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Executive Summary 
From time to time developers of (database) applications will encounter, explicitly or implicitly, struc-
tures such as trees, graphs, and networks. Such applications can, for instance, relate to bills of mate-
rial, organization charts, networks of (rail)roads, networks of conduit pipes (e.g., plumbing, electric-
ity), telecom networks, and data dictionaries. Algorithms on such data structures often require recur-
sion or iteration where the number of repetitions is unknown a priori. Such algorithms are usually 
implemented in a third generation language (3GL) and, therefore, are typically “record-at-a-time”. A 
vast amount of theoretical work on recursive queries in logical languages (and related problems in 
research prototypes) is available, but these “extensions” typically are not available in commercial da-
tabase management systems. Hence, they do not directly help the database developer “in the field” 
who has available only “ordinary” SQL with a few enhancements.  

Extensions of SQL with assignments and “control of flow” constructions such as the while-loop en-
able database developers to manage and solve such graph problems more completely and compactly 
on a 4GL-level in their daily work. Such SQL-extensions have existed for some time in several com-
mercially available database management systems. Incorporating this 4GL-approach in the educa-
tional field constitutes a challenge as well as an opportunity, as we show in this paper. We also illus-
trate various classical aspects of algorithm design at 4GL-level. 

In this paper we elaborate on the idea of graph algorithms on 4GL-level. In the Introduction we give a 
simple criterion to recognize in a general way whether such network structures are “hidden” in our 
data. We start with the “standard” recursive graph problem of the computation of the set of all paths 
in a graph. We show that the computation of the paths themselves can easily be extended with the 
computation of additional path properties. Such algorithms essentially operate differently from the 
algorithms on 3GL-level. This paradigm shift from 3GL to 4GL constitutes an important educational 
attention point. 

It turns out that intuition regarding the correctness (and the termination) concerning these subtle “set-
at-a-time” algorithms sometimes falls 
short. Therefore, we also pay special at-
tention to the correctness and termination 
of the algorithms (using invariants). Actu-
ally, this combines some educational 
themes from different disciplines in com-
puter science, namely programming (cor-
rectness, termination, invariants) and da-
tabases (4GL, stored procedures), in an 
elegant and useful manner. 
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One of the advantages of our uniform 4GL-approach is that it makes the practical development of ad 
hoc queries in such (recursive) application areas considerably easier, i.e., both simpler and faster, than 
a mixed 3GL/4GL-approach, using 3GL host languages with embedded SQL. As a consequence, it 
facilitates both the development and management of information systems in those application areas. 

Even on 4GL-level the student can influence the efficiency of the graph algorithms. Therefore, we 
present some incremental improvements on our algorithms, all successively leading to better results. 

All programs turn out to be rather compact; they consist of only a small number of SQL-statements. 
This clearly contributes to the transparency of the structure of the algorithms and the maintainability 
of the software, and therefore makes it also very suitable for educational purposes.  

Keywords: Advanced database methods, extended relational applications, network algorithms, transi-
tive closure, recursive queries, invariants, 3GL versus 4GL, paradigm shift, SQL 

Introduction 
In several database (and other) applications, structures such as trees, graphs, and networks play a 
prominent role; see for instance Aho, Hopcroft, and Ullman (1983), Houtsma and Apers (1992), 
Küng, Wagner, and Wöβ (1995), and Ullman (1989) as well as their references among (many) others. 
There are many well-known examples of such application areas: bills of material, genealogical trees, 
organization charts, holding structures, networks of railroads, networks of conduit pipes, and telecom 
networks, to name a few. But also many other application areas contain, often implicitly, such structu-
res. Within computing science itself we also encounter those structures quite frequently, for example 
in data dictionaries, in deductive databases, in software configuration management, and in CASE-
tools (e.g. ER-diagrams). Consequently, these structures occur in several courses in a CS curriculum. 
We will show how this can be used as an educational opportunity and combine some classical themes 
of programming with databases. 

A tree, graph, or network can be considered as a “picture” with “nodes” and “edges”, informally 
speaking. Usually, the nodes and the edges are “labeled” with additional data as well. For some 
classes of examples we indicate in Table 1 what the pictures, the nodes, and the edges represent in 
those cases. (The students could be invited to add some classes of examples themselves.) 

Table 1: Some application areas of trees, graphs, and networks 

Picture Node Edge 

bill of material 
organization chart 
genealogical tree 
decision tree 
road map 
(working) group 
ER-diagram 

(intermediate) product 
function/employee 
person 
decision node 
city 
actor 
entity 

use 
hierarchical relationship 
parent-child relationship 
option 
road 
communication channel 
relationship 

As an illustration, Figure 1 gives a concrete instance of a bill of material (or BOM) for an imaginary 
manufacturer of office furniture, taken from De Brock (1995). We note that a bill of material constitu-
tes a central part of MRP-systems for instance. The nodes represent products (with product number 
and description), the edges indicate which products occur as a direct part in which products, and the 
edge labels tell us in which numbers they occur as a direct part, e.g. product 11297 (bolt + nut) occurs 
24 times as a direct part in desk 87384 (and via the six drawers with number 44660 it also occurs 6 x 
6 times as an indirect part in desk 87384). 
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We can represent our bill of material from Figure 1 by means of two tables, the table PROD (produc-
ts, or nodes) with (at least) the attributes PNR (product number) and DESCR (description), and the 
table EDGES with (at least) the attributes BNODE (begin node), ENODE (end node), and NUM 
(number of pieces). The key of the table PROD is {PNR} and the (composite) key of the table 
EDGES is {BNODE, ENODE}. In the table EDGES, both BNODE and ENODE are foreign keys, 
each referring to PNR in the table PROD. In Figure 2 we represent a part of each table.  

 

PROD  EDGES 

PNR DESCR  ...  BNODE ENODE NUM  ... 
87384 
69333 
44704 
28325 
11297 
44660 
. 
. 

Desk 
Desk top 
Drawer 
Drawer holder 
Bolt + nut 
Drawer 
. 
. 

  

69333 
44704 
28325 
11297 
11297 
44660 
. 
. 

87384 
87384 
87384 
87384 
44660 
87384 
. 
. 

 1 
 2 
 2 
24 
 6 
 6 
 . 
 . 

 
 

Figure 2: Representation of a bill of material by means of tables 

 

Figure 1: A bill of material
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Here we already note that ad 
hoc querying for management 
applications in areas like pro-
duction management, for in-
stance, is often laborious due to 
the recursive character of many 
queries (e.g., computing pack 
lists, total assembly times, and 
the like). But before we return 
to this problem, we will first 
give an example of an even 
more general network. This net-
work, represented in Figure 3, 
consists of 23 nodes and 37 
edges. 

Sometimes, network structures 
are only implicitly present in 
databases. This raises the ques-
tion how students can recognize 
in a general way whether such 
network structures are “hidden” 
in their data. A simple criterion, 
illustrated by Figure 4, is the 
following: a data model with 
two different referential integri-
ties from a given entity E to a 
given entity N can be an indica-
tion that the N-occurrences can 
be considered as nodes and the 
E-occurrences as edges between 
those nodes, and hence that N 
together with E in fact represent a network. (It would be an interes-
ting exercise to check existing database schemes for these situations; 
one might get surprisingly new insights in those data structures.) 

Algorithms on such data structures often ask for recursion or itera-
tion with an unknown number of repetitions because the depth of the 
tree or the “diameter” of the network can be arbitrarily large. As an 
illustration of the consequences of this point, note that for a given 
table representing a genealogical tree, we can retrieve all children or 
all grandchildren of a person using a fairly simple SQL-statement. 
However, it becomes much harder in SQL when we want to retrieve 
all descendants of a person. In general, the problem is that it is easy 
in SQL to retrieve all paths of a fixed length (such as length 3), but 
not to retrieve all paths of arbitrary length (such as, “Give all 
paths”). Traditionally, such algorithms will be programmed in a 
3GL using recursion or iteration; see the classic Aho, Hopcroft, and 
Ullman (1983) for example. Those programs are then typically “rec-
ord-at-a-time”; in case of iteration, one record will be treated in the 
(inner) while-loop and in case of recursion, one record will be trea-
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Figure 3: A network (without cycles) 
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ted in the (inner) recursive call. A classic example of the latter case is backtracking in trees. 

Much theoretical work has been done on recursive queries, transitive closure algorithms and strate-
gies as well as their implementation, e.g., in deductive database systems; see for instance Ullman 
(1989) and its many references. This research usually concentrates on (extensions to) Datalog and 
other research languages like NAIL! (Morris, Ullman, & Van Gelder, 1986) and LDL (Naqvi & Tsur, 
1989), as well as their theoretical foundations, research prototypes, and their optimization. However, 
this deductive database research did not lead to widely used commercial database systems. Hence, 
this research does not directly help the database developer “in the field”, who usually only has avail-
able “ordinary” SQL with few enhancements. Therefore, it is our primary purpose to provide feasible 
and realistic solutions regarding such graph problems for students who might be going to work in the 
field with a commercially available database management system (e.g., as future database designers 
or application developers). 

We can show that enhanced versions of SQL with assignments and “control of flow” constructions 
such as while that are commercially available make it possible to solve such graph problems com-
pletely on 4GL-level. We point out that this contributes to the transparency of the structure of the 
software and that this also influences the design as well as the implementation of (recursive) con-
straints, queries, and transactions. Officially, such language constructs were planned to occur in the 
SQL3-standard for the first time (see Cannan & Otten, 1992), but they have already existed in prac-
tice for some time in several commercially available RDBMS's. Well-known examples of such en-
hanced SQL-versions are TRANSACT-SQL of Sybase and SQL Server, INGRES/SQL of Ingres, and 
PL/SQL of Oracle.  

We will work out the idea of graph algorithms on 4GL-level using the computation of all paths in a 
graph, known in the literature as the computation of the so-called transitive closure of the graph. This 
is an instance of a so-called all-pairs paths problem; see for example Aho, Hopcroft, and Ullman 
(1983). If the graph represents a genealogical tree, for instance, then this reduces to the computation 
of all descendants of all persons, and in case of a bill of material this reduces to the generation of all 
parts - direct as well as indirect - of all products. This problem models as it were many other graph 
algorithms. We also show that the computation of the paths themselves can be extended with the 
computation of additional path properties in a simple and modular way.  

Our approach makes the development and implementation of ad hoc queries in such recursive appli-
cation areas considerably simpler and faster in practice, which in turn facilitates the development of 
information systems in those application areas. (The author of this paper already wrote such graph 
algorithms in TRANSACT-SQL (of Sybase) at the end of the eighties, during an internal project at 
Philips Research. Now that more and more existing and new RDBMS's appear with such enhanced 
versions of SQL, the time has come to dedicate an educational paper to this topic.) 

Even on 4GL-level we can influence the efficiency of our graph algorithms. As an illustration we 
treat three successive improvements of our algorithms, each clearly leading to successively better re-
sults, hence offering a nice example of incremental (4GL) program refinement. 

It turns out that intuition on the correctness of these new “set-at-a-time” algorithms sometimes falls 
short. This also holds for the question whether the algorithms do terminate, due to the possible pres-
ence of cycles in the graph. For this reason, we also have to give some considerations regarding the 
termination and correctness of the algorithms. For graphs that might contain cycles, we will present 
alternative versions for each of our four algorithms. This leads to a modular variety of alternatives. 

Our goals with this paper are not only to present these algorithms as such but, above all, to present a 
suitable and almost necessary manner to treat such complex questions in SQL: first the students ought 
to carry out the analysis and design at a high and compact level, namely in terms of operations on 
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sets, before they plunge into the details of the SQL-code of the algorithms! This message adds to the 
educational value of this paper. 

The structure of the paper is as follows. Section 1 starts with a few necessary basic notions and notati-
ons regarding paths. In Section 2 we design, analyze, and redesign the algorithms in general terms of 
operations on sets. Only after we have finished all analysis and redesign, we turn to the (practically 
applicable) implementation of all our algorithms in SQL with a few enhancements (in Section 3). The 
paper ends with conclusions, and an appendix offering an elaborate example. 

1. Basic Notions 
We can start with the introduction of only a few basic notions and notations regarding paths. A path is 
a sequence of nodes; sequences are written as <x1; x2; …; xn>. For example, the path p1 from the 
“node” 11297 via 44660 to 55803 in Figure 1 will be denoted by <11297; 44660; 55803>. The “one 
step path” p2 from 55803 to 81290 can therefore be denoted by <55803; 81290>. We will denote the 
begin node of a path p by first(p), the end node by last(p), and the path length, i.e., the number of 
steps (or edges) in p, by length(p). So, if p = <x1; x2; …; xn> then first(p) = x1, last(p) = xn, and 
length(p) = n – 1. 

As an example, for p1 = <11297; 44660; 55803> we obtain first(p1) = 11297, last(p1) = 55803, and 
length(p1) = 2. 

Since the end node of path p1 is also the begin node of path p2, or formally, since last(p1) = first(p2), 
we can  “glue” those two paths together, thus making a longer path. We will denote that path by p1 & 
p2: 

p1 & p2 = <11297; 44660; 55803; 81290>.  

In general, if p = <x1; x2; …; xn> and s = <y1; y2; …; ym>, and last(p) = first(s), i.e., xn = y1, then  

p & s = <x1; x2; …; xn; y2; …; ym>.  

When we have two path sets R and S, then R ⊕ S denotes the set of all possible “glue results” of a path 
from R followed by a consecutive path from S. Formally: 

R ⊕ S = { r & s ⏐ r ∈ R and s ∈ S and last(r) = first(s) } 

With only these notations at hand the instructor is ready to treat our graph algorithms. 

2. Analysis and Design of the Algorithms 
Before rushing into the details of the implementation of the graph algorithms (computing the set of all 
paths in a graph) into SQL, the student first has to (learn to) analyze and design the algorithms at a 
higher and more compact level, namely in terms of operations on sets.  

We presuppose the existence of a given table EDGES in which the data on the edges is already availa-
ble. On behalf of our algorithms we have to introduce two auxiliary tables: a result table PATHS, which 
will contain all “old” paths we found thus far, and a table NEWP with the same structure (i.e., with the 
same type T), which will contain all paths we “just” found; this will be part of our invariants (see be-
low). At this moment we do not yet need to go into the details of that structure T.  
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2.1 Graphs without Cycles 
In this section we assume that we are sure beforehand that the graph contains no cycles. This means 
that our algorithms do not need to check whether they “are running around in circles”. In Section 2.2 
we will consider the case that the graph might contain cycles. 

2.1.1 Combining paths with edges 
Abstractly, one of the simplest algorithms for computing the set of all paths in a graph looks as follows 
(in pseudo-code): 

1 var  PATHS, NEWP: T; 
2 PATHS := ∅; 
3 NEWP  := EDGES; 
4 while NEWP ≠ ∅ 
5 begin PATHS :=  PATHS ∪ NEWP; 
6            NEWP  := (PATHS ⊕ EDGES) - PATHS 
7 end 
Explanation. Line 1 contains the declaration of the auxiliary tables PATHS and NEWP, each of type T.  

Lines 2 and 3 initialize these variables: PATHS becomes empty and in NEWP we put all 
paths of length 1. 

As long as the set NEWP still contains some elements (according to line 4), we add this set to 
PATHS (in line 5), and subsequently (in line 6) we will let NEWP consist of all paths we 
found thus far extended with one edge, but leaving out from this result all paths we already 
found thus far. 

In this algorithm we have the following invariant: If the while-loop in this algorithm is executed, say, n 
times, the table PATHS will contain all paths in the graph of which the path length is at most n. Hence, 
the total number of times the while-loop will be executed is equal to the path length of the longest path 
in the graph. In our bill of material of Figure 1 the longest paths have path length 3. The path <11297; 
44660; 55803; 81290> is an example of such a longest path. In our network of Figure 3 the longest paths 
have path length 9. Here, an example of such a longest path is the path <X;A;F;L;E;K;O;S;U;Y>.  

At this point the students could already be asked to think about an improvement of this algorithm.  

2.1.2 Combining paths with each other 
We obtain a first improvement on the foregoing algorithm by combining in line 6 the set of all found 
paths with itself (and not with EDGES), and - again - leaving out from this result all paths we already 
found thus far. Line 6 will then be replaced by: 

6b  NEWP := (PATHS ⊕ PATHS) - PATHS 
Now we have the following invariant: If the while-loop in this algorithm is executed (n + 1) times, the 
table PATHS will contain all paths in the graph of which the path length is at most 2n. The following 
trivial scheme indicates which maximum path lengths will already be reached in the first seven loops of 
the while-statement. (Note that in many of the application areas mentioned in Table 1, a depth of 64 is 
already very much in practice.) 
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while-loop 1 2 3 4 5 6 7 

maximum path length 1 2 4 8 16 32 64 

Figure 5: Maximum path lengths in each while-loop 

In our bill of material of Figure 1, for example, the longest paths have path length 3, which means that 
we have obtained all paths as soon as the while-loop has been executed three times. In our network of 
Figure 3 the longest path length is 9, which means that in this case we have obtained all paths as soon as 
the while-loop has been executed five times. We note that in general the total number of times that the 
while-loop will be executed is only 1 plus the 2-log (rounded off upwards) of the length of the longest 
path in the graph! 

Although the operation PATHS ⊕ PATHS may seem to be more complex than the operation PATHS ⊕ 
EDGES, the new algorithm as a whole will be an improvement.  

At this point the students could again be asked whether they can come up with an improvement of the 
algorithm. 

2.1.3 Generating only new paths 
Just like the first algorithm, the second algorithm suggests that we also generate in passing the paths we 
found earlier (but ignore them immediately), since a literal translation of line 6b into SQL would yield 
something of the following general form: 

 

DELETE FROM NEWP 
 
INSERT INTO NEWP 
(SELECT ...  
 FROM    PATHS p1, PATHS p2 
 WHERE  ... )   
EXCEPT  
(SELECT * FROM PATHS) 
 
Fortunately we can distinguish new paths from “old” paths (i.e., paths found earlier) in a simple way, 
namely by means of their path length. For that matter, note that if the while-loop in the second algorithm 
is executed (n + 1) times, the table PATHS contains all paths of which the length is at most 2n. Hence, in 
PATHS ⊕ PATHS only the paths longer than 2n are new. In order to keep track of that maximum length, 
we introduce a variable MAXL in our next algorithm. This (third) algorithm generates only new paths: 

1 var PATHS, NEWP : T; 
  MAXL : integer; 
2 PATHS := ∅; 
3 NEWP  := EDGES; 
 MAXL  := 1; 
4 while NEWP ≠ ∅ 
5 begin PATHS := PATHS ∪ NEWP; 
6c            NEWP  := { p ⏐ p ∈ PATHS ⊕ PATHS and length(p) > MAXL }; 
            MAXL  := 2 * MAXL 
7 end 
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Explanation. 

The integer variable MAXL starts with the value 1 and doubles in each execution of the while-
loop.  

Immediately before the while-loop as well as at the beginning and the end of each execution of 
the while-loop, the following relationships hold between our variables: 

(B1) PATHS contains all paths p with                      length(p) ≤ ½ MAXL 

(B2) NEWP  contains all paths p with  ½ MAXL < length(p) ≤     MAXL 

In other words, these statements are invariant under execution of the while-loop.  

The while-loop ends as soon as NEWP = ∅. 

2.1.4 Generating each new path only once 
Again we can ask the students whether they see room for further improvement of this algorithm. If they 
don’t, we can give them the following hint: Although we generate only new paths now, we do generate 
each new path multiple times. For instance, the path <11297; 44660; 55803; 81290> in Figure 1 is gen-
erated by the combination of the path <11297; 44660> with the path <44660; 55803; 81290> as well as 
by the combination of <11297; 44660; 55803> with <55803; 81290>. 

In order to prevent multiple generation of a new path, we can compose each new path in a standard 
manner: the first component will be a path with the (as yet) maximum length MAXL and the second 
component will be a path of arbitrary length. In this manner we generate only new paths and we will 
generate each new path only once. Note that this is the minimal effort we have to do anyway. In order to 
express this idea formally, we have to write out the set PATHS ⊕ PATHS, using the definition of the 
“⊕”-operation introduced in Section 1. We will obtain our fourth algorithm by replacing line 6c in our 
former algorithm by: 

6d    NEWP := { p1 & p2  ⏐ p1 ∈ PATHS and p2 ∈ PATHS and  
        last(p1) = first(p2) and length(p1) = MAXL } 

2.2 Graphs That Might Contain Cycles 
In Section 2.1 we assumed that we knew beforehand that the graph contained no cycles, implying that 
our algorithms did not need to check whether they were “running around in circles”. When we drop this 
assumption, we have to check on cycles during execution. Therefore we have to strengthen the condition 
in line 4 of our four algorithms as follows: 

4b  while NEWP ≠ ∅ and  
         { p ⏐ p ∈ NEWP and first(p) = last(p) } = ∅ 
In words: we continue as long as NEWP still contains paths and for none of these paths the begin node 
is equal to the end node. Here the teacher can point out that this refinement (of line 4) is independent of 
the refinements made in Section 2.1 (which were all in line 6); indeed a nice illustration of the principle 
of “separation of concerns”. 

2.3 From Labeled Edges to Labeled Paths 
The next (educational) step is to go from labeled edges to labeled paths. The edges in trees, graphs, and 
networks are often labeled with additional data. Figure 1 gives an example; there the edges are labeled 
with an integer (indicating the multiplicity of a direct part in a product, i.e., the number of pieces as a 
direct part in that product). 
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These labels usually occur as additional attributes in the “edge table”, as in Figure 2. 

Example. If Figure 3 represents a network of roads from north to south, we can imagine all kinds of 
labels (or attributes, or properties) that could be attached to the edges. For instance: 

(a) the distance (in km.) 
(b) the expected traveling time 
(c) the maximum gradient percentage 
(d) the maximum vehicle height 
(e) the maximum vehicle weight 
(f) the maximum vehicle width 
(g) toll passage indication (Boolean) 
(h) suitability indication for caravans (Boolean) 
(i) the route description 

At this point the instructor could ask the students for additional examples of possible attributes. (Before-
hand, the instructor could leave out some of the attributes above.) 

Often these edge properties can be lifted/extended/promoted to path properties. We can show that (and 
how) our algorithms for the computation of the paths themselves can easily be extended with the compu-
tation of such additional path properties. In order to be able to do so we have to know 

(R0) which additional path properties we want to compute, 

(R1) the value of each property for a one step path  
 (which is usually equal to the value of that property for the underlying edge), and 

(R2) the value of each property for the composition p1 & p2 of two paths p1 and p2  
 (usually in terms of the value for p1 and the value for p2). 

As an illustration of this point, the instructor can (ask to) work out part (R2) for (some of) the road prop-
erties mentioned in the example above and/or for the multiplicity of direct subparts in our BOM-
example from Figure 1. In Figure 6, we denote the values of the property for p1 and for p2 by val(p1) 
and val(p2), respectively. Concatenation of strings will be denoted by ⏐. 

 Edge property Value for the path p1 & p2 

 (a) distance val(p1) + val(p2) 
 (b) expected traveling time val(p1) + val(p2) 
 (c) max. gradient percentage max(val(p1), val(p2)) 
 (d) max. vehicle height min(val(p1), val(p2)) 
 (e) max. vehicle weight min(val(p1), val(p2)) 
 (f) max. vehicle width min(val(p1), val(p2)) 
 (g) toll passage indication val(p1) or val(p2) 
 (h) suitability for caravans val(p1) and val(p2) 
 (i) route description val(p1) ⏐ '; then ' ⏐ val(p2) 
 multiplicity val(p1) * val(p2) 

Figure 6: Value of some properties for path compositions 

So, in general the value of a property for a one step path p is usually equal to the value of that property 
for the underlying edge e, and the value for p1 & p2 is some function f of the values val(p1) and val(p2): 
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(R1) val(p)       =  val(e) 

(R2) val(p1 & p2) =  f(val(p1), val(p2)) 

In terms of our algorithms in Section 2.2,  

-  part (R0) will be used to adapt the type in line 1,  

-  part (R1) will be used to adapt line 3, and  

-  part (R2) will be used to adapt line 6 (and its variants). 

3. Implementation of the Algorithms in SQL 
In order to show the students the practical applicability of the approach in this paper, we will sketch how 
the foregoing abstract algorithms can be implemented in the commercially available enhancements of 
SQL we mentioned earlier. 

In this section we assume some familiarity with SQL; in particular, the SELECT, INSERT, DELETE, 
and UPDATE statements are assumed to be familiar. We can refer to Date (1995) or De Brock (1995), 
for instance, for further background reading. 

3.1 Implementation of our Third Algorithm 
The instructor can start with the implementation of our third algorithm, see Section 2.1.3 (i.e., the algo-
rithm containing line 6c); by means of our hints in Section 3.2 the student should then be able to “assem-
ble” the code of the first two algorithms, those with line 6 and 6b respectively (in stead of line 6c). 

We assume the existence of a table EDGES with the attributes BNODE (begin node) and ENODE (end -
node) of type String. (When these attributes are of another type, for example Integer, then we might add 
a type conversion in the SELECT-part of the first INSERT-statement in the algorithm below.) 

Now the time has come to go into the details of the structure of the auxiliary tables PATHS and NEWP. 
These tables contain four attributes (PATH, BNI, ENE, and LEN), which we will explain below. 

The attribute PATH is meant to contain the path itself, represented by the successive nodes, separated by 
commas, but as yet without the end node of the path. (Otherwise, this end node would have to be deleted 
again when we would glue two paths together.) The UPDATE statement at the end of the program will 
finally add the end node to each path. 

For the sake of convenience, the attribute BNI contains the begin node of the path separately (although it 
is in principle reconstructible from the attribute PATH). 

The attribute ENE contains the end node of the path, which is, as we know, not represented in the attrib-
ute PATH. 

Also for the sake of convenience, the attribute LEN contains the length of the path (although this is in 
principle reconstructible from the attribute PATH as well). 

The CREATE TABLE statement below is, strictly speaking, not a genuine SQL statement; in practice, 
this statement has to be written out in two separate CREATE TABLE statements. 

The statement “SELECT @MAXLEN = 1”, with the integer variable @MAXLEN, is our SQL-
representation of the assignment-statement “MAXL := 1” from Section 2.1.3. 

In some commercially available SQL-enhancements, each of our algorithms can be “packed in” as a so-
called (stored) procedure. The variable @MAXLEN can then be declared as a local variable of that pro-
cedure. We will illustrate these points in the Appendix. 
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The implementation of our third algorithm now looks as follows: 

CREATE TABLE   PATHS,  NEWP 
 
(PATH  String,  | path excluding the end node (= ENE) 
 BNI  String,  | begin node of the path (inclusive) 
 ENE  String,  | end node of the path (exclusive) 
 LEN  Integer)  | path length 
 
INSERT INTO NEWP 
SELECT x.BNODE as PATH, 
  x.BNODE as BNI, 
  x.ENODE as ENE, 
  1  as LEN 
FROM   EDGES x 
 
SELECT @MAXLEN = 1 
 
WHILE EXISTS(SELECT * FROM NEWP) 
BEGIN INSERT INTO PATHS 
 SELECT * FROM NEWP 
 
 DELETE FROM NEWP 
 
 INSERT INTO NEWP 
 SELECT p1.PATH + ',' + p2.PATH as PATH, 
   p1.BNODE  as BNI, 
   p2.ENODE  as ENE, 
   p1.LEN + p2.LEN as LEN 
 FROM    PATHS p1, PATHS p2  
 WHERE  p1.ENE = p2.BNI 
     AND  p1.LEN + p2.LEN > @MAXLEN 
 
 SELECT @MAXLEN = 2 * @MAXLEN 
END 
 
UPDATE PATHS p 
SET PATH = p.PATH + ',' + p.ENE 

3.2 Implementation of our Fourth Algorithm 
In order to prevent multiple generation of a new path, we composed each new path from a path with the 
(as yet) maximum length MAXL as the first component and a path of arbitrary length as the second 
component; see Section 2.1.4. This led to the replacement of line 6c by line 6d; in our SQL-translation 
this will lead to the replacement of the line “AND  p1.LEN + p2.LEN > @MAXLEN” by 

    AND  p1.LEN = @MAXLEN 

The student will now be able to “assemble” the code of the first two algorithms, those with line 6 and 6b 
respectively (in stead of line 6c); we already presented the form of the necessary SQL-statement during 
the discussion of line 6b in Section 2.1.3. 
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3.3 Performance Considerations 
We recall from Section 2.1 that from the second algorithm on, the total number of times that the while-
loop will be executed is only 1 plus the 2-log (rounded off upwards) of the length of the longest path in 
the graph. In each while-loop only one join is performed. Moreover, in the third algorithm we generate 
only new paths and in the fourth algorithm we also generate each new path only once (the minimal effort 
we have to do anyway).  

The CREATE TABLE statements need not be part of the algorithm itself (as we did). For performance 
reasons, they can be kept outside the algorithm by introducing them once beforehand, and starting the 
algorithm with emptying the tables PATHS and NEWP: 

DELETE FROM PATHS 

DELETE FROM NEWP 

Only as an illustration of the (relative) efficiency improvements that are possible, we note that in our test 
example from Figure 3 the execution time gained a factor 15 by the second improvement (generating 
only new paths). Subsequently, by the third improvement (generating each new path only once), the 
execution time still gained another factor 4 in this test case. A formal or experimental proof of the abso-
lute or relative performance benefits of each of the algorithms is outside the scope of this paper, but 
could be added by the instructor as an interesting exercise for the students. 

3.4 Implementation in Case of Possible Cycles 
In order to check on cycles during execution, we have to strengthen the condition in the while-loop, ac-
cording to the condition given in line 4b in Section 2.2. Therefore, in our earlier SQL-translations the 
line  

“WHILE EXISTS(SELECT * FROM NEWP)”   has to be replaced by 

“WHILE EXISTS(SELECT * FROM NEWP) 
     AND NOT EXISTS(SELECT * FROM NEWP p  WHERE p.BNI = p.ENE)” 

We note that in the foregoing text each fragment of the form “EXISTS(SELECT * FROM ...)” can be 
replaced by “0 < (SELECT COUNT(*) FROM ...)”. We will illustrate these points in the Appendix. 

3.5 Implementation of Labeled Paths 
In principle, each additional path property we want to compute, will add  

−  an attribute Y to the type T to be chosen, 
−  a line of the form “x.Y as Y” to the SELECT-part of the SQL-translation of line 3, and 
−  a line of the form “f′(p1.Y, p2.Y) as Y” to the SELECT-part of the SQL-translation of line 6 (and its 

variants), where f′(p1.Y, p2.Y) is the SQL-translation of f(val(p1), val(p2)) mentioned in Section 
2.3. 

We note that standard SQL does not contain the type Boolean directly. Therefore, we simulate it by a 
user-defined type (or “domain”) called Bool, consisting of the integers 0 (for “false”) and 1 (for “true”). 
In SQL2 (see Cannan & Otten, 1992) this can be done as follows: 

CREATE DOMAIN Bool AS INTEGER 

CHECK(VALUE = 0 OR VALUE = 1) 

In this case, the Boolean expression “A and B” translates to min(A,B) and “A or B” translates to 
max(A,B). We will illustrate all these points in the Appendix. 
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In your favorite RDBMS, the syntax for domains might be slightly different; if your RDBMS does not 
support user-defined types yet, you might be able to add a CHECK-clause to the type declaration of the 
intended Boolean attribute. 

We also note that standard SQL does not contain the operations min(a,b) and max(a,b), for the minimum 
and maximum of two given numbers a and b, which we used in our examples in Section 2.2. Note, how-
ever, that 

min(a,b)  = (a + b − abs(a,b))/2 

max(a,b) = (a + b + abs(a,b))/2 

where abs(a,b) denotes the absolute value of a − b. The right hand sides of these expressions do have a 
counterpart in many SQL-implementations. 

Conclusions 
Commercially available enhancements of SQL with assignments and “control of flow” constructions 
such as while constitute the educational challenge to teach these topics in a clean and clear manner, re-
taining the lessons learned in earlier programming courses (top down design, modular design, correct-
ness and termination considerations, invariants) as well as in the earlier parts of the database course. En-
hanced versions of SQL with assignments and “control of flow” constructions make it possible to ex-
press (seemingly recursive) algorithms on trees, graphs, and networks completely on 4GL-level. This 
clearly contributes to the transparency of the structure and the maintainability of the software. As a con-
sequence, our approach makes the development and implementation in commercially available database 
management systems of ad hoc queries in such (recursive) application areas considerably simpler and 
faster for application developers, which in turn facilitates the development and management of informa-
tion systems in those application areas. As such, it may constitute a useful theme in a CS course on soft-
ware development in a database environment. 

A simple criterion for students to recognize whether network structures are “hidden” in their data is that 
a data model with two different referential integrities from an entity E to an entity N can be an indication 
that the N-occurrences can be considered as nodes and the E-occurrences as edges between those nodes, 
and hence that N together with E in fact represent a network.  

Even on 4GL-level the students can influence the efficiency of their graph algorithms in a substantial 
way.  

We also paid special attention to the correctness and termination of the algorithms, by using invariants.  

All programs turn out to be rather compact: they consist of only a few SQL-statements. This makes our 
programs surveyable, easily adaptable, and very suitable for educational as well as practical purposes. 

Our goal with this paper was not only to present these algorithms as such but (above all) to offer a 
suitable (and almost necessary) manner to treat complex queries in SQL: first the students ought to 
carry out the analysis and design at a high and compact level, namely in terms of (operations on) sets, 
before they plunge into the details of the SQL-code! This is our general experience in teaching the 
development of complex queries for more than 20 years, and this message will hold even stronger in 
the context of (even more complex) iterative queries. The method has not yet been formally evaluated 
from a student perspective in this new context of complex iterative queries, so it would be interesting 
future work to carry out such an evaluation. The reader is invited to apply the method and to evaluate 
it in his or her own classroom. 
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Appendix: An Elaborated Example  
This appendix contains an example to illustrate several points we made earlier in this paper. In particu-
lar, we will work out the SQL implementation  

−  of the road network example mentioned in Section 2.3, with six representative additional edge labels:  

 distance, maximum gradient percentage, maximum vehicle height, toll passage indication,  

 suitability indication for caravans, and the route description, 

−  for the case that the network might contain cycles (see Section 2.2, line 4b, and Section 3.4),  

−  in the form of a (stored) procedure (see Section 3.1), for which we chose the name Pathfinder, 

−  for the case that we generate each new path only once (see Section 2.1.4, line 6d, and Section 3.2), 

−  with CREATE TABLE statements for PATH and NEWP outside the procedure itself (Section 3.3), 
and 

−  with the EXISTS-version replaced by the COUNT(*)-version (see Section 3.4). 

We start with the CREATE TABLE statements for PATH and NEWP before we present the procedure 
itself: 
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CREATE TABLE  PATHS, NEWP 
 
(PATH  String,  | path excluding the end node (= ENE) 
 BNI  String,  | begin node of the path (inclusive) 
 ENE  String,  | end node of the path (exclusive) 
 LEN  Integer,  | path length 
 
 DIST  Integer,  | distance (in km.) 
 GRAD  Integer,  | maximum gradient percentage 
 MHEI  Integer,  | maximum vehicle height 
 TOLL  Bool,  | toll passage indication 
 CVAN  Bool,  | suitability indication for caravans 
 DESC  String)  | route description 
 
In Section 3.5 we noted that we could use the equalities 

min(a,b)  = (a + b − abs(a,b))/2 

max(a,b) = (a + b + abs(a,b))/2 

in order to express the minimum and maximum of two given numbers directly in SQL. For convenience 
sake, we will not write this out in the code below. 

We continue with the stored procedure itself: 

CREATE PROCEDURE Pathfinder AS 
DECLARE  @MAXLEN  Integer 
BEGIN 
   DELETE FROM PATHS 
   DELETE FROM NEWP 
 
   INSERT INTO NEWP 
   SELECT x.BNODE as PATH, 
      x.BNODE as BNI, 
      x.ENODE as ENE, 
      1  as LEN, 
      x.DIST as DIST, 
      x.GRAD as GRAD, 
      x.MHEI as MHEI, 
      x.TOLL as TOLL, 
      x.CVAN as CVAN, 
      x.DESC as DESC 
   FROM   EDGES x 
 
   SELECT @MAXLEN = 1 
 
   WHILE  0 < (SELECT COUNT(*) FROM NEWP) 
       AND  0 = (SELECT COUNT(*) FROM NEWP p WHERE p.BNI = p.ENE) 
   BEGIN  INSERT INTO PATHS 
    SELECT * FROM NEWP 
 
    DELETE FROM NEWP 
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    INSERT INTO NEWP 
    SELECT p1.PATH + ',' + p2.PATH as PATH, 
      p1.BNODE   as BNI, 
      p2.ENODE   as ENE, 
      p1.LEN  + p2.LEN  as LEN, 
      p1.DIST + p2.DIST  as DIST, 
      max(p1.GRAD, p2.GRAD) as GRAD, 
      min(p1.MHEI, p2.MHEI) as MHEI, 
      max(p1.TOLL, p2.TOLL) as TOLL, 
      min(p1.CVAN, p2.CVAN) as CVAN, 
      p1.DESC + '; then ' + p2.DESC as DESC 
    FROM    PATHS p1, PATHS p2  
    WHERE  p1.ENE = p2.BNI 
          AND  p1.LEN = @MAXLEN 
 
    SELECT @MAXLEN = 2 * @MAXLEN 
   END 
 
   UPDATE PATHS p 
   SET PATH = p.PATH + ',' + p.ENE 
END 
 
From this point on it is relatively easy for students to exercise all kinds of “path related” queries; e.g., 
the query for the distance table for all toll free north-south routes that are suitable for caravans can 
now be expressed as follows: 

SELECT  p.BNI,  p.ENE,  min(p.DIST) 
FROM   PATHS p 
WHERE   p.TOLL = 0  AND  p.CVAN = 1 
GROUP   BY BNI, ENE 

Biography 
Bert de Brock is an associate professor of Information Technology at the 
University of Groningen since 1993 and a professor of Business Intelli-
gence at the Hanze University Groningen since 2003. He received a M.Sc. 
in Mathematics at the University of Groningen in 1979 and a Ph.D. in 
Computing Science at the University of Technology in Eindhoven in 1984. 
From 1985 to 1990 he worked at Philips Research on the PRISMA-project 
(Parallel Inference and Storage Machine) and the ECHO-project (Elec-
tronic Case Handling in Offices). In 1990 he and one of his former col-
leagues started a company in the areas of IT-consultancy, post-academic 
education, and analysis, design, and construction of (tailor-made) informa-
tion systems for customers. His research interests include databases, infor-
mation systems, business intelligence, and bioinformatics. He is the author 

of the book Foundations of Semantic Databases (Prentice Hall International Series in Computer Sci-
ence, 1995). 


