

Volume 23, 2024

Accepting Editor Stamatis Papadakis │ Received: July 2, 2024 │ Revised: September 2, September 24,
November 8, November 12, 2024 │ Accepted: November 17, 2024.
Cite as: Wadmare, J., Kolte, D., Bhatia, K., Desai, P., & Wadmare, G. (2024). Virtual simulations tool for oper-
ating systems: Advancing e-learning in computing education. Journal of Information Technology Education: Innovations
in Practice, 23, Article 18. https://doi.org/10.28945/5404

(CC BY-NC 4.0) This article is licensed to you under a Creative Commons Attribution-NonCommercial 4.0 International
License. When you copy and redistribute this paper in full or in part, you need to provide proper attribution to it to ensure
that others can later locate this work (and to ensure that others do not accuse you of plagiarism). You may (and we encour-
age you to) adapt, remix, transform, and build upon the material for any non-commercial purposes. This license does not
permit you to use this material for commercial purposes.

VIRTUAL SIMULATIONS TOOL FOR OPERATING SYSTEMS:
ADVANCING E-LEARNING IN COMPUTING EDUCATION

Jyoti Wadmare* K. J. Somaiya Institute of Technology,
Sion, Mumbai, India.

jyoti@somaiya.edu

Dakshita Kolte K. J. Somaiya Institute of Technology,
Sion, Mumbai, India.

d.kolte@somaiya.edu

Kapil Bhatia K. J. Somaiya Institute of Technology,
Sion, Mumbai, India.

kapil.bhatia@somaiya.edu

Palak Desai K. J. Somaiya Institute of Technology,
Sion, Mumbai, India.

palak.pd@somaiya.edu

Ganesh Wadmare K. J. Somaiya Institute of Technology,
Sion, Mumbai, India.

gwadmare@somaiya.edu

* Corresponding author

ABSTRACT
Aim/Purpose This paper highlights an innovative and impactful online operating system algo-

rithms e-learning tool in engineering education.

Background Common teaching methodologies make it difficult to teach complex algorithms
of operating systems. This paper presents a solution to this problem by provid-
ing simulations of different complex algorithms to enable students to visualize
and perform hands-on experiments. Developing these simulations offered dif-
ferent hurdles, which included step-by-step precise computations, managing
edge circumstances, creation of dynamic representations like Gantt charts and
disk scheduling graphs, strong input validation, user-friendly customization, and
real-time performance. The developed simulations also observed some limita-
tions, like the Process Scheduling simulator, which can be improved from the
aspect of context switching overheads. Disk Scheduling simulators can include
different evaluation parameters, such as fairness and starvation avoidance.
Banker’s Algorithm can address circumstances such as invalid resource requests,
resource deadlock, and resource exhaustion to model real-world system behav-
ior.

https://doi.org/10.28945/5404
https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/
mailto:jyoti@somaiya.edu
mailto:d.kolte@somaiya.edu
mailto:kapil.bhatia@somaiya.edu
mailto:palak.pd@somaiya.edu
mailto:gwadmare@somaiya.edu

Virtual Simulations Tool for Operating Systems

2

Methodology The study focuses on the development of an e-learning tool that consists of the
simulation of 13 different operating system algorithms, such as Process Schedul-
ing, Disk Scheduling, and Banker’s Algorithm.

Contribution This study contributes to the body of knowledge by presenting an e-learning ed-
ucational tool that bridges the gap between theory and practice in operating sys-
tem algorithms, thus boosting student engagement and understanding.

Findings The findings of the work comprise the analysis of 276 student feedbacks
demonstrating a significant favorable influence on students’ learning and engage-
ment with operating system algorithms through the use of the built-in e-learning
tool.

Recommendations
for Practitioners

It is advised that educators integrate this e-learning tool into their curriculum to
boost student understanding and engagement in operating system courses.

Recommendations
for Researchers

Future studies should aim to broaden the range of algorithms contained in the
tool and analyze its potential for applicability in other areas of computer science
education.

Impact on Society Operating system algorithms have a profound societal impact by enabling the
development of efficient, reliable, and secure software systems that power every-
thing from personal devices to critical infrastructure. Through engineering edu-
cation, students learn these foundational principles, allowing them to innovate
and create software solutions that enhance productivity, security, and connectiv-
ity in daily life. This knowledge contributes to the advancement of technology,
fostering societal progress in areas like healthcare, communication, and automa-
tion while promoting digital security and accessibility.

Future Research Future research should focus on the development of different e-learning tools
for different disciplines of engineering education and evaluate their efficiency in
different ways of learning.

Keywords simulation, process scheduling, disk scheduling, banker’s algorithm, resource
allocation

INTRODUCTION
Operating systems are an integral part of modern computing, allowing resource management and
scheduling of activities with stability in the system. However, increased complexity is a major chal-
lenge for trainers. The main problem that students face is understanding advanced algorithms or con-
cepts. On the other hand, the other problems that come up for teachers are how to explain things
clearly, provide good exercises to learn, and address resource constraints. According to Genkov and
Slavov (2021), there is a growing demand for new teaching methodologies for operating system edu-
cation challenges. Altalbe (2019) suggests using simulators as supplementary learning tools in interac-
tion with both practical and teaching components that improve the learning process among students
and instructors. This method aims to have a clearer understanding of the theory of operating systems
and ease the learning process by developing specialized software simulators that focus on algorithms
as well as managing resources.

There are many simulators of operating system algorithms, but a one-stop platform integrating sev-
eral simulations into one comprehensive solution is yet to be found. Some of the already existing
simulations include Process Scheduling Solver (Boonsuen, n.d.) and CPU Scheduling Sim (CPU

Wadmare, Kolte, Bhatia, Desai & Wadmare

3

Scheduling Simulator, n.d.). These simulations tackle the computation of waiting time and turna-
round time, making only Gantt charts. However, these simulations do not offer full step-by-step cal-
culations, detailed CPU utilization assessments, or pictorial illustrations of the ready queue at each
processing level. Further, disk scheduling simulators, such as Disk Scheduler Visualisation (Seek-
Time, n.d.) and Disk Scheduling Solver (AssistedCoding, n.d.-a), measure seek time and generate
graphical outputs but do not provide detailed comparisons or tailored computations designed to the
specific input sequences implemented. Safe resource allocations can be performed along with the en-
try in the matrices for different Banker’s Algorithm tools like Banker’s Algorithm Calculator (Pisqre,
n.d.-a) and Banker’s Algorithm Simulator (Kanwar Adnan, n.d.). It does not display the available ma-
trix. These constraints underline the need for more powerful simulation tools that give in-depth com-
prehension and step-by-step representations, increasing both student learning and teaching ap-
proaches.

The proposed simulation software attempts to provide an interactive, hands-on method of teaching
operating system topics. It allows students to understand complex concepts through effective visuali-
zation and complete implementations of algorithms. This method adds innovative dimensions to the
teaching of operating systems and further improves the efficiency of learning among students.

This paper discusses the impact and usefulness of the e-learning tool on the performance of the stu-
dents and canvases directions for new innovations in this tool that could eventually revolutionize al-
gorithms that govern the teaching and learning operating system. The next section entails an intro-
duction to operating systems and their underlying algorithms. This is followed by an explanation of
the hypotheses that are part of this research and an analysis of the tools currently available in simulat-
ing operating systems and their limitations. The following section provides the learning resources,
such as theoretical concepts, flowcharts, and algorithms, for the 13 key processes associated with an
operating system. Then, the results of the different simulations that were implemented are presented,
along with discussions. Finally, the conclusion gives an overview of the findings and recommends
future exploration options.

RESEARCH HYPOTHESIS
The implementation of e-learning tools into computer science education, particularly in the field of
Operating Systems, incorporates strong simulation tools with environments that are automated to
provide hands-on learning experiences. This is grounded in constructivist theories, which encourage
active participation and the production of knowledge and experience. Different simulation tech-
niques are used, for example, simulating some of the complex algorithms, such as algorithms for
CPU scheduling and strategies for avoiding deadlocks, in an e-learning tool, thereby making this
place controlled yet interactive where learning takes place effectively.

The hypothesis is that such e-learning tools are able to overcome the boundaries of time and space,
hence maintaining educational continuity and producing better results in learning. The use of ad-
vanced simulation tools and multimedia resources in these labs will enable students to understand
abstract and complex systems in a more profound way and, hence, may lead to enhanced knowledge
of basic and advanced operating systems concepts.

LITERATURE SURVEY
E-learning tools such as virtual labs have recently become an effective teaching aid in many subjects,
including but not limited to Engineering, Computer engineering, and vocational training. They are a
partial substitute for the relatively unchanged old-fashioned physical labs with their high cost, limited
space, and real-practical barriers to accessibility. Constructivist learning theory emphasizes the active

Virtual Simulations Tool for Operating Systems

4

role of involvement in the learning process, which is the reason why virtual labs represent an excel-
lent tool for this topic. They contain practical experience to make students more engrossed and moti-
vated for learning and promote understanding and production of knowledge.

Studies of authors such as Holovnia and Oleksiuk (2022) and Kleine and Pessot (2023) indicate the
use of private cloud-based virtual labs as an opportunity to improve learning results in the education
of operating systems and engineering concepts, respectively. Such findings speak to the need to de-
velop user-friendly, interactive, and scalable environments for education that could be required by
modern learners, particularly in virtual settings. Reginald (2023) also highlighted that virtual labs play
a greater role in self-regulation during the COVID-19 period among learners in online learning envi-
ronments, and they should be free to learn without time bounds and space bounds.

Research by Frady (2022) focuses on the fact that virtual labs have been integrated into educational
technology and vocational training through advanced technologies such as artificial intelligence, vir-
tual reality, and cloud systems for an interactive learning experience. Genkov and Slavov’s (2021) de-
sign also included virtual labs with virtual desktop infrastructure for overcoming the barriers of dis-
tance learning in the disciplines of environmental and computer science to create a chance for experi-
mentation.

One example is the employment of virtual labs even in subjects like physics, a trend observed by May
et al. (2022), in which teachers’ experiences of the transition to online-only lab modules during lock-
down were assessed. The response was wonderful, and it made sure that not only are virtual labs via-
ble, but they are also essential for keeping the learning process running. In this regard, Garcia et al.
(2021) have offered synchronous programming labs that have been successful during the COVID-19
lockdown and maintained adult learners’ focus on learning even as external events were going on
around them.

Besides, the automation of virtual labs has been one of the critical components that should be con-
sidered in enhancing the efficiency of education. For example, a system developed by L. Wang et al.
(2020), which generates and tests lab environments automatically, highly decreases the setup time.
Do Hoang et al. (2022) also presented approaches to IT training laboratories through concurrent
schemes and local repositories such that large-scale virtual classroom setups work well.

Virtual laboratories open new possibilities for experience and learning in specialized fields, such as
robotics and optical physics. Salas and Ho (2021) proposed a cloud-based virtual laboratory in robot-
ics using Kubernetes orchestration, thereby permitting students to control robots remotely. Gamo
(2019) designed OPTILAB as a simulation tool for optical diffraction, which enriches the students’
learning experience with fewer errors and previews of the experimental outcome.

Other research agendas targeted virtual labs in complex physical systems and network planning. For
instance, Martin-Villalba and Urquia (2022) researched the application of Modelica to represent phys-
ical systems in engineering education, providing students with authentic experience concerning chal-
lenging concepts of engineering. Zapata-Rivera and Aranzazu-Suescun (2020) presented the potential
use of virtual simulation models and educational video games in order to support learners in treating
various contemporary challenges, such as antenna dispersion in wireless networks.

Vayadande et al. (2023) stated that other key features of virtual labs include high-performance com-
puting operations, such as CPU scheduling. In this simulation, several scheduling algorithms and pa-
rameters, such as completion time and CPU utilization, were tested for various students to further
enhance their understanding of operating system processes. Huang and Song (2023) especially em-
phasized that virtual labs are pertinent to computing learning, where high-performance simulations
are linked to the operating systems, allowing teachers to get real-time statistics of how students are
doing in their classes.

Moreover, virtual labs have been used in the context of deadlock prevention strategies in computing,
such as the work by Y. Wang et al. (2022) and XiaoLing (2019), where advanced algorithms and

Wadmare, Kolte, Bhatia, Desai & Wadmare

5

models, such as the banker’s algorithm and Petri net models, are used to simulate deadlock scenarios
and develop efficient solutions. These studies highlight the practicality of virtual labs to study of ab-
stract computing concepts.

Virtual labs have further seen improvements with AI-based methods, as brought forward in Abd El-
Haleem et al. (2022). A study was done that developed an AI-driven performance assessment that
supports grading and assistance given to students in online labs. In teacher education, McGarr (2020)
discussed the role of virtual simulations in developing pre-service teachers’ classroom management
and reflective practices. His study highlighted how virtual simulations allow teachers to practice in a
safe and controlled environment, preparing them for real-world classroom scenarios.

Furthermore, Panasiuk et al. (2021) have discussed the advantages and disadvantages of virtual labs
in engineering education. The authors consider that virtual labs can provide access at any time and at
any place so the future of engineering education might be blended learning of virtual and real labs.

Altalbe (2019) highlighted the application of realistic and convincing simulation technologies in la-
boratory learning and developed a theoretical model that is based on usability and learning objectives.
The information about students' perceptions and educational benefits of using virtual laboratories
was obtained through the research. Finally, Sáenz et al. (2021) focused on the aspects of modularity
and access of virtual labs by outlining solutions that guarantee usability as well as reliability across
varying educational contexts. Such evolutions show how virtual labs are continuously evolving in sat-
isfying the needs of modern education.

In conclusion, virtual labs are a versatile platform to be adapted to the different needs of educational
institutions. They allow students to perform experiential learning activities, solve complex problems,
and gain hands-on experience in a cost-effective, scalable manner, as several studies have shown in
many different domains. More than that, Luse et al. (2021) have tried to solve the problem of the ed-
ucation in wireless technology by introducing a virtual 802.11 lab with an integration of USB hubs
and wireless adapters, minimizing physical setups, but not diminishing the quality of learning.

In such highly specialized areas as optical communication, Dahan et al. (2022) proposed a universal
virtual lab for performance assessment in wideband DWDM systems. This lab has simulated real-
time scenarios of transmitter and receiver imperfection with a great speed-up factor and therefore is
highly efficient in its learning utility for the students. Along the same line, server-deployed virtual labs
by Rassudov and Korunets (2022) simulates real-time operations of the hardware which also contrib-
uted to distance learning but supported in-person training of the engineering students. Such research
describe the versatility of virtual labs and their effects on current education.

The proposed system is compared with existing simulations, highlighting its features and identifying
gaps in the existing systems, as outlined in Table 1.

Virtual Simulations Tool for Operating Systems

6

Table 1. Comparison of proposed simulation with existing simulations available

Operating system
algorithm simulations

Existing
simulations features

Gaps in
existing simulations

Process Scheduling

(FCFS, SJF, Priority Preemptive, Priority Non-
Preemptive, SRTF)

For more information, see:
(Boonsuen, n.d.),
(CPU Scheduling Sim, n.d.),
(Pisqre, n.d.-b),
(AssistedCoding, n.d.-b),
(Choudhary, n.d.).

Calculates Waiting Time.

Calculates Turn Around
Time.

Plots Gantt Chart.

Waiting and Turnaround Time
calculation at each step is not
defined.

CPU utilization at each step is
not calculated.

Ready Queue is not defined for
each step.

Disk Scheduling

(FCFS, SSTF, SCAN, CSCAN, LOOK,
CLOOK)

For more information, see:
(SeekTime, n.d.),
(AssistedCoding, n.d.-a),
(Makaroff, n.d.),
(Khushali, n.d.).

Directly print the value of
seek time calculated.

Plots graph of different
disk scheduling
algorithms.

Step by step calculations for
seek time is not defined.

No comparison with different
disk scheduling algorithms for
a given input sequence.

Banker’s Algorithm

For more information, see:
(Pisqre, n.d.-a),
(Jangid, n.d.),
(Kanwar Adnan, n.d.),
(Anish-U, n.d.).

Inputs Allocation Matrix.

Inputs Maximum Matrix.

Displays safe or unsafe
sequence.

Available Matrix is not plotted.

The proposed system of simulations addresses the gaps observed in existing systems by offering
comprehensive solutions. The novel contributions in the proposed system for process scheduling al-
gorithms include the calculation of step-by-step waiting and turnaround time and defining ready
queue and CPU utilization for each step. Similarly, in disk scheduling, seek time is computed for
every step, followed by a comparison chart of different algorithms for a given input sequence of cyl-
inders. Furthermore, the Banker’s Algorithm simulation displays the available matrix. These enhance-
ments signify the superiority of the proposed simulation over existing ones, providing a more thor-
ough and informative learning experience.

METHODOLOGY
This research paper presents the development of an e-learning tool for Operating System algorithms.
The platform covers all the basic topics of operating systems and is quite comprehensive and interac-
tive. A systematic and organized approach is implemented in the system for every method, which in-
cludes theoretical explanation, simulation, practical examples, numerical exercises, and quizzes. This
design is centered on enhancing the learning experience. The e-learning tool also features a discus-
sion forum that fosters user interaction and collaborative learning, making it an unequaled educa-
tional resource.

The simulations are based on the three major algorithms of the Operating System:
(i) Process Scheduling Algorithms
(ii) Disk Scheduling Algorithms
(iii) Banker’s Algorithm

Wadmare, Kolte, Bhatia, Desai & Wadmare

7

Simulations for Process Scheduling Algorithms and Banker’s Algorithm are developed using Java and
Java Swing. Here, the algorithms based on Java serve as the base code; interfaces use a variety of Java
Swing components such as JLabels, JButtons, JComboBox, Textfields, EventListeners, JMenus,
JPanels, JScrollPanes, and Jtables. Simulations of the Disk Scheduling Algorithm are built with the
Plotly API in HTML, allowing for an interactive environment in which the user can explore and un-
derstand how different algorithms work step by step. The work provides users with detailed infor-
mation on Operating System algorithms and offers a feedback mechanism for continuous improve-
ment. Figure 1 highlights the e-learning tool that covers different algorithms in the subject of Operat-
ing Systems.

Figure 1. Flow diagram of system implementation

The study encompasses a comprehensive analysis of various process scheduling and disk scheduling
algorithms. In the realm of process scheduling, the algorithms covered include First-Come-First-
Serve (FCFS), Shortest Job First (SJF), Round Robin (RR), Preemptive Priority, Non-Preemptive Pri-
ority, and Shortest Remaining Time First (SRTF). These algorithms play a pivotal role in optimizing
CPU utilization and improving system performance by determining the order in which processes are
executed. Furthermore, the simulation of the Banker’s algorithm is included to address deadlock
avoidance in resource allocation.

The research study delves into the algorithms necessary to manage I/O requests efficiently on the
front of disk scheduling. They are, therefore, classified into the following: the FCFS, SSTF, SCAN,
C-SCAN, LOOK, and C-LOOK algorithms. All the algorithms contribute towards the optimization
of the movements of the disk arm and the minimization of seek time. An in-depth understanding of
the operational characteristics and performance implications in different system environments is
what the research imparts. Components of e-learning tool are:

Virtual Simulations Tool for Operating Systems

8

(a) Theory: A comprehensive explanation of the algorithm or topic is provided, covering its
principles, concepts, and relevant background information.

(b) Algorithm: The step-by-step algorithm or procedure of the specific topic is presented, detail-
ing how it operates and its key components.

(c) Flowchart: A visual representation of the algorithm is presented in the form of a flowchart,
providing a clear and intuitive understanding of the process flow.

(d) Simulator: A simulator is included to allow users to interactively visualize how the algorithm
works. It may provide a graphical representation or simulation of the algorithm’s behavior.

(e) Numericals: Numerical examples are given to demonstrate the application of the algorithm
in practical scenarios, helping users grasp its real-world usage.

(f) Quiz: A quiz section is included to test users’ understanding of the algorithms. It may con-
sist of multiple-choice questions or other types of assessments.

(g) References: References and additional resources are listed at the end of each experiment, of-
fering further reading material for those interested in diving deeper into the topic.

(h) Feedback: Users are encouraged to provide feedback on the experiment they completed to
aid in improvement and enhancement.

This paper provides an intuitive, interactive user platform that focuses on the comprehensive explo-
ration of operating system algorithms so that they are better comprehended. Placed in a permanent
position of updating, based on feedback from users, it was sure to give users optimum learning expe-
riences.

RESULTS
The operating system e-learning tool is an innovative, interactive instructional tool developed to as-
sist in a complete understanding of operating system algorithms. Registered users can access different
modules of this tool, which include process scheduling, disk scheduling, and Banker’s Algorithm sim-
ulators so that one can practice the techniques in a hands-on way.

SIMULATION OF PROCESS SCHEDULING ALGORITHMS:
Accessing and using the simulator
The interface of the process scheduling simulator includes crucial components such as a job pool,
ready queue, CPU utilization metrics, and Gantt charts, as illustrated in Figure 2. These features are
to visualize the outcome of scheduling algorithms. Critical metrics, such as waiting time and turna-
round time, must be evaluated to assess the efficiency of the implemented scheduling strategies in
evaluating system performance.

Wadmare, Kolte, Bhatia, Desai & Wadmare

9

Figure 2. Interface of process scheduling simulator

Process data, including arrival, burst, and priority time, needs to be given input to the simulator to
run it, as shown in Figure 3. It can be entered manually, as shown in Figure 4, or default data can be
loaded in the simulator, as shown in Figure 5. Moreover, different parameters, such as the number of
jobs, algorithm needed to perform the simulation, simulation speed, and quantum time, need to be
selected to run the simulation successfully.

Figure 3. Data to be added to perform simulation

Virtual Simulations Tool for Operating Systems

10

Figure 4. Sample format to add data added manually

Figure 5. Sample format of data loaded by default

Different algorithms present in the simulator of process scheduling algorithms are as follows:

1. First-Come-First-Serve (FCFS): This is one sort of scheduling approach where processes are pro-
cessed based on their arrival sequence. The simulator provides users with the visual rationale for
the execution of processes based on their arrival times, displaying the sequence as a Gantt
Chart. Calculations are done for various performance measures, such as waiting time, turna-
round time, and CPU utilization. Users can gain a better view of how scheduling influences their
overall system performance.

Wadmare, Kolte, Bhatia, Desai & Wadmare

11

2. Shortest Job First: SJF schedules operations with the lowest burst time, hence minimum wait times
for the shortest jobs. This technique should be illustrated by the simulator because it reduces
backlog times with variant process lengths. Using such a simulator, users can input custom job
data or employ a few preloaded examples where they can see that the average turnaround time
and average waiting time both vary.

3. Round Robin: This algorithm splits CPU time in a stepwise manner according to the prespecified
time quantum. The simulator allows users to observe how different quantum sizes impact con-
text switching and waiting times. The high context switch rate of Round Robin makes it more
suitable for time-sharing systems. The simulator then provides rapid visual feedback regarding
the performance of the system in various configurations.

4. Priority Scheduling: In Priority Scheduling, processes are executed based on their priority levels. It
might be either preemptive or non-preemptive. This displays how the change in the priority af-
fects the execution order as well as system performance parameters such as waiting time and
turnaround time.

Users can view the preemptive and non-preemptive versions and discuss the difference between
these two types of priority scheduling in realistic scenarios with varying priority work. Various evalu-
ative metrics are used in a process scheduling simulator.

1. Gantt Chart
In process scheduling simulation, the visual illustration of the timeline of the execution of pro-
cesses is shown in a Gantt chart as shown in Figure 6. Each process start and end is explained
to make it easy to analyze CPU allocation while evaluating the waiting time, turnaround time,
and effectiveness of scheduling algorithms.

Figure 6. Gantt Chart

2. Ready Queue
For process scheduling methodologies, the ready queue shown in Figure 7 exemplifies a picto-
rial representation of the pool of waiting processes for CPU allocation. The Gantt chart depicts
how activities are conducted in temporal sequence, while the ready queue represents how opera-
tions are queued and ready for scheduling. This lets users determine which processes are enter-
ing and leaving the queue and provides key information on how efficiently the scheduling algo-
rithm is performing the transitions of processes and resource allocation.

Figure 7. Ready queue shows the next procedure in line

Virtual Simulations Tool for Operating Systems

12

3. Average Waiting and Turnaround Time

The mean waiting time is the average duration that a process spends in the ready queue before it
gets allocated the CPU resources, thus showing the responsiveness of the system. Average turn-
around time spans the whole duration from the submission of a process to its completion and
offers critical information about the overall efficiency of the system.

The formula for the computation of Turnaround and Waiting Time is described in equations (1)
and (2) as follows:

Turnaround Time = Completion Time – Arrival Time (1)

Waiting Time = Turnaround Time – Burst Time (2)

The formulas in (3) and (4) below describe how to compute Average Turnaround and Waiting
Time, respectively.

Average Turnaround Time = 1
𝑛𝑛

 ∑ TAT𝑛𝑛
𝑖𝑖=1 (3)

Average Waiting Time = 1

𝑛𝑛
 ∑ WT𝑛𝑛

𝑖𝑖=1 (4)

These metrics will be used to evaluate and compare the effectiveness of different scheduling al-
gorithms, which will allow us to optimize process management and resource allocation. A lower
mean turnaround time implies faster process completion and better system performance. Like-
wise, a lower average waiting time reflects better algorithm responsiveness, where the higher the
system performance, the lesser the number of process delays. Figure 8 shows the representation
of these metrics in the simulation.

Figure 8. Mean waiting time and mean turnaround time (in seconds)

4. CPU utilization

The CPU utilization is a measure of CPU usage efficiency through the execution of a task by
measuring, as shown in Figure 9, the ratio of time the CPU spends processing tasks relative to
the time it is idle. High CPU usage means the scheduling system efficiently allocates resources
so that the CPU is not idle most of the time, thus improving system performance generally.

Figure 9. CPU utilization window of simulator

Wadmare, Kolte, Bhatia, Desai & Wadmare

13

Simulation of Banker’s Algorithm
The simulation of the Banker’s Algorithm serves to adequately present the necessary requirements
for distributing resources and preventing deadlocks. Participants then introduce an input of alloca-
tion, maximum, and available resource matrices and then compute the requirement matrix to assess
the capacity at which the system can safely allocate resources. The simulator tests the status of the
system by producing a safe sequence if the conditions are secure; otherwise, it shall alert the users
that the system is deemed unsafe.

The Banker’s Algorithm is very relevant to the understanding of deadlock prevention in real
multiple-process scenarios. By simulating even complex requests for resources and allocation, users
can see how the algorithm ensures that the system will function safely and avoid deadlocks. In
addition, simulation also includes invalid resource requests and how resources are depleted, thereby
helping users understand other practical challenges encountered in resource allocation.

Within the Banker’s Algorithm, the allocation, maximum, and available resource matrices are essen-
tial metrics in determining and comparing resource distribution so that processes can be allowed to
continue without deadlocks. The following discussion is facilitated by understanding how the algo-
rithm works from the use of a simulator in Figure 10.

Figure 10. Interface of Banker’s Algorithm simulator

Short descriptions of different matrices used in Banker’s Algorithms are as follows:

a) Allocation Matrix: The allocation matrix, finally, indicates how resources are currently allocated to
many activities. Each entry in the matrix indicates the number of units of each of those re-
sources currently allocated to some activity. Essentially, it reflects the resources that are in use
by each process at a given moment, as shown in Figure 11.

Figure 11. Input for the allocation matrix

Virtual Simulations Tool for Operating Systems

14

To add to the next process, repeat the same procedure. All the processes need to be added one
by one, and once added, the Allocation Table looks like it is shown in Figure 12. The matrix
form for the allocation matrix is represented as:

Allocation =

⎣
⎢
⎢
⎢
⎡
𝐴𝐴11 𝐴𝐴12 ⋯ 𝐴𝐴1𝑚𝑚
𝐴𝐴21 𝐴𝐴11 ⋯ 𝐴𝐴11
⋯
𝐴𝐴𝑛𝑛1

⋯
𝐴𝐴𝑛𝑛2

⋱
⋯ 𝐴𝐴𝑛𝑛𝑚𝑚⎦

⎥
⎥
⎥
⎤
 (5)

where
• Aij: The number of instances of resource type j allocated to process i.
• n: Number of processes.
• m: Number of resource types.

b) Maximum Matrix: The maximum matrix defines the maximum demand of each process for each

type of resource. This matrix outlines the upper limit on the number of resource units that a
process may need to complete its execution, as shown in Figure 12.

Figure 12. Input for the maximum matrix

The Matrix Form for Maximum Matrix is represented as:

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 =

⎣
⎢
⎢
⎢
⎡
𝑀𝑀11 𝑀𝑀12 ⋯ 𝑀𝑀1𝑚𝑚
𝑀𝑀21 𝑀𝑀11 ⋯ 𝑀𝑀11
⋯
𝑀𝑀𝑛𝑛1

⋯
𝑀𝑀𝑛𝑛2

⋱
⋯ 𝑀𝑀𝑛𝑛𝑚𝑚⎦

⎥
⎥
⎥
⎤
 (6)

where
• Mij: The maximum number of instances of resource type j needed by process i.

c) Available Matrix (or Vector): The available matrix, typically displayed as a vector, indicates the to-

tal number of each resource type currently free for allocation to processes. This is illustrated in
Figure 13 and represents the resources not yet allocated.

Figure 13. Input to available matrix

Wadmare, Kolte, Bhatia, Desai & Wadmare

15

Matrix Form for Available Matrix is represented as:

Available = [A1 A2 ⋯ Am] (7)

where

• Ai: The number of available instances of resource type i.

d) Need Matrix: The Need Matrix calculates the remaining resources required by each process to
complete its execution. It is derived from the Max and Allocation matrices.

The Need Matrix can be determined using the following formula, as represented in Equation 8.

Needij=Mij−Aij (8)

where

• Mij is the Maximum Matrix given input by user
• Aij is the Allocation Matrix given input by user

Based on the evaluation of different metrics, the simulator provides two possible outcomes: “Safely
Allocated” and “Unsafe,” as illustrated in Figure 14 and Figure 15.

Figure 14. All resources allocated safely

Virtual Simulations Tool for Operating Systems

16

Figure 15. Unsafe sequence allocated

Simulation of disk scheduling algorithms
A disk scheduling algorithm simulation explains the concept through which techniques like FCFS,
SSTF, SCAN, C-SCAN, LOOK, and C-LOOK have reduced disk access time. Users can analyze
various algorithms for best performance based on the relative effectiveness of scheduling approaches
by submitting a set of disk cylinder requests and finding the seek time achieved. This simulation al-
lows users to appreciate the impact of each algorithm on disk head movement and its consequent ef-
fect on overall system performance. To perform this simulation successfully, different input parame-
ters required are algorithm to be used, the direction of disk head movement, the sequence of cylinder
requests, and the initial and final cylinder positions, as depicted in Figure 16.

Figure 16. Disk scheduling simulator interface

This disk scheduling part contains six algorithms intended to help the users familiarize themselves:

1. First Come First Served (FCFS): It is the fundamental algorithm that processes the disk re-
quests in the order of their arrival. Though simple, it may at times cause suboptimal head
movement and increase seek time significantly due to imbalanced requests.

2. Shortest Seek Time First (SSTF): The SSTF will consider the disk request nearest to the cur-
rent position of the head; this will reduce seek time and improve efficiency, especially when
demands are closely grouped.

3. SCAN: The SCAN algorithm works on the principle of scanning the disk in one direction
only by moving the disk arm. It processes requests until a terminal point, after which it re-
verses its direction of movement. This design offers a more balanced mechanism for han-
dling distributed requests to disks.

Wadmare, Kolte, Bhatia, Desai & Wadmare

17

4. C-SCAN: The disk arm moves in one direction with a head reset when it reaches the end of
the disk in this C-SCAN algorithm. This technique has less variability in the timing of disk
requests as the head does not need to be reversed.

5. LOOK directs the arm of the disk toward the nearest pending request and does not over-
shoot toward the ends of the disk, hence minimizing needless traversal when requests are
spread apart.

6. CLOOK extends the principles of LOOK, handling requests within the currently active
range of cylinders and restarting immediately at the head of the request queue, therefore fur-
ther improving head movement as well as general system performance.

These algorithms provide alternative techniques to optimize disk access, and those techniques reduce
seek time and can thereby improve system performance based on the nature of the request se-
quences.

The result for the C-SCAN algorithm, exhibiting disk head movements, is provided in Figure 17. Ad-
ditionally, a comparison chart for the specified series of cylinder requests is provided, indicating the
seek times generated by various disk scheduling algorithms, as illustrated in Figure 18. This compara-
tive analysis reveals the performance disparities among the algorithms based on the calculated seek
times.

Figure 17. C-SCAN algorithm seek time calculation

Figure 18. Comparison of various disk scheduling algorithms

Virtual Simulations Tool for Operating Systems

18

PERFORMANCE ANALYSIS OF PROCESS AND DISK SCHEDULING
ALGORITHMS
The simulation tool facilitates an in-depth understanding of operating system algorithms by deliver-
ing an interactive and hands-on learning experience. By simulating and comparing various process
and disk scheduling techniques, users may analyze the real-time impact on important performance
indicators such as waiting time and seek time. This hands-on approach makes abstract ideas into real-
life consequences, better explains trade-offs and efficiency of various algorithms, and improves learn-
ing in the classroom with empirical experimentation and monitoring of performance.

Comparison of different process scheduling algorithms
The sample input to the process scheduling algorithm is given in Table 2.

Table 2. Process scheduling algorithms sample input

Job Arrival time Burst time Priority
1 0 10 3
2 2 4 1
3 4 2 4
4 6 6 2
5 8 8 5

Figure 19 presents the comparison of the average waiting time and turnaround time of various pro-
cess scheduling algorithms. The graph indicates that SJF and SRTF algorithms significantly reduce
waiting time because they favor short jobs. On the other hand, Round Robin tends to increase the
waiting time because its context switches are mostly in great numbers, especially if implemented with
low quantum time. The two fundamental preemptive and non-preemptive priority algorithms create
natural trade-offs. The highest-priority tasks get the advantage of minimum turnaround time, while
the lowest-priority tasks endure the maximum waiting time. This comparison analysis enables the
learners to comprehend the real-time consequences of various scheduling choices and select the opti-
mal strategy for certain workload scenarios.

Figure 19. Comparison of average waiting and

turnaround time of process scheduling algorithms

Wadmare, Kolte, Bhatia, Desai & Wadmare

19

Comparison of different disk scheduling algorithms
Disk Scheduling Algorithms Sample Input

Disk Requests: 45, 20, 80, 150, 10, 75, 130.

Initial Head Position: 50.

Total Disk Size: 200 cylinders (assuming disk cylinders range from 0 to 199).

Figure 20 illustrates a comparison of seek times for different disk scheduling strategies. This graph
provides students with practical insights into how each algorithm affects disk head movement. The
research highlights trade-offs, such as the instant seek time decrease achieved by Shortest Seek Time
First (SSTF), whereas SCAN and C-SCAN offer more balanced seek durations across requests. On
the other hand, the FCFS scheduling algorithm can cause poor disk head movement and delayed
seek times. This experimental study further develops students’ knowledge on theoretical grounds by
focusing on the practical strengths and weaknesses of each disk scheduling method for easy applica-
tion of academic know-how in the real world.

Figure 20. Seek time comparison of various disk scheduling algorithms

IMPACT ANALYSIS
Research studies have extensively been conducted on the effectiveness of constant interaction with e-
learning tool settings on the results of student learning. In this tool, numerical exercises and quizzes
are incorporated, which equip students with efficient resources to check their understanding of basic
concepts. Unlike previous pedagogical techniques for teaching operating system algorithms, the pro-
posed simulation platform enables students to view the execution process and forecast the following
steps inside each simulation. Additionally, the incorporation of audio-visual explanations of numeri-
cal problems aids problem-solving based on multiple methods, hence boosting conceptual under-
standing.

The virtual laboratory has proven to be a highly effective tool for lecturers in teaching operating sys-
tems courses. It provides a visual and audio-visual application of abstract concepts, which promotes
students’ understanding of the same. Additionally, the addition of quizzes and numerical exercises
allows lecturers to identify whether and to what extent understanding of the material covered is regis-
tered in students’ heads.

Student learning outcomes were assessed based on feedback from a group of 276 students, and the
results are briefly represented in Figure 21. This commentary provides insights into how effective the
learning tool is in helping students learn operating system algorithms and areas for further develop-
ment.

Virtual Simulations Tool for Operating Systems

20

In feedback analysis of simulation parameters, the process scheduling algorithm received the highest
rating of 65%, followed by disk scheduling with 58%, and Banker’s Algorithm with 71%. For the
quiz parameter, the highest rating for the process scheduling algorithm is 70%, followed by disk
scheduling at 54% and Banker’s Algorithm at 78%. The ratings of the remaining parameters are
shown in Figure 21.

Figure 21. Feedback analysis of user’s learning experience

DISCUSSION
The Operating System e-learning tool is a giant leap in educational tools designed to teach complex
operating system algorithms. The interactive platform has provided complex simulations for most of
the algorithms – process scheduling, disk scheduling, and Banker’s Algorithm – that deal with such
topics. It will greatly help students learn these central ideas by providing hands-on experience on an
interactive platform.

PROCESS SCHEDULING ALGORITHM SIMULATION
The e-learning tool contains a Process Scheduling Simulator that allows users to test with many CPU
scheduling algorithms, such as First-Come-First-Serve (FCFS), Shortest Job Next (SJN), Round
Robin, and Priority Scheduling. These simulations vividly describe how varying scheduling strategies
affect the process scheduling and system performance. Users can upload their own data to really un-
derstand the theoretical properties of these methods.

A major aspect of this simulation is its capability to calculate and display waiting and turnaround
times for each scheduling method, providing crucial insights into their performance, as illustrated in
Figure 22. For instance, Figure 22(a) illustrates that for Job 5, at time 18-19 seconds, the average
waiting time is 2.375 seconds, and the turnaround time is 4.75 seconds. Figure 22(b) depicts the ensu-
ing time period, 19-20 seconds, where the average waiting time increases to 2.75 seconds, and the
turnaround time rises to 5.25 seconds.

The simulation also estimates CPU consumption, as seen in Figure 23. Figure 23(a) demonstrates
that at time 2-3 seconds, CPU utilization is 50%, but Figure 23(b) shows a decline to 33% at time 3-4
seconds. These measures align with previous studies that illustrate the significance of CPU utilization
in assessing scheduling methodologies.

Wadmare, Kolte, Bhatia, Desai & Wadmare

21

Figure 22. Calculation of waiting time and turnaround time (in seconds) at each step

Virtual Simulations Tool for Operating Systems

22

Figure 23. Calculation of CPU utilization at each step

The simulation also records changes in the ready queue, thus reflecting the real-time process execu-
tion and verifying the value of these parameters in enhancing system performance, as is evident in
Figure 24. Figure 24(a) illustrates the ready queue at time 11-12 seconds, containing jobs 5, 3, and 6,
with Job 1 being executed. Figure 24(b) shows the ready queue at time 12-13 seconds, with jobs 3, 6,
and 2 present and Job 5 being executed.

Despite all these achievements, the simulator has trouble accurately capturing the overheads involved
with context switching and process synchronization, which can have a deleterious impact on the ef-
fectiveness and responsiveness of scheduling algorithms. Future developments should focus on a
more subtle capture of these overheads to improve the accuracy of the simulation.

Wadmare, Kolte, Bhatia, Desai & Wadmare

23

Figure 24. Ready queue for two simultaneous steps

BANKER’S ALGORITHM SIMULATION
The Banker’s Algorithm Simulator, therefore, shows clearly how resources are being utilized, and
deadlocks prevented using a series of simulations of scenarios using different allocation matrices.
This is in consonance with Dijkstra’s theoretical model, which puts forward the central role of safe
resource allocation as the source of system stability.

The key characteristic of the simulator is its ability to handle faulty resource requests in addition to
hazardous sequences, which offer more useful insights into realistic resource management challenges.
This feature leads to further research on the administration of resources and the necessity of ensuring
suitable methods for error handling.

However, the utility of the simulation might get lost in the ability it has to serve sophisticated scenar-
ios, including various types of resources and shifting request patterns. As such, future work should

Virtual Simulations Tool for Operating Systems

24

focus on developing stronger functionalities toward error handling and resource management as it
would better reflect real-world scenarios.

DISK SCHEDULING SIMULATION
The Disk Scheduling Simulator gives a complete investigation of several disk scheduling methods,
including FCFS, Shortest Seek Time First (SSTF), SCAN, C-SCAN, LOOK, and C-LOOK. The
simulation successfully explains the trade-offs involved in disk access optimization by showing disk
arm movements and comparing seek times across different algorithms. The extensive seek-time cal-
culations and comparative analysis offered coincide with research that supports the use of simulation
tools for analyzing disk scheduling options. However, the correct representation of real-time disk ac-
cess behavior and hardware differences are still problems. Future development should focus on fur-
thering in-depth evaluation criteria and various simulation scenarios so that the model is more rele-
vant and accurate.

The operating system e-learning tool is, in general, a giant step in educational technology and pro-
vides vital materials for teaching and learning fundamental concepts on operating systems. The vir-
tual lab does contribute to understanding and actualizing methodologies of the operating system very
well, apart from other research showing the beneficial aspect of simulation-based learning. Future ef-
forts should be made to perfect the simulation process to strengthen the pedagogic usefulness of
simulations.

CONCLUSION AND FUTURE SCOPE
The e-learning tool offers detailed coverage of basic operating system concepts - simulations on pro-
cess scheduling, disk scheduling, and Banker’s Algorithm, among others. The set of various process
scheduling algorithms – such as FCFS (First Come, First Serve), SJF (Shortest Job First), Priority – in
both pre-emptive and non-pre-emptive variants, Round Robin, and SRTF (Shortest Remaining Time
First) allows the students to gain proficiency in process management methods along with under-
standing the pros and cons which are inherent with each. This framework, like that of disk schedul-
ing algorithms such as FCFS, SSTF, SCAN, CSCAN, LOOK, and CLOOK, enables the students to
examine the impacts of changing disk access patterns on the performance to maximize the opera-
tions of the disks. Moreover, the experiment on the Banker’s Algorithm presents the students with
the possibility to expand their understanding of resource allocation as well as the procedure to avoid
deadlock, which is one of the needs for system stability and security. This report focuses on the suc-
cessful implementation and setting up of the learning tool, which contains thirteen separate experi-
ments.

In a word, an e-learning tool for operating systems is a veritable giant step in educational training, re-
mote learning, and developing skills. It reenergizes approaches to teaching through experience,
thereby engendering a better understanding of the concepts behind operating systems. Additionally,
the laboratory provides the advantage of remote access, thereby expanding educational diversity and
functioning as an excellent instrument for bolstering system management abilities and professional
competence. The topic of OS simulations has significant promise for future growth. Areas to be ex-
tended could be visualized with the simulation of additional algorithms: File Management, Memory
Allocation Techniques, and Process Synchronization schemes, including Binary and Counting Sema-
phores.

The scope for simulations involving operating systems in the future would be with development and
growth. The Process scheduling simulator can include a variety of overheads associated with context
switching and scheduling algorithms. Disk Scheduling simulators can include evaluation metrics re-
lated to fairness and starvation avoidance. Banker’s Algorithm simulations can incorporate error-han-
dling scenarios of resource exhaustion, which will explain the behavior of a real-time system to stu-

Wadmare, Kolte, Bhatia, Desai & Wadmare

25

dents. Similarly, systems using simulations of other algorithms like File Management, Memory Allo-
cation Techniques, and Process Synchronization algorithms like Binary and Counting Semaphores
can also be designed.

REFERENCES
Abd El-Haleem, A. M., Eid, M. M., Elmesalawy, M. M., & Hosny, H. A. H. (2022). A generic AI-based tech-

nique for assessing student performance in conducting online virtual and remote-controlled laboratories.
IEEE Access, 10, 128046-128065. https://doi.org/10.1109/ACCESS.2022.3227505

Altalbe, A. A. (2019). Performance impact of simulation-based virtual laboratory on engineering students: A
case study of Australia virtual system. IEEE Access, 7, 177387-177396. https://doi.org/10.1109/AC-
CESS.2019.2957726

Anish-U. (n.d.). Banker’s algorithm in JavaScript. https://anish-u.github.io/Bankers-Algorithm-Js/

AssistedCoding. (n.d.-a). Disk scheduling solver. https://solver.assistedcoding.eu/disk_scheduling

AssistedCoding. (n.d.-b). Process scheduling solver. https://solver.assistedcoding.eu/process_scheduling

Boonsuen. (n.d.). Process scheduling solver. https://process-scheduling-solver.boonsuen.com/

Choudhary, S. (n.d.). Process scheduling solver. https://shubhamchoudharyshubh.github.io/process-scheduling-
solver/

CPU Scheduling Sim. (n.d.). CPU Scheduling Simulator https://cpu-scheduling-sim.netlify.app/

Dahan, D., Zarubinsky, M., Liang, Y., Golani, O., & Shtaif, M. (2022). Universal virtual lab: A fast and accurate
simulation tool for wideband nonlinear DWDM systems. Journal of Lightwave Technology, 40(8), 2441-2455.
https://doi.org/10.1109/JLT.2022.3141447

Do Hoang, H., Duy, P. T., & Pham, V. H. (2022). A method for flexible definition and automatic implementa-
tion of laboratory environment in online training platforms. In 2022 RIVF International Conference on Compu-
ting and Communication Technologies (RIVF) (pp. 452-457). IEEE.
https://doi.org/10.1109/RIVF55975.2022.10013872

Frady, K. (2022). Use of virtual labs to support demand-oriented engineering pedagogy in engineering technol-
ogy and vocational education training programmes: A systematic review of the literature. European Journal of
Engineering Education, 48(5), 822-841. https://doi.org/10.1080/03043797.2022.2141610

Gamo, J. (2019). Assessing a virtual laboratory in optics as a complement to on-site teaching. IEEE Transactions
on Education, 62(2), 119-126. https://doi.org/10.1109/TE.2018.2871617

Garcia, M., Quiroga, J., & Ortin, F. (2021). An infrastructure to deliver synchronous remote programming labs.
IEEE Transactions On Learning Technologies, 14(2), 161-172. https://doi.org/10.1109/TLT.2021.3063298

Genkov, D., & Slavov, M. (2021). Implementation of a virtual laboratory for computer oriented disciplines. Pro-
ceedings of the 29th Telecommunications Forum, Belgrade, Serbia, 1-4. https://doi.org/10.1109/TEL-
FOR52709.2021.9653245

Holovnia, O. S., & Oleksiuk, V. (2022). Selecting cloud computing software for a virtual online laboratory sup-
porting the Operating Systems course. CTE Workshop Proceedings, 9, 216-227.
https://doi.org/10.55056/cte.116

Huang, H., & Song, L. (2023). DOSP: Distributed computing-based operating systems labs platform. In 2023
15th International Conference on Computer Research and Development (ICCRD) (pp. 143-150). IEEE.
https://doi.org/10.1109/ICCRD56364.2023.10080655

Jangid, B. (n.d.). Banker’s algorithm simulator. https://jangidbhanu.github.io/BankersAlgorithm/

Kanwar Adnan. (n.d.). Banker’s algorithm simulator. https://kanwaradnan.github.io/Bankers-Algorithm-Simula-
tor/

Khushali. (n.d.). Disk scheduling algorithms. https://khushalip.github.io/OS-lab/diskAlgo/disk.html

https://doi.org/10.1109/ACCESS.2022.3227505
https://doi.org/10.1109/ACCESS.2019.2957726
https://doi.org/10.1109/ACCESS.2019.2957726
https://anish-u.github.io/Bankers-Algorithm-Js/
https://solver.assistedcoding.eu/disk_scheduling
https://solver.assistedcoding.eu/process_scheduling
https://process-scheduling-solver.boonsuen.com/
https://shubhamchoudharyshubh.github.io/process-scheduling-solver/
https://shubhamchoudharyshubh.github.io/process-scheduling-solver/
https://cpu-scheduling-sim.netlify.app/
https://doi.org/10.1109/JLT.2022.3141447
https://doi.org/10.1109/RIVF55975.2022.10013872
https://doi.org/10.1080/03043797.2022.2141610
https://doi.org/10.1109/TE.2018.2871617
https://doi.org/10.1109/TLT.2021.3063298
https://doi.org/10.1109/TELFOR52709.2021.9653245
https://doi.org/10.1109/TELFOR52709.2021.9653245
https://doi.org/10.55056/cte.116
https://doi.org/10.1109/ICCRD56364.2023.10080655
https://jangidbhanu.github.io/BankersAlgorithm/
https://kanwaradnan.github.io/Bankers-Algorithm-Simulator/
https://kanwaradnan.github.io/Bankers-Algorithm-Simulator/
https://khushalip.github.io/OS-lab/diskAlgo/disk.html

Virtual Simulations Tool for Operating Systems

26

Kleine, K., & Pessot, E. (2023). Virtualising labs in engineering education: A typology for structure and devel-
opment. Higher Education Research & Development, 43(1), 119–133.
https://doi.org/10.1080/07294360.2023.2228227

Luse, A., Brown, A., & Rursch, J. (2021). Instruction in 802.11 technology in online virtual labs. IEEE Transac-
tions on Education, 64(1), 12-17. https://doi.org/10.1109/TE.2020.2998701

Makaroff, D. (n.d.). Disk scheduling simulator. https://www.cs.usask.ca/faculty/makaroff/cgi-bin/disk_sched.pl

Martin-Villalba, C., & Urquia, A. (2022). An approach to develop collaborative virtual labs in Modelica. IEEE
Access, 10, 58938-58949. https://doi.org/10.1109/ACCESS.2022.3179712

May, D., Morkos, B., Jackson, A., Hunsu, N. J., Ingalls, A., & Beyette, F. (2022). Rapid transition of tradition-
ally hands-on labs to online instruction in engineering courses. European Journal of Engineering Education,
48(5), 842-860. https://doi.org/10.1080/03043797.2022.2046707

McGarr, O. (2020). The use of virtual simulations in teacher education to develop pre-service teachers’ behav-
iour and classroom management skills: Implications for reflective practice. Journal of Education for Teaching,
47(2), 274-286. https://doi.org/10.1080/02607476.2020.1724654

Panasiuk, O., Akimova, L., Kuznietsova, O., & Panasiuk, I. (2021). Virtual laboratories for engineering educa-
tion. Proceedings of the 11th International Conference on Advanced Computer Information Technologies, Deggendorf, Ger-
many, 637-641. https://doi.org/10.1109/ACIT52158.2021.9548567

Pisqre. (n.d.-a). Banker’s algorithm calculator. https://calculator.pisqre.com/bankers

Pisqre. (n.d.-b). Calculator for various algorithms. https://calculator.pisqre.com/

Rassudov, L., & Korunets, A. (2022). Virtual labs: An effective engineering education tool for remote learning
and not only. Proceedings of the 29th International Workshop on Electric Drives: Advances in Power Electronics for Elec-
tric Drives, Moscow, Russian Federation (pp. 1-4). IEEE. https://doi.org/10.1109/IWED54598.2022.9722375

Reginald, G. (2023). Teaching and learning using virtual labs: Investigating the effects on students’ self-regula-
tion. Cogent Education, 10(1). https://doi.org/10.1080/2331186X.2023.2172308

Sáenz, J., de la Torre, L., Chacón, J., & Dormido, S. (2021). A study of strategies for developing online labora-
tories. IEEE Transactions on Learning Technologies, 14(6), 777-787.
https://doi.org/10.1109/TLT.2022.3145807

Salas, R. P., & Ho, J. (2021). A remote/virtual robotics lab. Proceedings of the IEEE Frontiers in Education Confer-
ence, Lincoln, NE, USA, 1-4, https://doi.org/10.1109/FIE49875.2021.9637340

SeekTime. (n.d.). Disk Scheduler Visualisation. https://www.seektime.app/

Vayadande, K., Sheth, P., Pawal, D., Pathak, A., Paralkar, K., & Patil, S. (2023). Simulation of CPU scheduling
algorithms for efficient execution of processes. Proceedings of the International Conference for Advancement in Tech-
nology, Goa, India, 1-6. https://doi.org/10.1109/ICONAT57137.2023.10080113

Wang, L., Zhen, Z., Wo, T., Jiang, B., Sun, H., & Long, X. (2020). A scalable operating system experiment plat-
form supporting learning behavior analysis. IEEE Transactions on Education, 63(3), 232-239.
https://doi.org/10.1109/TE.2020.2975556

Wang, Y., Li, M., Dai, H., Kent, K. B., Ye, K., & Xu, C. (2022). Deadlock avoidance algorithms for recursion-
tree modeled requests in parallel executions. IEEE Transactions on Computers, 71(9), 2073-2087.
https://doi.org/10.1109/TC.2021.3122843

XiaoLing, Y. (2019). A deadlock prevention algorithm for the two-phase locking protocol based on Petri Net.
Proceedings of the 2019 6th International Conference on Systems and Informatics (ICSAI) (pp. 889-892). IEEE.
https://doi.org/10.1109/ICSAI48974.2019.9010538

Zapata-Rivera, L. F., & Aranzazu-Suescun, C. (2020). Enhanced virtual laboratory experience for wireless net-
works planning learning. IEEE Revista Iberoamericana de Tecnologias del Aprendizaje, 15(2), 105-112.
https://doi.org/10.1109/RITA.2020.2987725

https://doi.org/10.1080/07294360.2023.2228227
https://doi.org/10.1109/TE.2020.2998701
https://www.cs.usask.ca/faculty/makaroff/cgi-bin/disk_sched.pl
https://doi.org/10.1109/ACCESS.2022.3179712
https://doi.org/10.1080/03043797.2022.2046707
https://doi.org/10.1080/02607476.2020.1724654
https://doi.org/10.1109/ACIT52158.2021.9548567
https://calculator.pisqre.com/bankers
https://calculator.pisqre.com/
https://doi.org/10.1109/IWED54598.2022.9722375
https://doi.org/10.1080/2331186X.2023.2172308
https://doi.org/10.1109/TLT.2022.3145807
https://doi.org/10.1109/FIE49875.2021.9637340
https://www.seektime.app/
https://doi.org/10.1109/ICONAT57137.2023.10080113
https://doi.org/10.1109/TE.2020.2975556
https://doi.org/10.1109/TC.2021.3122843
https://doi.org/10.1109/ICSAI48974.2019.9010538
https://doi.org/10.1109/RITA.2020.2987725

Wadmare, Kolte, Bhatia, Desai & Wadmare

27

AUTHORS
Dr Jyoti Wadmare is an Assistant Professor in the Computer Engineer-
ing Department at KJSIT. She has teaching experience of 17 years with an
AI background. Her major domain of interest is the conjunction of AI and
Computer Vision. Testimonials of work include many conference presen-
tations and articles published that state advancement in this area by her,
and she has filed a patent and acquired four copyrights.

Dakshita Kolte is studying for a B.Tech in Computer Engineering at
KJSIT. She has developed Artificial Intelligence Machine Learning solu-
tions that combine Artificial Intelligence (AI) and web-based technologies.
She has a track record for participating in some of the most renowned
competitions, such as Mastek Project Deep Blue, Aavishkar, and Creative
Ideas and Innovations in Action. She has four copyrights for her work.

Kapil Bhatia, who is working on artificial intelligence and machine learn-
ing, has opted for a B. Tech in Computer Engineering at KJSIT. Kapil
Bhatia is adept at developing solutions that are the interplay of web-based
technologies, the Internet of Things, and artificial intelligence. His partici-
pation in well-known contests such as Aavishkar, Mastek Project Deep
Blue, and Creative Ideas and Innovations in Action speak volumes about
his exceptional expertise. He has also bagged four copyrights on his work.

Palak Desai is a third-year Computer Engineering student passionate
about UI/UX design, front-end web development, and data analytics. She
enjoys creating intuitive, beautiful user interfaces, bringing them to life
with functional web development, and analyzing data to drive insights. She
is dedicated to continuous learning and making impactful, user-centered
solutions. She has been granted three copyrights for her work.

Virtual Simulations Tool for Operating Systems

28

Ganesh Wadmare is an assistant professor in the Artificial Intelligence
and Data Science department of KJSIT and a Ph.D. scholar at Savitribai
Phule Pune University, with over 19 years of academic experience. Ganesh
has extensive exposure and experience in the field of artificial intelligence
and renewable sources of energy. He has published his research papers in
both national and international conferences.

	Virtual Simulations Tool for Operating Systems: Advancing E-Learning in Computing Education
	Abstract
	Introduction
	Research Hypothesis
	Literature Survey
	Methodology
	Results
	Simulation of Process Scheduling Algorithms:
	Accessing and using the simulator
	Simulation of Banker’s Algorithm
	Simulation of disk scheduling algorithms

	Performance Analysis of Process and Disk Scheduling Algorithms
	Comparison of different process scheduling algorithms
	Comparison of different disk scheduling algorithms

	Impact Analysis

	Discussion
	Process Scheduling Algorithm Simulation
	Banker’s Algorithm Simulation
	Disk Scheduling Simulation

	Conclusion and Future Scope
	References
	Authors

