. Denert (Eds.), Pioneers and
their contributions to software engineering (pp. 545-569). Springer. https://doi.org/10.1007/978-3-642-48354-
7_23

World Economic Forum. (2020). The future of jobs report 2020. https://www.weforum.org/reports/the-future-of-
jobs-report-2020

Wright, A. L., & Gilmore, A. (2012). Threshold concepts and conceptions: Student learning in introductory
management courses. Journal of Management Education, 36(5), 614-635.
https://doi.org/10.1177/1052562911429446

Wright, D. R. (2011). Principles, patterns, and process: A framework for learning to make software design decisions [Doctoral
dissertation, North Carolina State University]. http://www.lib.ncsu.edu/resolver/1840.16/7447

Wright, D. R. (2012, June). Inoculating novice software designers with expert design strategies. Proceedings of the
American Society for Engineering Education Conference (pp. 25.784.1 - 25.784.25). https://doi.org/10.18260/1-2-
-21541

Yeomans, L., Zschaler, S., & Coate, K. (2019). Transformative and troublesome? Students’ and professional
programmers’ perspectives on difficult concepts in programming. ACM Transactions on Computing Education,
19(3), 1-27. https://doi.org/10.1145/3283071

Zarb, M., Abandoh-Sam, J. A., Alshaigy, B., Bouvier, D., Glassey, R., Hughes, J., & Riedesel, C. (2018). An
international investigation into student concerns regarding transition into higher education. Proceedings of the
23rd Annual ACM Conference on Innovation and Technology in Computer Science Education (pp. 344-345).
Association for Computing Machinery. https://doi.org/10.1145/3293881.3295780

Zhang, H., & Liu, H. (2012, August). Educational software process improvement model and strategy. Proceedings
of the International Conference on Computer Science and Information Processing, Xi’an, Shaanxi, 945-947.
https://doi.org/10.1109/csip.2012.6309011

AUTHORS
Dr Catherine Higgins has over 25 years of experience working in third-
level education as a lecturer in software development. Currently, she is
working in the Faculty of Business at the Technological University Dub-
lin. She has also worked in the computing industry as a developer and in
software quality assurance. Her principal research interest is in research-
ing ways of improving competence and success rates in computer science
education, particularly for first-year computing undergraduates.

https://people.cs.vt.edu/%7Ekafura/CS6604/Papers/CT-What-And-Why.pdf
https://people.cs.vt.edu/%7Ekafura/CS6604/Papers/CT-What-And-Why.pdf

Higgins, O’Leary, McAvinia, & Ryan

41

Dr Ciarán O’Leary is Head of Teaching and Learning in the Faculty of
Computing, Digital and Data and a lecturer in Computer Science at the
Technological University Dublin. As a researcher, Ciarán is primarily
interested in how people use digital technology in education and
elsewhere, as well as how designers expect people to use digital
technology. Other interests include education for sustainable
development in the context of future-focused Computing curricula and
the embedding of undergraduate research in STEM programmes.

Dr Claire McAvinia is an academic developer at Trinity College Dublin,
providing expertise in learning, teaching, and assessment in higher educa-
tion, including digital education. Her research interests are in open educa-
tion, education for sustainable development, and post-digital learning
spaces in higher education. She previously received a Teaching Hero
Award from Ireland’s National Forum for the Enhancement of Teaching
and Learning and is a Fellow of both the UK’s Staff and Educational De-
velopment Association (SEDA) and Advance HE.

Dr Barry J. Ryan is a biochemistry lecturer at Technological University
Dublin and is currently on secondment, leading the development of the
university’s Educational Model. He is passionate about the practical
implementation of research-informed teaching and supporting others in
their personal development in this area. He is concurrently a Senior
Fellow of the Higher Education Academy, a National Forum Teaching
and Learning Research Fellow, and a chartered science teacher.

	Generating a Template for an Educational Software Development Methodology for Novice Computing Undergraduates: An Integrative Review
	Abstract
	Introduction: Context for Research
	Problem Statement

	Literature Review
	Research Methods
	Problem Solving
	Teaching CS1
	Role of Computational Thinking
	Role of Threshold Concepts

	Results
	RQ1.1 Key Knowledge and Skills
	Identification of key knowledge
	Identification of skills

	RQ1.2 Key Developmental Stages
	Stage 1 - Understand the problem
	Stage 2 - Break into tasks
	Stage 3 - Design, code, test and integration
	Stage 4 - Final evaluation and reflect on the solution

	Discussion
	Limitations
	Conclusions
	References
	Authors

