
Journal of Information Technology Education Volume 5, 2006

A Formal Language Selection Process
for Introductory Programming Courses

Kevin R. Parker
Idaho State University
Pocatello, Idaho, USA

parkerkr@isu.edu

Joseph T. Chao
Bowling Green State University

Bowling Green, Ohio, USA
jchao@bgnet.bgsu.edu

Thomas A. Ottaway
Idaho State University
Pocatello, Idaho, USA

ottathom@isu.edu

Jane Chang
Bowling Green State University

Bowling Green, Ohio, USA
changj@cba.bgsu.edu

Executive Summary
The selection of a programming language for introductory courses has long been an informal
process involving faculty evaluation, discussion, and consensus. As the number of faculty, stu-
dents, and language options grows, this process becomes increasingly unwieldy. As it stands, the
process currently lacks structure and replicability. Establishing a structured approach to the selec-
tion of a programming language would enable a more thorough evaluation of the available op-
tions and a more easily supportable selection. Developing and documenting an instrument and a
methodology for language selection will allow the process to be more easily repeated in the fu-
ture.

The objectives of this research are to: i) identify criteria for faculty use when selecting a computer
programming language for an introductory course in computer programming; ii) develop an in-
strument that facilitates the assignment of weights to each of those selection criterion to deter-
mine their relative importance in the selection process, and; iii) allow various computer pro-
gramming languages to be scored according to those selection criteria. A set of criteria for the
selection of a programming language for introductory courses proposed in a previous paper is
briefly reviewed here, with each criterion accompanied with a definition and justification. Read-
ers are referred to the source paper for a complete discussion and literature review.

In order to test the validity of these criteria a pilot study was conducted. That study revealed that
the number of languages being evaluated by a respondent should be limited, and better guidance
in the form of criterion explanation and rating guidance are necessary. Further, some users found
the number of criteria daunting, and some of those criteria overlap, causing a language to be

evaluated multiple times on what should
be a single criterion. At the same a few
additional criteria were proposed by
study participants.

As a result of these findings, instrument
refinements were made. Evaluators are
now restricted to assessing only lan-
guages with which they are quite famil-
iar in order to address not only the issue
of quantity, but also inadequate familiar-

Material published as part of this journal, either on-line or in
print, is copyrighted by the Informing Science Institute. Per-
mission to make digital or paper copy of part or all of these
works for personal or classroom use is granted without fee
provided that the copies are not made or distributed for profit
or commercial advantage AND that copies 1) bear this notice
in full and 2) give the full citation on the first page. It is per-
missible to abstract these works so long as credit is given. To
copy in all other cases or to republish or to post on a server or
to redistribute to lists requires specific permission and payment
of a fee. Contact Publisher@InformingScience.org to request
redistribution permission.

mailto:parkerkr@isu.edu
mailto:jchao@bgnet.bgsu.edu
mailto:ottathom@isu.edu
mailto:changj@cba.bgsu.edu

A Formal Language Selection Process

134

ity. In addition, the selection criteria were analyzed and those with commonalities were grouped
together, and a few additions were made to the subcategories as proposed by the study partici-
pants. The most significant change is the use of Multi-criteria decision analysis, specifically the
Analytic Hierarchy Process (AHP), to provide structure to the weighting process. These tech-
niques are explained, and their suitability to this process is investigated. An online instrument
based on AHP that includes a clarified description of each criterion is being refined to assist in
the administration of future tests.

This set of criteria, as well as the instrument designed around it, are designed to be extensible,
allowing revision of both the criteria and the process as new programming paradigms and lan-
guages are introduced and old ones fall out of favor. It is hoped that this formal method will yield
the structure and repeatability missing from existing approaches.

Keywords: Programming language selection, introduction to programming, teaching program-
ming, programming language evaluation, multicriteria decision analysis, analytic hierarchy proc-
ess.

Introduction
A cursory glance through back issues of computer-related journals makes it apparent that discus-
sions about the introductory programming language course and the language appropriate for that
course have been numerous and on-going (Smolarski, 2003). The selection of a programming
language for instructional purposes is often viewed as a tedious chore because there is no well-
established approach for performing the evaluation. However, the choice of a programming lan-
guage has serious education repercussions (Schneider, 1978). Dijkstra (1972, p. 864) stated that

“…the tools we are trying to use and the language or notation we are using to ex-
press or record our thoughts are the major factors determining what we can think
or express at all! The analysis of the influence that programming languages have
on the thinking habits of their users … give[s] us a new collection of yardsticks
for comparing the relative merits of various programming languages.”

The informal process may involve faculty discussion, with champions touting the advantages of
their preferred language, and an eventual consensus, or at least surrender. Because the process
must be repeated every three or four years it would be preferable to develop a structured approach
to make the process more systematic.

The goal of this study is to develop and refine an instrument to facilitate the selection of a pro-
gramming language and to make the process more uniform and easily replicated. The original
paper (Parker, Ottaway, & Chao, 2006) proposed an objective selection process. A pilot study
was conducted to test the viability of the process. The following steps outline the proposed ap-
proach that guided the pilot study.

1. Compile a list of language selection criteria.

2. Weight each of the criteria. Ask each evaluator to weight, specific to the department’s
needs, the value of importance for each criterion.

3. Determine a list of candidate languages. The list should be comprised of languages nomi-
nated by the faculty rather than a complete list of available languages.

4. Evaluate the language. Each candidate language should be assigned a rating for each cri-
terion.

 Parker, Chao, Ottaway, & Chang

 135

5. Calculate weighted score. For each candidate language, a weighted score can be calcu-
lated by adding together the language score multiplied by the weight assigned to each cri-
terion. The language with the highest weighted score is the optimal choice, given the
evaluators’ assessments.

This paper first reviews a set of criteria designed for use in the selection of an appropriate pro-
gramming language for introductory courses. It then describes the structure of the pilot study and
resulting findings. Finally, the paper advances refinements in the process that should circumvent
the problems that were discovered in our original proposal.

Criteria
A previous paper proposed criteria for the
selection of a programming language for
introductory courses. The criteria were
derived by perusing over sixty papers
relevant to language selection and justi-
fied by a brief review of the supporting
literature in (Parker et al., 2006). Each of
the criteria in Table 1 has been used in
one or more previous studies that evaluate
programming languages.

A complete literature review and justifica-
tion for each of the criterion can be found
in (Parker et al., 2006), but a brief expla-
nation of each follows.

Reasonable Financial Cost
This criterion refers to the price to acquire
the programming language or the devel-
opment environment. This may involve
individual packages or a site license for a
network version. There may be an aca-
demic discount for educational institu-
tions, there may be an alliance in which
the university or department can enroll, or
there may even be a free, downloadable
version.

Availability of Stu-
dent/Academic Version
The availability of a student version or
academic version allows students to install
the development environment on their
personal machine, making it more con-
venient for them to work on their assign-

ments when the computer lab is not accessible. If a student version is unavailable and the depart-
ment uses a network-based version, then students may be forced to work on their assignments in
campus labs, restricted by hours of operation, availability of transportation, etc. If the academic

Table 1: Selection Criteria

Reasonable Financial Cost

Availability of Student/Academic Version

Academic Acceptance

Availability of Textbooks

Stage in Life Cycle

Industry Acceptance

Marketability (Regional and National)

System Requirements of Student/Academic/Full Version

Operating System Dependence

Proprietary/Open Source

Development Environment

Debugging Facilities

Ease of Learning Fundamental Concepts

Support for Secure Code

Advanced Features for Subsequent Programming Courses

Scripting or Full-Featured Language

Support of Web Development

Supports Target Application Domain

Teaching Approach Support

Object-Oriented Support

Availability of Support

Instructor and Staff Training

Anticipated Experience Level for Incoming Students

A Formal Language Selection Process

136

version is stripped down, then the benefit to the students may not be as great, but this factor
should at least be considered.

Academic Acceptance
Academic acceptance refers to the popularity of a language at other academic institutions. This
can be assessed by current use or projected use at other institutions. For example, the increasing
popularity of object-oriented programming and the recent decision by the College Board to move
the Advanced Placement Computer Science program to Java have led to an increasing number of
universities, colleges, and secondary schools adopting Java as the programming language for their
introductory programming courses (Roberts, 2004).

Availability of Textbooks
The availability of text books is affected by many factors. The life cycle stage of the language
impacts the availability of textbooks, particularly when the language is relatively new. It is often
difficult to find a quality textbook for a newly released language, but as a language matures more
become available. The academic acceptance of a language also plays a large role in the availabil-
ity of textbooks because a larger potential market exists for a text that deals with a more widely
used language. Finally, textbook availability may also be affected by the teaching approach used.
For example, functions-first, objects-first, or objects-early are all approaches used to teach object-
oriented languages, but few recent texts present the material from a functions-first perspective.
Availability of reference books should also be taken into account (Lee & Stroud, 1996).

Stage in Life Cycle
A programming language’s stage in the programming language life cycle affects not only text-
book availability, as noted above, but it may also impact the widespread use of a language in both
industry and academia. Universities may prefer a language that is still in its earlier stages, rather
than one like FORTRAN that is in its declining years. Not to be confused with the program de-
velopment life cycle, the programming language life cycle, as described by Sharp (2002), is based
on the natural principles of growth, maturation and decay. The processes of natural advantage and
evolution operate in the world of programming languages in the same way that they operate in the
biological domain, but in the case of languages the main forces are efficiency of expression ver-
sus profitable adoption.

Industry Acceptance
Industry acceptance refers to the market penetration (Riehle, 2003) of a particular language in
industry, i.e., the use of a language in business and industry. Also referred to as industrial rele-
vance, it can be assessed based on current and projected usage, as well as the number of current
and projected positions. King (1992) notes that many language decisions are made on the basis of
current popularity or the likelihood of future popularity, but Howland (1997) objects that too
many languages are chosen simply because of their current popularity rather than for sound peda-
gogical reasons.

Marketability (Regional and National)
Marketability refers to the employability of graduates. This may refer to regional or na-
tional/international marketability, based on the placement of a program’s graduates. Language
selection is often driven by demand in the workplace, i.e., what employers want. Not only are
marketable skills important in future employability, but students are more enthusiastic when
studying a language they feel will increase their employability (de Raadt, Watson, & Toleman,

 Parker, Chao, Ottaway, & Chang

 137

2003). Emigh (2001) points out a caveat that must be considered when assessing both industry
acceptance and marketability. Generally, four to five years pass between when a student begins a
program of study and when he or she attains a position requiring programming skills. Even if a
curriculum teaches a newer programming language, there is no guarantee that employers will still
be looking for that language when the student enters the work force.

System Requirements of Student/Academic/Full Version
The system requirements of the programming language often play a role in the selection process.
This includes hardware as well as operating system requirements. The amount of hard disk space
needed to install the software, the operating system required, and the amount of memory to run
the software all factor into the decision. Both student and lab machines must be able to meet the
minimum requirements of the selected language.

Operating System Dependence
This criterion refers to the dependence of a language on a particular operating system platform,
often referred to as portability. For example, any of the languages supported by the .Net frame-
work, including Visual Basic, C++, C#, etc., depend on the Windows operating system. Other
languages, such as Java, are platform independent, and development environments for Java can
be found for a variety of operating systems. This may be of concern to faculty members who may
or may not prefer to be bound to a specific operating system.

Proprietary/Open Source
This refers to the entity that controls the evolution of a language and its associated development
environment. For example, Microsoft is responsible for additions, deletions, or modifications in
any of the languages supported by the .Net framework. Sun is responsible for the ongoing evolu-
tion of the Java language. On the opposite end of the spectrum, PHP is an open source language
and can be easily modified by any member of the open source community.

Development Environment
The development environment is a programmer’s virtual workbench, and can improve or inhibit
productivity (Jensen, 2004). Development environments range from simple text editors and
command-line compilers to fully interactive and integrated development environments (IDE)
(McIver, 2002). An IDE should be easy to use so that the students can concentrate on learning
programming concepts rather than the environment itself (Kölling, Koch, & Rosenberg, 1995).
There is evidence that well-designed programming environments assist students in learning to
program (Eisenstadt & Lewis, 1992).

Debugging Facilities
While this criterion is considered part of the IDE, when assessing a programming language one
should evaluate the debugging facilities that accompany the language, i.e., the existence of ade-
quate diagnostic aids (Tharp, 1982). The Ad Hoc AP CS Committee (2000) report states that pro-
gramming environments should contain extensive tools for tracing and debugging. The error di-
agnostics should be clear and meaningful (McIver & Conway, 1996), and the language should be
robust as well as graceful in failure (Conway, 1993).

Ease of Learning Fundamental Concepts
The learning curve associated with each language or IDE differs greatly between languages. The
most obvious recent example is the steep increase in the learning curve from Visual Basic 6 to

A Formal Language Selection Process

138

Visual Basic.Net. Basic concepts include the sequence, selection, and iteration control structures,
as well as arrays, procedures, basic input/output, and file manipulation. In addition to ease of
learning, the language must be characterized by concise syntax and straightforward semantics
(Conway, 1993).

Coding Safety and Support for Secure Code
This criterion can be used to assess two important factors. The first considers whether the lan-
guage offers features like strong type checking and array bounds checking, while avoiding fea-
tures like variants and pointers in unsafe mode. Kölling et al. (1995) note that a language should
have a safe, statically checked type system, no explicit pointers, and no undetectable uninitialized
variables. The second factor, which is closely related to the first, is the inclusion of security-
related features like Java’s sandbox, which is intended to limit the memory addresses that a Java
program can access.

Advanced Features for Subsequent Programming Courses
Many programs introduce basic programming language features in an introductory course and
defer advanced features of the language, like multithreading, until a subsequent course. If multi-
ple programming courses are included in a computing curriculum, one important consideration
may be whether a programming language offers adequate advanced features to support an ad-
vanced programming course.

Scripting or Full-Featured Language
Programming educators must also choose between full-featured and less complex languages.
Some programming instructors prefer scripting languages like Python because they offer suffi-
cient richness to cover most of the requirements of an introductory course while reducing the
complexity of the development environment and avoiding many other implementation issues.
Full-featured languages, however, offer a more complete set of language features that an instruc-
tor may want to address.

Support of Web Development
Many programs consider it essential that today’s students have the skills to develop web-based
applications. This criterion pertains to the level of web development support that a particular lan-
guage provides. This is not limited to scripting languages, discussed above, but includes web de-
velopment technologies like ASP.Net that provide a high level of support for web development
but at the same time utilize full-featured languages.

Supports Target Application Domain
This criterion, sometimes also referred to as “problem domain,” is included to assess how well a
language supports programming for specific applications (Howatt, 1995). Examples of applica-
tion domain include FORTRAN’s support for scientific programming, COBOL’s support for
business data processing, and RPG’s support for report generation.

Teaching Approach Support
This criterion refers to the assessment of how well a language supports the teaching approach pre-
ferred by the faculty, i.e., whether the intent is to teach programming concepts, with the language
simply being a vehicle through which those concepts are reinforced, or whether the intent is to
teach the features of a particular language, such as the many user interface controls offered by
Visual Basic.

 Parker, Chao, Ottaway, & Chang

 139

Object-oriented support
This criterion assesses how well a programming language supports basic object-oriented (OO)
concepts like abstraction, polymorphism, inheritance, and encapsulation. The evaluator should
consider that some languages that are touted as being object-oriented are merely object-based,
meaning that they fail to provide support for all of the OO features listed above. Again, if an OO
language is selected, the instructor must choose between an objects-first approach and an objects-
early approach.

Availability of Support
This criterion refers to the availability of support staff, including computer lab staff and/or net-
work administrators, to support the teaching and administration of a language. The evaluator must
consider the likelihood that their language questions will be answered (Cunningham, 2004) and
should also take into account the availability of support through forums or listservs on the Inter-
net, as well as vendor support (Tharp, 1982). The evaluator may want to consider the availability
of other resources like teachers’ guides, example programs, student workbooks, and programming
assignments.

Instructor and Staff Training
This concerns the training required for instructors and support staff, the time needed to learn a
language or its IDE, and the availability of qualified instructors to teach a particular language.
Adopting a new language requires a willingness on the part of the university to invest in the edu-
cation of its educators because instructors “must continuously enrich their qualifications, imple-
ment new training methods and techniques supplemented with practical methods and techniques
supplemented with practical experience; while teaching a new language that is as new to them as
it is to their class" (Emigh, 2001, p.2).

Anticipated Experience Level for Incoming Students
The final criterion is the anticipated programming experience level for incoming students. This is
important because students' previous experience and training skews their understanding of new
programming paradigms and languages (Traxler, 1994). If students coming into a program con-
sistently exhibit the same traits such as previous exposure to a particular language, then it may
play a role in language selection. If a program consistently sees students with uniform program-
ming experience, it may be able to adjust its requirements and its programming language selec-
tion accordingly.

Pilot Study
Language selection is a complicated issue and for the most part is highly subjective. One major
goal of utilizing a thorough list of criteria is to make the highly subjective process more objective.
Since the Computer Science department at a medium-size Midwestern university is in the process
of revamping the CS1 and CS2 courses, a pilot language selection process was created and a lan-
guage survey was conducted during the Spring 2005 semester. The following are the steps used in
the process:

1. Based on the above criteria, a Language Selection Criteria Survey Form, shown in Ap-
pendix A, was created and distributed to the faculty. A detailed description of each crite-
rion was also provided.

2. Each evaluator was required to weight, specific to the department’s needs, the importance
of each criterion. The weight ranged from zero (don’t care) to ten (extremely important).

A Formal Language Selection Process

140

When multiple evaluators worked together the weights assigned by each evaluator were
averaged.

3. Based on previous decisions, evaluators were provided with a list of language candidates.
The list contained seven language and platform candidates, with C++/Unix and
C++/.NET considered as two distinct choices.

4. A Language Evaluation Form, shown in Appendix B, was developed and distributed to
evaluators. Representative code from each candidate language was provided. This code,
from the Computer Language Shootout (2003), showed how the Sieve of Erathostenes
algorithm for finding prime numbers can be coded in each language. The code was pro-
vided in case an evaluator was not familiar with a particular language on the list. Evalua-
tors were asked to assess each candidate language with regard to each of the criteria and
assign a rating between zero (extremely low) and ten (extremely high).

5. For each candidate language the score assigned to each criterion was multiplied by the
weight assigned to that criterion, and those products were summed to obtain an overall
rating for the language. This calculation is often referred to as Multicriteria Scoring
Model. That is, for each language alternative i, compute a weighted average score Li as:

∑
=

=
n

j

ijji rwL
1

where

wj = weight for criterion j

rij = transformed score for language alternative i on criterion j

The language with the highest weighted score was deemed to be the optimal choice based
on evaluators’ assessments.

The survey was administered to a group of faculty members who volunteered to participate in the
pilot study because of their interest in selecting a programming language for the introductory pro-
gramming courses.

Initial Findings
Only three of six volunteers completed and returned the survey in the allotted two-week period.
Some of the volunteers who did not complete the survey commented that the survey was too dif-
ficult and time consuming to complete. Some of the volunteers brought up issues concerning the
survey, as summarized below.

1. Too many languages were included on the language evaluation form. The number of lan-
guages on the list made the survey more difficult and time consuming.

2. Many of the faculty members were not familiar with all languages listed. If an evaluator
rated an unfamiliar language then that rating was suspect.

3. There are too many criteria on the list and some of them seem to overlap. This overlap
may result in a language being double penalized, or conversely double rewarded. For ex-
ample, the criteria “Academic acceptance” and “Availability of textbooks” may be highly
related to each other, causing a language to be evaluated twice on what should be a single
criterion.

 Parker, Chao, Ottaway, & Chang

 141

4. Arbitrarily assigning weighting factors to multiple criteria is a difficult task. Some form
of structure for the process should be considered.

5. The wording on the criteria provided inadequate guidance. It must be clear to every
evaluator which extreme is preferable and therefore should be assigned a higher rating.
For example, if a language is available only for a specific operating system, should it re-
ceive a ten for “Operating system dependence” or a zero? Similarly, should a pure script-
ing language receive a ten or zero for “Scripting or full-featured language?”

6. There were suggestions for the inclusion of additional criteria.

Whether they completed the survey or not, most volunteers observed that the framework made
the selection process more systematic. They also noted that it made the process more open since
the individual assessments were not as easily dominated by more opinionated and vocal faculty
members.

Instrument Refinement
The above concerns are all valid and must be addressed. Each will be the focus of individual sec-
tions below, followed by a discussion of additional refinements to the language evaluation in-
strument. The refined language selection criteria survey form is shown in Appendix D, followed
by the refined language evaluation form in Appendix E.

Reduction in Number of Candidate Languages
There are several possible solutions to address the problem of having too many candidate lan-
guages to evaluate. While it might be possible to first compare a subset of languages to narrow
down the choices, the authors preferred to restrict evaluators to assessing only languages with
which they are quite familiar. This addresses not only the issue of quantity, but also inadequate
familiarity.

Compensation for Language Unfamiliarity
One solution to this problem would be to have everyone involved in the selection process meet
prior to the conducting their individual assessments to discuss the various options in case some
are more familiar with certain environments than others. Perhaps a more effective approach
would be to require the evaluator to associate a confidence level with each of their assessments
for the criteria. The intent would be to associate a low confidence level with “guesses” to reduce
their impact. Ultimately, as noted in the previous section, the most direct solution for inadequate
evaluator familiarity with the language candidates is to restrict evaluators to assessing only lan-
guages with which they are familiar.

Reduction in Number of Criteria
Multiple respondents in the pilot study felt there were too many criteria to assess and there was
some amount of overlap in the criteria presented. For this reason the selection criteria were ana-
lyzed and those with commonalities were grouped together. The groupings appear in Table 2.
This serves to both reduce the number of criteria as well as to eliminate overlap among criteria.

A Formal Language Selection Process

142

Table 2: Higher Order Selection Criteria

Software Cost
• Reasonable financial cost for setting up the teaching environment
• Availability of student/academic version

Programming Language Acceptance in Academia
• Academic acceptance
• Availability of textbooks

Programming Language Industry Penetration
• Language's stage in life cycle
• Industry acceptance
• Marketability (regional & national) of graduates

Software Characteristics
• System requirements of student/academic/full version
• Operating system dependence
• Open source (versus proprietary)

Student-Friendly Features
• Easy to use development environment
• Good debugging facilities

Language Pedagogical Features
• Ease-of-learning basic concepts
• Support for safe programming
• Advanced features for subsequent programming courses

Language Intent
• Full-featured language (versus scripting)
• Support of Web development

Language Design
• Real or Customized
• Support for target application domain (such as scientific or business)

Language Paradigm
• Methodology or Paradigm
• Support for teaching approach (function first, object first or object early)

Language Support and Required Training
• Availability of support
• Training required for instructors and support staff

Student Experience
• Anticipated programming experience level for incoming students

Structured Weighting Process
Some respondents in the pilot study pointed out that assigning weighing factors to many criteria
is not an easy task. Results indicated that there is a potential inconsistency because an evaluator
may assign a higher value to criterion X than to criterion Y, despite the fact that he or she actually
believes that criterion Y is more important than X. For example, an evaluator may independently
assign a five to “Reasonable Financial Cost” and a six to “Academic Acceptance,” but if specifi-
cally asked about those two criteria with respect to each other the evaluator may indicate that
“Reasonable Financial Cost” should weigh more than “Academic Acceptance” in the selection

 Parker, Chao, Ottaway, & Chang

 143

process, inconsistent with the previously assigned weights. To reduce such inconsistencies, a
more formalized and rigorous approach to the evaluation of selection criteria and scoring of pro-
gramming languages was applied.

Multicriteria decision analysis (MCDA) provides an array of tools for structured decision making.
The types of decisions for which MCDA is most appropriate are those that involve selecting from
multiple options the single option that most closely meets a set of weighted objectives. In this
case, we seek to select the computer programming language that most closely meets the objec-
tives, where the objectives are the selection criteria previously defined. One particular MCDA
method, the Analytic Hierarchy Process (AHP), is particularly appropriate for the type of analysis
required in this research.

The Analytic Hierarchy Process, developed by Saaty (1990), utilizes a series of pairwise com-
parisons to derive both weights and rankings of the selection criteria. The application of AHP
requires that each criterion be compared with every other criterion. This is accomplished by ask-
ing a series of questions comparing the two criteria and asking the respondent to indicate their
degree of preference for one criterion over the other. Typically the respondent is presented with a
scale, such as the one shown in Table 3.

The scale is used for their response in assessing their
preference between each pair of criterion. The responses
to these comparisons are then normalized, using matrix
algebra, and weights that indicate the relative ranking of
the importance of the selection criterion are derived. A
brief demonstration of the application of AHP is pre-
sented in Appendix C.

Prior to applying AHP, several design issues must be
addressed. AHP requires pairwise comparisons of selec-

tion criteria. For N selection criteria this will require (N2 – N)/2 comparisons. As previously
noted, several respondents in the pilot study felt there was some amount of overlap in the criteria
presented. For this reason the selection criteria were clustered, yielding the higher order selection
criteria listed in Table 2. While this yields fifty-five pairwise comparisons, there are only eleven
high-order attributes for the respondents to assess. In addition to reducing the number of selection
criteria for the respondent to assess, this approach also reduces the possibility of overlapping cri-
teria and provides a structured approach to assigning weights to the criteria.

While the authors have not yet done so, AHP can be applied through the use of an online method
similar to that proposed by Vihakapirom and Li (2003). This will streamline the weighting proc-
ess and subsequent calculations.

Criteria Guidance
Some respondents complained that the wording of the criteria provided inadequate guidance. For
example, “Operating system dependence” does not indicate whether the evaluator should assign a
zero or a ten for a language that is available only for a specific operating system. Such criteria are
curriculum-dependent, and must be discussed by the individuals participating in the evaluation
prior to beginning their language assessment, and a preference should be determined and used as
a basis for all evaluators. In addition, a clarified description of each criterion will be included in
future applications of the selection criteria.

Table 3: Representative scale

Equally important 1

Moderately more important 3

Strongly more important 5

Very strongly more important 7

Overwhelmingly more important 9

A Formal Language Selection Process

144

Additional Criteria
Additional criteria were suggested by some of the respondents. One suggestion is to include a
criterion focusing on the availability of a central site for student work (such as provided by Unix
or other servers). The authors decided that it was less a language consideration and more of a
server availability issue. Another comment suggested the addition of “Methodology or Paradigm”
as a criterion. This subsumes the existing criterion “Object-oriented support” and replaced it in
the modified list of criteria. Likewise, the criterion “Real or Customized” was also suggested and
added to the modified criteria list.

Conclusion
In practice, the choice of a programming language for introductory courses often requires a com-
promise. There are economic, political, and pedagogical factors that must be considered in the
decision making process. While the importance of each of these factors may depend on the spe-
cific aims and priorities of the institution, educator, or course, educators must be certain that none
of the factors in the above criteria are neglected or sacrificed to more highly visible concerns
(McIver & Conway, 1996).

The objectives of this research are to: i) identify criteria for faculty use when selecting a computer
programming language for an introductory course in computer programming; ii) assign weights to
each of those selection criterion to determine their relative importance in the selection process,
and; iii) score various computer programming languages according to those selection criteria. As
previously noted, an exhaustive set of selection criteria have been culled from an extensive, if not
somewhat disjointed, body of literature. This paper first presents that set of criteria for the selec-
tion of a programming language for use in an introductory programming course. It then discusses
the structure and administration of an informal pilot study that was intended to assess not only the
completeness of the criteria but also to gather feedback on the proposed approach for language
evaluation and selection. Using feedback from the pilot study as a basis, the paper then explains
how the model was refined as a result of the pilot study.

Constructing an exhaustive set of evaluation criteria and using these criteria in a structured man-
ner provides a means of eliminating much of the subjectivity in the selection process. In addition,
the approach presented is extensible. As new programming paradigms and languages are intro-
duced and old ones fall out of favor, the criteria and associated process may easily be revised.
The objectivity and extensibility of this formal method yields the replicability missing from exist-
ing approaches.

References
Ad Hoc AP CS Committee (2000). Round 2: Potential principles governing language selection for CS1-

CS2. Retrieved July 25, 2005 from http://www.cs.grinnell.edu/~walker/sigcse-ap/99-00-
principles.html

Computer Language Shootout (2003). Sieve of Erathostenes. Retrieved March 12, 2005 from
http://dada.perl.it/shootout/sieve_allsrc.html

Conway, D. (1993). Criteria and considerations in the selection of a first programming language. Technical
Report 93/192, Department of Computer Science, Monash University.

Cunningham, W. (2004). Language comparison framework. Portland Pattern Repository, November 29.
Retrieved July 14, 2005 from http://c2.com/cgi/wiki?LanguageComparisonFramework

de Raadt, M., Watson, R., & Toleman, M. (2003). Introductory programming languages at Australian uni-
versities at the beginning of the twenty first century. Journal of Research and Practice in Information
Technology, 35 (3), 163-167.

http://www.cs.grinnell.edu/~walker/sigcse-ap/99-00-principles.html
http://www.cs.grinnell.edu/~walker/sigcse-ap/99-00-principles.html
http://dada.perl.it/shootout/sieve_allsrc.html
http://c2.com/cgi/wiki?LanguageComparisonFramework

 Parker, Chao, Ottaway, & Chang

 145

Dijkstra, E. (1972). The humble programmer. Communications of the ACM, 15 (10), 859-866.

Eisenstadt, M., & Lewis, M.W. (1992). Errors in an interactive programming environment: Causes and
cures. In M. Eisenstadt, M.T. Keane, & T. Rajan (Eds.), Novice programming environments: Explora-
tions in human-computer interaction and artificial intelligence (Chapter 5). Hillsdale, NJ: Lawrence
Erlbaum Associates. Retrieved July 6, 2005 from
http://citeseer.ist.psu.edu/cache/papers/cs/3586/http:zSzzSzkmi.open.ac.ukzSzmarczSzpaperszSzBook
Ch5.pdf/errors-in-an-interactive.pdf

Emigh, K L. (2001). The impact of new programming languages on university curriculum. Proceedings of
ISECON 2001, Cincinnati, Ohio, 18, 1146-1151. Retrieved July 10, 2005 from
http://isedj.org/isecon/2001/16c/ISECON.2001.Emigh.pdf

Howatt, J. W. (1995). A project-based approach to programming language evaluation. ACM SIGPLAN No-
tices, 30 (7), 37-40. Retrieved April 11, 2002 from http://academic.luther.edu/~howaja01/v/lang.pdf

Howland, J.E. (1997). It's all in the language: Yet another look at the choice of programming language for
teaching computer science. Journal of Computing in Small Colleges, 12 (4), 58-74. Retrieved June 8,
2005 from http://www.cs.trinity.edu/~jhowland/ccsc97/ccsc97/

Jensen, C. (2004). Choosing a language for .NET development. Borland Developer Network. Retrieved
July 2, 2005 from http://bdn.borland.com/article/0,1410,31849,00.html

King, K.N. (1992). The evolution of the programming languages course. ACM SIGCSE Bulletin, 24 (1),
213-219.

Kölling, M., Koch, B., & Rosenberg, J. (1995). Requirements for a first year object oriented teaching lan-
guage. ACM SIGCSE Bulletin, 27 (1) 173-177.

Lee, P.A., & Stroud, R.J. (1996). C++ as an introductory programming language. In M. Woodman (Ed.),
Programming Language Choice: Practice and Experience (pp. 63-82). London: International Thom-
son Computer Press. Retrieved June 8, 2005 from
http://www.cs.ncl.ac.uk/old/publications/books/apprentice/InstructorsManual/C++_Choice.html

McIver, L. (2002). Evaluating languages and environments for novice programmers. Proceedings of the
Fourteenth Annual Meeting of the Psychology of Programming Interest Group, London, UK, 100-110.
Retrieved September 20, 2005 from http://www.ppig.org/papers/14th-mciver.pdf

McIver, L., & Conway, D.M. (1996). Seven deadly sins of introductory programming language design.
Proceedings of Software Engineering: Education and Practice (309-316). Los Alamitos, CA, USA:
IEEE Computing Society Press.

Parker, K.R., Ottaway, T.A., & Chao, J.T. (2006). Criteria for the selection of a programming language for
introductory courses. International Journal of Knowledge and Learning, 2 (1/2), 119-139.

Riehle, R. (2003). SEPR and programming language selection. CrossTalk - The Journal of Defense Soft-
ware Engineering, 16 (2), 13-17. Retrieved October 4, 2005 from
http://www.stsc.hill.af.mil/crosstalk/2003/02/Riehle.html

Roberts, E. (2004). Resources to support the use of java in introductory computer science. ACM SIGCSE
Bulletin, 36 (1), 233-234.

Saaty, T. L. (1980). The analytic hierarchy process. New York: McGraw-Hill.

Schneider, G.M. (1978) The introductory programming course in computer science: Ten principles. ACM
SIGCSE Bulletin, 10 (1), 107-114.

Sharp, R. (2002). Programming language lifecycles–Where's Java At? Software Reality. Retrieved Septem-
ber 20, 2005 from http://www.softwarereality.com/programming/language_lifecycles.jsp

Smolarski, D.C. (2003). A first course in computer science: Languages and goals. Teaching Mathematics
and Computer Science, 1 (1), 137-152. Retrieved November 10, 2005 from
http://math.scu.edu/~dsmolars/smolar-e.pdf

http://citeseer.ist.psu.edu/cache/papers/cs/3586/http:zSzzSzkmi.open.ac.ukzSzmarczSzpaperszSzBookCh5.pdf/errors-in-an-interactive.pdf
http://citeseer.ist.psu.edu/cache/papers/cs/3586/http:zSzzSzkmi.open.ac.ukzSzmarczSzpaperszSzBookCh5.pdf/errors-in-an-interactive.pdf
http://isedj.org/isecon/2001/16c/ISECON.2001.Emigh.pdf
http://academic.luther.edu/~howaja01/v/lang.pdf
http://www.cs.trinity.edu/~jhowland/ccsc97/ccsc97/
http://bdn.borland.com/article/0,1410,31849,00.html
http://www.cs.ncl.ac.uk/old/publications/books/apprentice/InstructorsManual/C++_Choice.html
http://www.ppig.org/papers/14th-mciver.pdf
http://www.stsc.hill.af.mil/crosstalk/2003/02/Riehle.html
http://www.softwarereality.com/programming/language_lifecycles.jsp
http://math.scu.edu/~dsmolars/smolar-e.pdf

A Formal Language Selection Process

146

Tharp, A.L. (1982). Selecting the ‘right’ programming language. ACM SIGCSE Bulletin, 14 (1), 151-155.

Traxler, J. (1994). Teaching programming languages and paradigms. 2nd All-Ireland Conference on the
Teaching of Computing, Dublin, Ireland. Retrieved November 19, 2005 from
http://www.ulst.ac.uk/cticomp/traxler.html

Vihakapirom, P. &. Li, K.Y.R. (2003). A framework for distributed group multi-criteria decision support
systems. AUSWEB Conference 2003, Queensland, Australia. Retrieved January 12, 2006 from
http://ausweb.scu.edu.au/aw03/papers/li_______/paper.html

Appendix A: Language Selection Criteria Survey Form
Criteria

Weight

(0 to 10)

Reasonable financial cost for setting up the teaching environment

Availability of student/academic version (if cost > 0)

Availability of textbooks

Language's stage in life cycle

System requirements of student/academic/full version

Operating system dependence

Open source (versus proprietary)

Academic acceptance

Industry acceptance

Marketability (Regional & National) of graduates

Easy-to-use development environment

Ease of learning basic concepts

Supports target application domain (such as scientific or business)

Full-featured language (versus scripting)

Supports teaching approach (functions first or objects first)

Object-oriented support

Good debugging facilities

Support of Web development

Supports safe programming

Advanced features for subsequent programming courses

Availability of support

Training required for instructors and support staff

Anticipated programming experience level for incoming students

http://www.ulst.ac.uk/cticomp/traxler.html

 Parker, Chao, Ottaway, & Chang

 147

Appendix B: Language Evaluation Form
Criterion C++

(g++)
Java
(Eclipse)

C++
(.Net)

VB
(.Net)

C#
(.Net)

JavaScript
(Web
Browser)

Python
(Eclipse)

Reasonable financial cost for
setting up the teaching envi-
ronment

Availability of stu-
dent/academic version (if cost
> 0)

Availability of texts

Language's stage in life cycle
System requirements of stu-
dent/academic/full version

Operating system dependence
Open source (versus proprie-
tary)

Academic acceptance

Industry acceptance

Marketability of graduates
Easy-to-use development
environment

Ease of learning basic con-
cepts

Supports target application
domain (such as scientific or
business)

Scripting or full-featured
language

Supports teaching approach

Object-oriented support

Good debugging facilities

Support of Web development

Supports safe programming
Advanced features for subse-
quent programming courses

Availability of support
Training required for instruc-
tors and support staff

Anticipated programming
experience level for incoming
students

A Formal Language Selection Process

148

Appendix C: AHP Example
Taking our first three high order selection criteria (in no particular order) let us suppose a respon-
dent has indicated that academic acceptance is twice as important as software cost, academic ver-
sion is three times as important as software cost, and academic acceptance is four times as impor-
tant as academic version. The inconsistencies in the respondent’s scoring are not unusual and can
easily be accommodated by the model. These responses are initially coded in a matrix as:

 Software cost Academic acceptance Academic version
Software cost 1 ½ 3
Academic acceptance 1 4
Academic version 1

Note that when comparing criterion A with B, if B is preferred to A then it is simply coded using
the reciprocal. We then complete the matrix as by filling in the remaining cells:

 Software cost Academic acceptance Academic version
Software cost 1 ½ 3
Academic acceptance 2 1 4
Academic version ⅓ ¼ 1

Next we convert each cell to its decimal value:

 Software cost Academic acceptance Academic version
Software cost 1.00 0.50 3.00
Academic acceptance 2.00 1.00 4.00
Academic version 0.33 0.25 1.00

What remains is to calculate an Eigenvector. This is accomplished by first squaring the matrix.
The resulting matrix is:

 Software cost Academic acceptance Academic version
Software cost 3.00 1.75 8.00
Academic acceptance 5.33 3.00 14.00
Academic version 1.17 0.67 3.00

Now each row is summed and normalized to yield the final Eigenvector. The Eigenvector holds
the weights representing the relative importance of each selection criteria. First each row is
summed, then the row sums are totaled, and finally the row sums are divided by the total to nor-
malize the values. The results are shown below:

 Sum Normalization Results
Software cost 3.00 + 1.75 + 8.00 12.75 12.75 / 39.92 0.32
Academic acceptance 5.33 + 3.00 + 14.00 22.33 22.33 / 39.92 0.56
Academic version 1.17 + 0.67 + 3.00 4.84 4.84 / 39.92 0.12
 Total 39.92 1.00

 Parker, Chao, Ottaway, & Chang

 149

In this simple example it is apparent that academic acceptance is associated with the highest
weight at 0.56, so it is the most important selection criterion, followed by software cost at 0.32,
and the least important selection criterion, academic version, with a weight of 0.12.

Appendix D: Refined Language Selection Criteria Survey
Form

L
an

gu
ag

e
A

cc
ep

-
ta

nc
e

in
 A

ca
de

m
ia

L
an

gu
ag

e
In

du
st

ry

Pe
ne

tr
at

io
n

So
ft

w
ar

e
C

ha
ra

c-
te

ri
st

ic
s

St
ud

en
t-

Fr
ie

nd
ly

Fe

at
ur

es

Pe
da

go
gi

ca
l F

ea
-

tu
re

s

L
an

gu
ag

e
In

te
nt

L

an
gu

ag
e

D
es

ig
n

Pa

ra
di

gm

Su
pp

or
t a

nd
 R

e-
qu

ir
ed

 T
ra

in
in

g

St
ud

en
t E

xp
er

ie
nc

e

Software Cost

Language Acceptance in
Academia

Language Industry Pene-
tration

Software Characteristics

Student-Friendly Fea-
tures

Pedagogical Features

Language Intent

Language Design

Paradigm

Support and Required
Training

Appendix E: Refined Language Evaluation Form*

L
an

gu
ag

e
1

L
an

gu
ag

e
2

L
an

gu
ag

e
3

Software Cost

Programming Language Acceptance in Academia

Programming Language Industry Penetration

Software Characteristics

Student-Friendly Features

Language Pedagogical Features

Language Intent

A Formal Language Selection Process

150

Language Design

Language Paradigm

Language Support and Required Training

Student Experience

* Evaluators are restricted to assessing only languages with which they are quite familiar.

Biographies
Dr. Kevin R. Parker is a Professor of Computer Information Systems
at Idaho State University, having previously held an academic ap-
pointment at Saint Louis University. He has taught both computer sci-
ence and information systems courses over the course of his fifteen
years in academia. Dr. Parker’s research interests include e-commerce
marketing, competitive intelligence, knowledge management, the Se-
mantic Web, and information assurance. He has published in such
journals as Journal of Information Technology Education, Journal of
Information Systems Education, and Communications of the AIS. Dr.
Parker’s teaching interests include web development technologies,
programming languages, data structures, and database management
systems. Dr. Parker holds a B.A. in Computer Science from the Uni-

versity of Texas at Austin (1982), an M.S. in Computer Science from Texas Tech University
(1991), and a Ph.D. in Management Information Systems from Texas Tech University (1995).

Dr. Joseph T. Chao is an Assistant Professor of Computer Science at
Bowling Green State University. Dr. Chao has seven years of industry
experience in software development, including three years as Director
of Software Development prior to entering academia. His research fo-
cus is on software engineering with special interests in programming
languages, object-oriented analysis and design, and agile software de-
velopment. He has published in such journals as International Journal
of Knowledge and Learning, Academe: Bulletin of the American Asso-
ciation of University Professors, and Journal of Manufacturing Sys-
tems. He has taught courses in all aspects of the software development
lifecycle including programming, systems analysis and design, data-
base systems, usability engineering, software engineering, and agile
software development. Dr. Chao holds an M.S. in Operations Research

from Case Western Reserve University and a Ph.D. in Industrial and Systems Engineering from
The Ohio State University.

 Parker, Chao, Ottaway, & Chang

 151

Dr. Thomas A. Ottaway is an Associate Professor in the Computer
Information Systems Department at Idaho State University, having
previously held academic appointments at Kansas State University and
the University of Montana. He holds a B.S. in Computer Science from
Wichita State University (1991), a M.S. in Management Information
Systems from Texas Tech University (1993), and a Ph.D. in Produc-
tion/Operations Management from Texas Tech University (1995). He
has published in such journals as Decision Sciences, International
Journal of Production Research, Journal of Economics and Finance
and the Journal of Financial and Economic Practice. Dr. Ottaway’s
teaching interests include data and telecommunications networks as
well as computer programming.

Dr. Jane Chang is currently an Assistant Professor of Applied Statis-
tics and Operations Research at Bowling Green State University, hav-
ing previously held a tenured position at Idaho State University. Dr.
Chang’s research interests include optimal experimental design, data
analysis, and statistical design and analysis of microarray experiments.
She has published several monographs and in such journals as Utilitas
Mathematica, Journal of Statistical Planning and Inference, Statistica
Sinica, International Journal of Heat and Mass Transfer, and Interna-
tional Journal of Mechanical Engineering Education. Dr Chang’s
teaching interests include Experimental Design, Statistics for Manage-
rial Decision Making, Response Surface Methodology, Multivariate
Analysis, Regression Analysis, Probability, Mathematical Statistics,
and Business Statistics. Dr. Chang holds a B.A. in Applied Statistics

from Chung-Yuan University and a Ph.D. in Statistics from The Ohio State University.

	A Formal Language Selection Process�for Introductory Program
	Kevin R. Parker�Idaho State University�Pocatello, Idaho, USA
	parkerkr@isu.edu

	Joseph T. Chao�Bowling Green State University�Bowling Green,
	jchao@bgnet.bgsu.edu

	Thomas A. Ottaway
	Idaho State University
	Pocatello, Idaho, USA
	ottathom@isu.edu

	Jane Chang
	Bowling Green State University
	Bowling Green, Ohio, USA
	changj@cba.bgsu.edu

	Executive Summary
	Introduction
	Criteria
	Reasonable Financial Cost
	Availability of Student/Academic Version
	Academic Acceptance
	Availability of Textbooks
	Stage in Life Cycle
	Industry Acceptance
	Marketability (Regional and National)
	System Requirements of Student/Academic/Full Version
	Operating System Dependence
	Proprietary/Open Source
	Development Environment
	Debugging Facilities
	Ease of Learning Fundamental Concepts
	Coding Safety and Support for Secure Code
	Advanced Features for Subsequent Programming Courses
	Scripting or Full-Featured Language
	Support of Web Development
	Supports Target Application Domain
	Teaching Approach Support
	Object-oriented support
	Availability of Support
	Instructor and Staff Training
	Anticipated Experience Level for Incoming Students

	Pilot Study
	Initial Findings
	Instrument Refinement
	Criteria Guidance
	Additional Criteria

	Conclusion
	References
	Appendix A: Language Selection Criteria Survey Form
	Appendix B: Language Evaluation Form
	Appendix C: AHP Example
	Appendix D: Refined Language Selection Criteria Survey Form
	Software Cost
	Appendix E: Refined Language Evaluation Form*
	Software Cost
	* Evaluators are restricted to assessing only languages with
	Biographies

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AbadiMT-CondensedExtraBold
 /AbadiMT-CondensedLight
 /AdobeSansMM
 /AdobeSerifMM
 /AgencyFB-Bold
 /AgencyFB-Reg
 /AharoniBold
 /Algerian
 /AllegroBT-Regular
 /AlmanacMT
 /Aloisen
 /AmazoneBT-Regular
 /AmericanaBT-Bold
 /AmericanaBT-ExtraBold
 /AmericanaBT-ExtraBoldCondensed
 /AmericanaBT-Italic
 /AmericanaBT-Roman
 /AmerTypewriterITCbyBT-Medium
 /AndaleMono
 /AndaleMonoIPA
 /AngsanaNew
 /AngsanaNew-Bold
 /AngsanaNew-BoldItalic
 /AngsanaNew-Italic
 /AnniesHand-Plain
 /ArdleysHand-Plain
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /ArronsHand-Plain
 /AubreysHand-Plain
 /AvantGardeITCbyBT-Book
 /AvantGardeITCbyBT-BookOblique
 /AvantGardeITCbyBT-Medium
 /AvantGardeITCbyBT-MediumOblique
 /BalloonBT-Bold
 /BalloonBT-ExtraBold
 /BalloonBT-Light
 /BankGothicBT-Medium
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BeeskneesITC
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BelweBT-Bold
 /BelweBT-Light
 /BelweBT-Medium
 /BelweBT-RomanCondensed
 /BenguiatGothicITCbyBT-Bold
 /BenguiatGothicITCbyBT-BoldItal
 /BenguiatGothicITCbyBT-Book
 /BenguiatGothicITCbyBT-BookItal
 /BenguiatITCbyBT-Bold
 /BerlingAntiqua-Bold
 /BerlingAntiqua-BoldItalic
 /BerlingAntiqua-Italic
 /BerlingAntiqua-Roman
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BernhardFashionBT-Regular
 /BernhardModernBT-Bold
 /BernhardModernBT-BoldItalic
 /BernhardTangoBT-Regular
 /BibleScrT
 /BlackadderITC-Regular
 /BlippoBT-Black
 /BonApetitMT
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /Bookdings
 /BookmanITCbyBT-Demi
 /BookmanITCbyBT-DemiItalic
 /BookmanITCbyBT-Light
 /BookmanITCbyBT-LightItalic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolOne-Regular
 /BookshelfSymbolThree-Regular
 /BookshelfSymbolTwo-Regular
 /BradleyHandITC
 /Braggadocio
 /BremenBT-Bold
 /BritannicBold
 /Broadway
 /BrodyD
 /Brush445BT-Regular
 /Brush738BT-RegularA
 /BrushScriptBT-Regular
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Castellar
 /CataneoBT-Bold
 /CataneoBT-Light
 /CataneoBT-Regular
 /CataneoBT-RegularSwash
 /CaxtonBT-Bold
 /CaxtonBT-BoldItalic
 /CaxtonBT-Book
 /CaxtonBT-BookItalic
 /CaxtonBT-Light
 /CaxtonBT-LightItalic
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /CharlesworthBold
 /CheltenhamBT-Bold
 /CheltenhamBT-BoldCondensed
 /CheltenhamBT-BoldCondItalic
 /CheltenhamBT-BoldExtraCondensed
 /CheltenhamBT-BoldHeadline
 /CheltenhamBT-BoldItalic
 /CheltenhamBT-BoldItalicHeadline
 /CheltenhamBT-Italic
 /CheltenhamBT-Roman
 /CheltenhamITCbyBT-Bold
 /CheltenhamITCbyBT-BoldItalic
 /CheltenhamITCbyBT-Book
 /CheltenhamITCbyBT-BookItalic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CommercialScriptBT-Regular
 /CommonBullets
 /CooperBlack
 /CooperBT-Black
 /CooperBT-BlackHeadline
 /CooperBT-BlackItalic
 /CooperBT-BlackItalicHeadline
 /CooperBT-BlackOutline
 /CooperBT-Bold
 /CooperBT-BoldItalic
 /CooperBT-Light
 /CooperBT-LightItalic
 /CooperBT-Medium
 /CooperBT-MediumItalic
 /CopperplateGothic-Bold
 /CopperplateGothicBT-Bold
 /CopperplateGothic-Light
 /CordiaNew
 /CordiaNew-Bold
 /CordiaNew-BoldItalic
 /CordiaNew-Italic
 /CosmicPlain
 /CosmicTwoPlain
 /CountdownD
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CrystalsHand-Plain
 /CurlzMT
 /DauphinPlain
 /David-Bold
 /David-Reg
 /DavidTransparent
 /Desdemona
 /DirectionsMT
 /DiskusD-Medi
 /EdgertonsHand-Plain
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /ElliesHand-Plain
 /EmbassyBT-Regular
 /EnglischeSchT-Bold
 /EnglischeSchT-DemiBold
 /EnglischeSchT-Regu
 /English111AdagioBT-Regular
 /English111PrestoBT-Regular
 /English111VivaceBT-Regular
 /English157BT-Regular
 /EngraversMT
 /EnviroD
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /ErasITC-Ultra
 /EurostileBold
 /EurostileRegular
 /EwieD
 /FelixTitlingMT
 /FencesPlain
 /FixedMiriamTransparent
 /FlashD-Bold
 /FlashD-Ligh
 /FlemishScriptBT-Regular
 /FlorasHand-Plain
 /FootlightMTLight
 /Formal436BT-Regular
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FrankRuehl
 /Freehand471BT-Regular
 /Freehand591BT-RegularA
 /FreestyleScript-Regular
 /FrenchScriptMT
 /FrutigerLinotype-Bold
 /FrutigerLinotype-BoldItalic
 /FrutigerLinotype-Italic
 /FrutigerLinotype-Roman
 /FuturaBlackBT-Regular
 /FuturaBT-Bold
 /FuturaBT-BoldCondensed
 /FuturaBT-BoldCondensedItalic
 /FuturaBT-BoldItalic
 /FuturaBT-Book
 /FuturaBT-BookItalic
 /FuturaBT-ExtraBlack
 /FuturaBT-ExtraBlackCondensed
 /FuturaBT-ExtraBlackCondItalic
 /FuturaBT-ExtraBlackItalic
 /FuturaBT-Heavy
 /FuturaBT-HeavyItalic
 /FuturaBT-Light
 /FuturaBT-LightCondensed
 /FuturaBT-LightItalic
 /FuturaBT-Medium
 /FuturaBT-MediumCondensed
 /FuturaBT-MediumItalic
 /GailsHand-Plain
 /GandoBT-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /GeometricSlab703BT-Bold
 /GeometricSlab703BT-BoldCond
 /GeometricSlab703BT-BoldItalic
 /GeometricSlab703BT-Light
 /GeometricSlab703BT-LightItalic
 /GeometricSlab703BT-Medium
 /GeometricSlab703BT-MediumCond
 /GeometricSlab703BT-MediumItalic
 /GeometricSlab703BT-XtraBold
 /GeometricSlab703BT-XtraBoldCond
 /GeometricSlab703BT-XtraBoldItal
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /GeorgiaRef
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GloucesterMT-ExtraCondensed
 /GoudyHandtooledBT-Regular
 /GoudyOldStyleBT-Bold
 /GoudyOldStyleBT-BoldItalic
 /GoudyOldStyleBT-Italic
 /GoudyOldStyleBT-Roman
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudySansITCbyBT-Black
 /GoudySansITCbyBT-BlackItalic
 /GoudySansITCbyBT-Bold
 /GoudySansITCbyBT-BoldItalic
 /GoudySansITCbyBT-Light
 /GoudySansITCbyBT-LightItalic
 /GoudySansITCbyBT-Medium
 /GoudySansITCbyBT-MediumItalic
 /GoudyStout
 /Gradl
 /Haettenschweiler
 /HarlowSolid
 /HarpoonPlain
 /Harrington
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /HighTowerText-Italic
 /HighTowerText-Reg
 /HoboBT-Regular
 /HolidaysMT
 /Home
 /Home-Bold
 /Home-Italic
 /Humanist521BT-Bold
 /Humanist521BT-BoldItalic
 /Humanist521BT-Italic
 /Humanist521BT-Roman
 /Impact
 /ImpressBT-Regular
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /Inter
 /IrisUPC
 /IrisUPCBold
 /IrisUPCBoldItalic
 /IrisUPCItalic
 /JamesHand-Plain
 /Jokerman-Regular
 /JolenesHand-Plain
 /JuiceITC-Regular
 /Julius-BThyssen
 /KabelITCbyBT-Book
 /KabelITCbyBT-Ultra
 /KaufmannBT-Bold
 /KaufmannBT-Regular
 /KeypunchPlain
 /KeystrokesMT
 /KidsPlain
 /KinoMT
 /KorinnaITCbyBT-Bold
 /KorinnaITCbyBT-KursivBold
 /KorinnaITCbyBT-KursivRegular
 /KorinnaITCbyBT-Regular
 /KristenITC-Regular
 /KunstlerschreibschD-Bold
 /KunstlerschreibschD-Medi
 /KunstlerScript
 /LasVegasD
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LevenimMT
 /LevenimMTBold
 /LibertyBT-Regular
 /Lithograph-Bold
 /LithographLight
 /LubalinGraphITCbyBT-Bold
 /LubalinGraphITCbyBT-Book
 /LubalinGraphITCbyBT-Medium
 /LubalinGraphITCbyBT-XtraLight
 /LuciaBT-Regular
 /LucidaBlackletter
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /LydianBT-Bold
 /LydianBT-BoldItalic
 /LydianBT-Italic
 /LydianBT-Roman
 /LydianCursiveBT-Regular
 /Magneto-Bold
 /MaiandraGD-DemiBold
 /MaiandraGD-Regular
 /Map-Symbols
 /MatisseITC-Regular
 /MaturaMTScriptCapitals
 /MeadBold
 /MercuriusScriptMT-Bold
 /MicrosoftSansSerif
 /Minion-Web
 /MiniPicsArtJam
 /MiniPicsClassic
 /MiniPicsLilCritters
 /MiniPicsLilEdibles
 /MiniPicsLilEvents
 /MiniPicsLilStuff
 /MiniPicsLilVehicles
 /MiniPicsRedRock
 /Miriam
 /MiriamFixed
 /MiriamTransparent
 /Mistral
 /Modern-Regular
 /Monotypecom
 /MonotypeCorsiva
 /MonotypeSorts
 /MonotypeSorts2
 /MotterFemD
 /MS-Mincho
 /MSOutlook
 /MSReference1
 /MSReference2
 /MurrayHillBT-Bold
 /Narkisim
 /NevisonCasD
 /NewsGothicMT
 /NewsGothicMT-Bold
 /NewsGothicMT-Italic
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /OCRAbyBT-Regular
 /OCRAExtended
 /OCRB10PitchBT-Regular
 /OldEnglishTextMT
 /Onyx
 /OrbitBbyBT-Regular
 /OzHandicraftBT-Roman
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /PartiesMT
 /PepitaMT
 /PepperPlain
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /PioneerITCbyBT-Regular
 /PlacardMT-Condensed
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /PosterBodoniBT-Roman
 /PresidentPlain
 /Pristina-Regular
 /PTBarnumBT-Regular
 /QuestsHand-Plain
 /QuicksilverITC-Normal
 /QuillScript-Normal
 /QuorumITCbyBT-Black
 /QuorumITCbyBT-Light
 /QuorumITCbyBT-Medium
 /RageItalic
 /RansomBold
 /RansomBoldItalic
 /RansomItalic
 /RansomRegular
 /Ravie
 /RefSpecialty
 /Ribbon131BT-Bold
 /Ribbon131BT-Regular
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /Rod
 /RodTransparent
 /ScriptMTBold
 /SeagullBT-Bold
 /SeagullBT-Heavy
 /SeagullBT-Light
 /SeagullBT-Medium
 /SerifaBT-Bold
 /SerifaBT-Italic
 /SerifaBT-Roman
 /SerifaBT-Thin
 /ShowcardGothic-Reg
 /SignsMT
 /SimSun
 /SloganD
 /SnapITC-Regular
 /SnellBT-Black
 /SnellBT-Bold
 /SnellBT-Regular
 /SouvenirITCbyBT-Demi
 /SouvenirITCbyBT-DemiItalic
 /SouvenirITCbyBT-Light
 /SouvenirITCbyBT-LightItalic
 /SportsThreeMT
 /SportsTwoMT
 /SquareSlabserif711BT-Bold
 /SquareSlabserif711BT-Light
 /SquareSlabserif711BT-Medium
 /Staccato222BT-Regular
 /Staccato555BT-RegularA
 /Stencil
 /StymieBT-Bold
 /StymieBT-BoldItalic
 /StymieBT-ExtraBold
 /StymieBT-ExtraBoldCondensed
 /StymieBT-Light
 /StymieBT-LightItalic
 /StymieBT-Medium
 /StymieBT-MediumItalic
 /Swiss911BT-ExtraCompressed
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TechnicalItalic
 /TechnicalPlain
 /TempusSansITC
 /TiffanyITCbyBT-Demi
 /TiffanyITCbyBT-DemiItalic
 /TiffanyITCbyBT-Heavy
 /TiffanyITCbyBT-HeavyItalic
 /TiffanyITCbyBT-Light
 /TiffanyITCbyBT-LightItalic
 /Times-Bold
 /Times-BoldItalic
 /TimeScrD-Bold
 /TimeScrD-Ligh
 /TimeScrD-Medi
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /TLAsian
 /TLCentralEurope
 /TLCyrillic2
 /TLEastEurope2
 /TLHelpCyrillic
 /TLNaskh2
 /TLNaskhHelp31
 /TransportMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /TypoUprightBT-Regular
 /VacationMT
 /VAGRoundedBT-Regular
 /VanessasHand-Plain
 /Vb02
 /VbAVT
 /VBjrnet
 /VBmw
 /VBox
 /VBRH
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VerdanaRef
 /VinerHandITC
 /VivaldiD
 /Vivaldii
 /VladimirScrD
 /VladimirScript
 /Webdings
 /WendysHand-Plain
 /Westminster
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-Bold
 /ZapfChanceryITCbyBT-Demi
 /ZapfChanceryITCbyBT-Medium
 /ZapfChanceryITCbyBT-MediumItal
 /ZapfDingbats
 /ZapfElliptical711BT-Bold
 /ZapfElliptical711BT-BoldItalic
 /ZapfElliptical711BT-Italic
 /ZapfElliptical711BT-Roman
 /ZurichBT-BlackExtended
 /ZurichBT-RomanExtended
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 310
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 310
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 310
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /SyntheticBoldness 1.000000
 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f007200200069006d00700072006f0076006500640020007000720069006e00740069006e00670020007100750061006c006900740079002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [300 300]
 /PageSize [612.000 792.000]
>> setpagedevice

