
Journal of Information Technology Education Volume 5, 2006

Editor: Kam Vat

Teaching Introductory Programming to IS
Students: Java Problems and Pitfalls

Mark O. Pendergast
Florida Gulf Coast University, Fort Myers, FL, USA

mpenderg@fgcu.edu

Executive Summary
This paper examines the impact the use of the Java programming language has had on the way
our students learn to program and the success they achieve. The importance of a properly con-
structed first course in programming cannot be overstated. A course well experienced will leave
students with good programming habits, the ability to learn on their own, and a favorable impres-
sion of programming as a profession. In this paper I detail how and why the Java programming
language was selected for our curriculum, how my teaching has evolved over the years since Java
has been adopted, and what successes and failures I’ve encountered. Specifically, this paper dis-
cusses some of the peculiarities of the Java programming language that make it difficult to learn
and some suggestions to overcome them, as well as some of the teaching paradigms and pro-
gramming tools I have employed. What my experience has shown is that combining the use of a
modern interactive development environment such as the Netbeans, with active learning and a
breadth-first approach is found to increase student satisfaction, increase success rates, and lower
dropout frequencies.

Keywords: Java, Information Systems, Education, Introductory Programming Course, Syntax
Errors, IDE.

Introduction
Like many things in life, first impression matters, and programming is no exception. The impor-
tance of a properly constructed first course in programming cannot be overstated. Such a course
leaves students with good programming habits, the ability to learn on their own, and a favorable
impression of programming as a profession. A poor experience may result in a “just get by” atti-
tude, bad programming habits, and could lead to a change in majors. Ala-Mutka Uimonen, and
Järvinen (2004) assessed programming style as a function of modularity, typography, clarity, in-
dependence, effectiveness, and reliability, whereas Reddy (2000) defines style constructs specific
to the Java language. Instilling in students these habits and providing them with an enjoyable first

experience in programming is impor-
tant.

Since 2001, enrollment in the course
Introduction to Business Program-
ming has shrunk by 50% at my institu-
tion. This combined with the 50%
attrition rate of students who enter
Introduction to Business Program-
ming and of those who complete the
course Intermediate Business Pro-

Material published as part of this journal, either on-line or in
print, is copyrighted by the publisher of the Journal of Informa-
tion Technology Education. Permission to make digital or paper
copy of part or all of these works for personal or classroom use is
granted without fee provided that the copies are not made or dis-
tributed for profit or commercial advantage AND that copies 1)
bear this notice in full and 2) give the full citation on the first
page. It is permissible to abstract these works so long as credit is
given. To copy in all other cases or to republish or to post on a
server or to redistribute to lists requires specific permission and
payment of a fee. Contact Editor@JITE.org to request redistribu-
tion permission.

mailto:mpenderg@fgcu.edu

Teaching Introductory Programming to IS Students

492

gramming has made the task of determining the factors that lead to success (or failure) in learning
to program all the more important. Because of this our department is reviewing its curriculum,
the technology used in courses, and recruiting strategies. Part of this assessment is determining
the proper amount of emphasis to place on the programming skills taught to and expected of our
graduates and the proper way to teach these skills.

During the boom of Computer Science/Information Systems (CS/IS) in the 1990’s the loss of stu-
dents to other disciplines was not a major concern. These students were just written off as not
having an “aptitude” for programming. Nevertheless, this philosophy will change owing to
shrinking enrollments in CS/IS fields (Zweben & Aspray, 2004). Hensel (1998) foretold of
shrinking enrollment, predicting that enrollment would drop as a result of a decline in college age
students, poor preparation for technical classes (leading to failures and reluctance to enroll), and
changing interests in students. This added to fears of outsourcing, the dotcom bust, and the slow
down in hiring after Y2K conversions have kept students away from CS/IS. Indeed, CS/IS faculty
members have little control of national birthrates and the hiring practices of corporations, but we
can look for ways to attract more students and retain the ones we now have.

This paper examines the impact the use of the Java programming language has had on the way
our students learn to program and the success they achieve. The first section provides some
background on why Java was selected as the programming language in our program. This is fol-
lowed by an enumeration of the features and characteristics of Java that have presented particular
problems to our students and a review of paradigms and tools used by other educators to over-
come such problems. The structure for the Introduction to Business Programming course is then
described along with assessment of outcomes. The paper concludes with a discussion of lessons
learned and the results achieved.

The Move to Java
Teaching programming courses to Information Systems (IS) students in the College of Business
has much in common with teaching Computer Science (CS) students but there are some differ-
ences in student background and prerequisite courses. Unlike CS students, IS students are gener-
ally only required to have a semester of statistics and a semester of “business calculus” to gradu-
ate. More often than not, these courses are put off to their senior years. Therefore the mathemati-
cal background of IS students consists of what they may or may not have learned in high school
and what they may or may not remember of their required learning. In addition, a typical IS ma-
jor only takes 20-30 credits of computer related courses whereas the CS major is required by
ABET (Accreditation Board for Engineering and Technology) standards to have 42 or more hours
of required CS study. This allows IS students to take only 2 or 3 courses whose primary purpose
is to teach programming fundamentals. Although CS and IS students may have different educa-
tional backgrounds, their learning and problem solving styles are fundamentally similar. In fact,
Sim and Wright (2002) found no difference in problem solving styles between CS and IS stu-
dents.

As late as the 1990, COBOL was found to be the programming language of choice for IS students
due to its popularity in business applications. Yet, in the early 1990’s many IS programs began
using the PASCAL language, besides COBOL to provide their students with the experience of
procedural programming. This trend was reinforced by the introduction of personal computers
and Borland’s Turbo Pascal on campuses. Nevertheless, the coupling of Microsoft’s introduction
of Visual Basic and the advent of the world-wide-web (WWW) did cause many IS programs to
abandon Pascal in favor of Visual Basic or Java towards the late 1990’s. Furthermore, the in-
creased need for developing students’ programming skills in web-based programming (or script-
ing) languages such as Perl, JavaSript, and Java over traditional application programming lan-

 Pendergast

 493

guages like COBOL and C are expressed by Culwin (1999), as well as Noll and Wilkins (2002).
See IS 2002 Standards (Association for Information Systems, 2002) for more information on IS
curriculum standards.

On our campus we have proponents of all three languages: Visual Basic (VB), Java, and C++.
We chose to teach Java because of its dominance in web applications, it is less complex and eas-
ier to debug than C++, and it has a syntax based on C/C++, making it easier for students to transi-
tion to those languages once they graduate. Tyma (1998) cited these reasons along with platform
independence, higher programmer productivity, and better systems stability as reasons for mov-
ing to Java. Recently, NASA has chosen Java as its programming language for the Mars rover
missions (Sun Microsystems, 2004) owing to its boosting programmer productivity. Java is a
good choice for graphics courses because it is extensible and has a built-in graphics library (Ber-
gin & Naps, 1998). The most recent TIOBE index of software programming languages places
Java at the top of the list followed by C++ and C (TIOBE, 2006). Java has long been denigrated
for its slow performance because of its use of a virtual machine to execute programs; however,
the perceived performance difference may not be as great as some people claim. Mangione
(1998) found little or no difference for most tests, and Lewis and Neuman (2003) found Java to
be as fast or even faster than C++.

Java’s Strengths and Weaknesses
Teaching object-oriented programming (OOP) and programming languages in support of object
orientation (OO) has come a long way since Decker and Hirshfield (1994) enumerated their ten
reasons why CS/IS programs were avoiding the teaching of OOP in their introductory program-
ming course. Chief among these reasons were a resistance to change and the idea OO program-
ming was “too hard.” At that time OO programming languages were evolving and coming into
and going out of favor rapidly. Languages such as C++, SmallTalk, Lisp, EIFFEL, and SATHER
were all vying for the hearts and minds of programmers. According to (Kolling, Kock, &
Rosenberg, 1995), none of these languages could be considered as appropriate for use by begin-
ning programmers. Kolling went on to enumerate ten requirements for an object-oriented lan-
guage that is to be used in a first year programming course (Please refer to Table 1).

Table 1: Java’s Compliance with Kolling’s 10 Criteria

Kolling Requirement Java support
1. The language should support clean, simple,
and well-defined concepts. This applies espe-
cially to the type system, which will have a
major influence on the structure of the lan-
guage. The basic concepts of object-oriented
programming, such as information hiding, in-
heritance, type parameterization and dynamic
dispatch, should be supported in a consistent
and easily understandable manner.

No, since Java inherited much of its OO nature from
C++, it inherited many of its pitfalls. Java did replace
multiple inheritance with single inheritance augmented
with a new construct called “interfaces”. The use of
single inheritance over multiple inheritance not only
makes grasping an object hierarchy easier, but it
removes the need to comprehend complex rules used to
resolve ambiguous references under multiple
inheritance.

2. The language should exhibit “pure” object-
orientation in the sense that object-oriented
constructs are not an additional option amongst
other possible structures, but are the basic ab-
straction used in programming.

Yes, unlike C++, all code within a Java program must
reside in an object. GUI and file IO are controlled by
library object. However, this doesn’t preclude someone
from creating a poorly structured program.

Teaching Introductory Programming to IS Students

494

3. It should avoid concepts that are likely to
result in erroneous programs. In particular it
should have a safe, statically checked (as far as
possible) type system, no explicit pointers and
no undetectable un-initialized variables.

Yes, unlike scripting languages, Java has a tightly typed
system and the compiler automatically detects un-
initialized variables. Though Java does have reference
variables, it has no explicit pointers or use of indirection.
The fact that students do not have to dispose of
dynamically allocated variables removes many
opportunities for errors. Java’s strict type checking often
seems restrictive to students, especially those with
scripting experience.

4. The language should not include constructs
that concern machine internals and have no
semantic value. This includes, most impor-
tantly, dynamic storage allocation. As a result
the system must provide automatic garbage
collection.

Yes, Java is platform independent and does not contain
constructs that concern machine internals (e.g. register
variables). Variables have the same sizes and ranges
across platforms. Java does provide automatic garbage
collection. Not having to worry about memory leaks
and removing the possibility of referencing objects that
have been disposed of makes programming makes
debugging much easier for students.

5. It should have a well-defined, easily under-
standable execution model.

No, in the case of over-loaded and overridden methods it
is not always clear to beginning students which method
will be invoked. Also the use of static methods and
variables complicates understanding where data resides
and how it can be accessed.

6. The language should have an easily readable,
consistent syntax. Consistency and understand-
ability are enhanced by ensuring that the same
syntax is used for semantically similar con-
structs and that different syntax is used for
other constructs.

No, again, due to its parentage with C and C++, there are
multiple constructs for performing simple tasks, e.g.
there are at least three ways to increment a variable by
one: i = i+1; i++; and i+= 1; Confusion can be reduced
by using consistent class examples that avoid the use of
C++ short cut syntax.

7. The language itself should be small, clear
and avoid redundancy in language constructs.

No, not only does Java inherit a large number of
constructs from C++, it adds a large library of system
objects that must be learned as well. Students respond
well to the introduction of Java library objects when they
are presented on an “as needed” basis and practiced in
programming assignments. For example, spending an
entire lecture listing all the Java GUI objects is not as
productive as asking the students to learn a few each
week as part of their homework.

8. It should, as far as possible, ease the transi-
tion to other widely used languages, such as C.

Yes, Java shares many language constructs with both C
and C++. Java constructs such as the virtual machine,
wrapper classes, and garbage collection have been
adopted by Microsoft in their C#.NET and J#.NET
languages. Making the transition to these languages
relatively easy as well. The transition in the reverse
direction is important as well. Many of my students have
had C++ experience in high school and readily adapt to
Java.

 Pendergast

 495

9. It should provide support for correctness
assurance, such as assertions, debug instruc-
tions, and pre and post conditions.

Yes, to some degree. Java does provide an exception
handling mechanism to assure proper execution and
provides automatic testing for array bounds, null
pointers, and arithmetic exceptions. Students find the use
of Java exception handling constructs easier and more
logical to use than pre-emptive “if statement” testing.
However, consistency is a problem, in the case of
arithmetic exceptions a divide by 0 in floating point
operations results in a value of infinity, while in integer
arithmetic the result is a divide by zero exception.

10. Finally, the language should have an easy-
to-use development environment, including a
debugger, so that the students can concentrate
on learning programming concepts rather than
the environment itself.

Yes, many mature IDEs are available, including
Borland’s JBuilder, Eclipse, Sun Microsystems Sun One
Studio, and the NetBeans, an open source IDE. The
main drawback to these environments is their cryptic
compiler error messages and clumsy form editors. The
latest edition of Netbeans has an improved forms editor
and annotates syntax errors by underlining them in red.
Students find it easy to learn the forms editor and the
check as you type syntax error reporting is the same as
they experience using popular word processors. Both
Eclipse and Netbeans are free to the students.

Kolling et al.’s observations from 1995 are as relevant today as they were when they first ex-
pressed them. Accordingly, the next section presents what I consider to be Java’s most difficult
aspects for students to detect, correct, and comprehend. These language idiosyncrasies are in-
cluded because they either do not occur every time, are hard to spot when desk checking code, are
due to an inconsistency in the Java language design itself, or a combination of the above.

Java Language Frustrations
The very structure of a language can make it difficult to learn and teach (Pendergast, 2005). In
that regard, the design of Java is no different from other compilation-based programming lan-
guages in that Java enforces strict type checking. Students who have some experience with script-
ing languages that have un-typed variables and fewer syntax rules will be especially vexed. Sun
Microsystems designed Java to be platform independent and support numerous device types rang-
ing from web servers to mobile devices like cell phones. This has led to an explosion of features
and a standard library with more objects that can ever be addressed in a single programming
course. In order to make Java more attractive to existing programmers Java was designed around
C/C++ syntax, thus inheriting many of C/C++’s weaknesses. The following discussion details
some of the most common/difficult aspects encountered by students in their beginning program-
ming class. These areas of concerns were selected as examples because they either violate a gen-
eral rule of the programming language, or are a result of an inconsistency in the design of the
Java language and its object library. A coping strategy is thereby suggested for each concern to
facilitate my students’ learning the language

Extraneous Semicolons
Beginning students tend to take anything a professor or a textbook says literally. When their text-
book (Liang, 2007, pp.21) states “Every statement in Java ends with a semicolon (;)”, then that’s
what they do. The following code snippet includes five such cases:

Teaching Introductory Programming to IS Students

496

public class SemiClass ; // 1
{
 public SemiClass(int parameter); //2
 {
 int i = 0, j = 0, x = 0;
 if(i < 9); //3
 j = 1;
 else; //4
 j = 2;
 for(x = 0; x < 100; x++); //5
 {
 i = i +x;
 return;
 }
 }
}

This code generates five syntax errors when compiled by the J2SDK, but only one of the errone-
ous semicolons is flagged. Extra semicolons at the end of if, while, and for statements will not
generate compilation errors. Instead the code will compile, but not execute as intended since the
extra “;” ends the statement. As a result, a student’s for loop might execute a do-nothing state-
ment 100 times, and their intended body of the loop only once! This is a very common error made
by students early in the Introduction to Programming course. In particular, the addition of “;” af-
ter the “)” on if statements. The frequency of this error increased with the version of Netbeans
that does syntax checking as students type in the program text. The students often type a correct if
construct, then as they think about what should come next the compiler underlines the if statement
in red and informs them of a missing “;”. They then add the semi-colon, and type in the statement
to be executed if the condition were true.

To help overcome this problem, it is suggested that textbooks should more precisely define what
a statement is; instructors should use lots of examples during class presentation, and practice us-
ing a compiler or integrated development environment (IDE) that supports warning messages for
control structures with do-nothing bodies.

Variable Scope Errors
In Java, as in C++, variable may be declared in the class definition, as parameters in methods, and
as local variables in methods. Java allows local variables to be given the same name as those de-
fined in the class. Furthermore, a method in Java may declare multiple variables with the same
name as long as they occur in different code blocks. Java code resolves ambiguous references by
using the variable declared in the block of code.

Another confusing aspect of variable scope is with variables defined in do-while blocks and in the
header of for loops. In the example below, even though the while part of the do-while is consid-
ered part of the statement, the condition in the while cannot access variables defined in the while
block. However, variables defined in the header of a for-loop can be accessed by code in the
block.

 Pendergast

 497

do{
 int x = 2;
 cost = cost + x;
 x = x-1;
 }while(x > 0); // compile error here

 for(int i = 0; i < 3; i++)
 {
 int x = x+i;
 }

Variable scope problems can be overcome to some extent by using proper Java variable naming
conventions. Under these conventions, local variables are defined with all lower case letters (e.g.
productname) and class variables are declared with mixed case using lower case for the first word
in the name and upper case for the first character of subsequent words (e.g. productName). This
is just a partial solution because it differentiates only variable names that are more than one word
long, and because naming conventions are not enforced by the compiler (and would be somewhat
difficult to do so). A better solution would be to not allow local variable and method parameters
to be given the same name as class variables. A very common example of scope errors is when
students define a variable within a “try” block, then attempt to use it after the try block. Fortu-
nately, the compiler does catch this sort of error.

For now, I have adopted the strategy of telling the students to never name a local variable the
same as a class variable, and to declare all their variables at the beginning of the methods. This
helps them spot naming conflicts, avoids ambiguous definitions, and makes the code easier to
read

Integer Arithmetic Errors
These occur most frequently when an equation that yields a double result has an intermediate cal-
culation that contains one integer being divided by another. Not only is this type of error hard to
spot while desk checking it is also difficult to explain the rationale behind the standard. Students
can readily understand that results must be truncated when they are stored into integer variables,
but have a harder time with the concept of truncating numbers that are to be stored into double or
floats. Example:

int x = 1, y = 2;
double z = x/y + 44.0;
System.out.println("z = "+z);

In this case z is given a value of 44.0 instead of 44.5. The best advice to give to students is to
double-check every division for divide by zero errors AND integer truncation. Changing the op-
eration of a compiler to use double precision math for all intermediate operations would simplify
the teaching of the language, but may generate unintended errors in existing programs. A com-
piler generated warning message is more appropriate. This error occurs more frequently when
students progress into the Intermediate Programming course where they must create programs
that perform complex accounting and finance operations. Providing students with (or requiring
them to generate) a good test data set helps in the learning process.

Teaching Introductory Programming to IS Students

498

Handling NaN and Infinity Values
Next to grading, explaining language inconsistencies is my least favorite teaching task. This is
particularly true of Java’s handling of arithmetic operations errors. Java will generate an Arith-
meticException when a divide by zero occurs for integer division, but not for double division.
Instead, Java assigns the value of infinity to the double result. Taking a square root of a negative
number does not produce an exception; instead, it assigns a value of NaN (not a number) to the
result. The following example illustrates both cases.

 double y = Math.sqrt(-1);
 double x = 5.0/0.0;
 System.out.println("x = "+x+" y = "+y);
 int z = 1/0;
 System.out.println("z = "+z);

produces:

 x = Infinity y = NaN
 Exception in thread "main" java.lang.ArithmeticException: / by
zero at Main.main(Main.java:12)

To overcome these errors students must be instructed to carefully examine every equation, and to
rely not on catching ArithmeticException’s. Also, code must be added to test for results that pro-
duce infinity or NaN. The handling of divide by zero errors by the Java engine should be consis-
tent, either always producing an exception or always result in infinity. As with the integer arith-
metic errors, NaN and infinity problems usually crop up in students taking the Intermediate pro-
gramming courses.

Operator Precedence Problems
One exam question I recently gave to my class required them to calculate the lines of code for a
system using some of the classical empirical estimation models such as the Cocomo, Bailey-
Basili, and the Boehm formulations (Pressman, 2005, pp. 660). Completing the exam question
only required the ability to plug values into an equation and generate the result. I was surprised to
discover that over half of the class could not do this correctly for an equation as simple as:
E = 5.5 + .73K1.16

Not only did they not know that the value of K should be raised to the 1.16 power with base 10
before being multiplied by .73, many did not know that the addition should be done last. They
assumed everything should be done in a strict left to right sequence. While this particular class is
not typical of all students at my institution or all Information Systems students, the problems they
experienced pose a further teaching challenge. Correctly converting mathematical equations to
Java code not only requires the understanding of Java precedence rules, but precedence rules used
in the equations themselves. Business programming requires very accurate calculations of ac-
crued interest, present and future values, and depreciation, as well as other items of interest. Ac-
curate answers cannot be stressed enough.

 Pendergast

 499

Most, if not all authors of Java programming books include tables showing operator precedence
order. Getting the students to learn how to correctly interpret the tables is a first step. A second
step is to require extensive testing with problem sets that have known answers.

Zero Relative and One Relative Inconsistencies
Java, like C and C++, uses zero relative indexing for arrays. Most Java library classes also use
zero relative indexes for retrieving items (e.g. Strings, Vectors, JComboBox, JList, JTable). Ex-
ceptions to this rule are found in the case of accessing fields in Java SQL objects. In particular the
PreparedStatement and ResultSet objects are one-relative. Student programs which use one-
relative indexing for arrays and container objects generally result in IndexOutOfBoundExceptions
being thrown. SQLExceptions are thrown for using zero-relative indexing with PreparedState-
ments and ResultSet object produce SQL Exceptions. These exceptions are thrown only if the
programs try to access every element; if not, then the error can go unnoticed.

Dealing with this inconsistency requires diligence by the students while coding and debugging.
Having a consistent standard for the creation of standard language objects would help. Introduc-
tory students who have prior experience in languages other than C or C++ seem to have trouble
adjusting to zero relative indexing of arrays and objects.

Casting and Type Checking
This is as much a conceptual problem as it is a programming problem. Many of my students have
learned web-scripting languages, such as PHP, that do not require the declaration of variables and
that do no type checking. They see this as a faster, easier, and therefore better approach to pro-
gramming. Those of us with experience managing and maintaining systems have learned “the
hard way” the value of languages that have tight type checking. Tight type checking reduces cod-
ing errors in both the creation and maintenance stages of a program’s lifecycle. Students with
only scripting experience do not have these preconceived notions. In either case, student must
learn to understand type checking and casting in order to create Java programs.

Java’s type checking makes perfect sense, once you understand it. Basically, Java will allow you
to store values in variables without complaint as long as there is no loss of precision. Integers can
be stored in longs, floats in doubles, integers into doubles, etc. However, loss of precision com-
piler errors will result if doubles are stored into floats or integers. When this is explained my stu-
dents nod their heads indicating understanding, but still write code like the following:

double d = 3.0;

int x = d+1;

They assume that since d does not have a decimal part, it is plausible to be used with an integer.
Since most of the functions in the Java Math object return doubles, the need to store doubles in
integers comes up a lot. One solution that often appears in books is to cast the result as an inte-
ger.

int x = (int)Math.sqrt(143);

This has the effect of converting (and truncating) the result into an integer. So long as students
realize they are truncating the decimal part of the answer and not rounding it, then their program
will produce the intended results. However, often times they forget, or they assume that it won’t
make a difference in their final result. Therefore I also teach them to use the Math.round method.
Also the students need to learn that casting can be used to convert real numbers to integers, but
casting will not convert Strings or characters to numbers. For example:

Teaching Introductory Programming to IS Students

500

char c = ‘5’;

int x = (int)c;

x will be set to the ASCII code for the character 5 (53), not 5.

Casting Objects
Beyond numeric type conversions, casting is a necessity when working with object streams, Java
data structure, and container objects such as Vectors, JTables, JComboBoxes, and JLists. These
objects maintain lists of other objects. An object of any type can be inserted into them without
compiler complaint since the “add” methods accept objects of type “Object” (Object is the root
type of all Java objects). Java allows objects of a subtype to be stored in a supertype without
casting. The reverse is not true. Supertype objects cannot be stored into subtype variables with-
out casting. Since the “get” methods associated with container objects return a value of type Ob-
ject, casting is mandatory. The conceptual problem that students have with casting objects is they
assume they are converting data as they did when casting primitive data types. Therefore they
make mistakes like the following:
 JTextField nameInput = new JTextField();

…

String s = (String)nameInput;

When they define the object nameInput they are creating a Java interface object that allows the
input of string data. However, simply casting the object to a string does not retrieve its data. The
example above will generate a compilation error since String is not a subtype of JTextField. This
error can be explained and fixed. Casting of objects as they are retrieved from Vectors or other
container/collection objects can produce run time errors that are less than obvious. In the follow-
ing code a String object and an Employee object are stored into a Vector, they are both retrieved
into Strings. The code compiles correctly but will generate a runtime error (ClassCastException)
on the second call to “get”.

Vector v = new Vector();
String a = "A String";
Employee e = new Employee();

v.add(a);
v.add(e);

String s1=(String)v.get(0);
String s2=(String)v.get(1);//runtime error!

Avoiding errors of this sort is a matter of keeping track of the order and type of objects added to
the Vector, and/or, by properly using the instanceof operator when retrieving items. The best ad-
vice to give to beginning students is to tell them to only add objects of one type to collections and
containers. Since I require my students in the Introduction to Business Programming course
make use of both the JCombobox and Vector objects, these errors do occur in their programs.
Students in the Intermediate Programming course experience these errors when retrieving data
from different columns in the JTable object.

 Pendergast

 501

The problems presented in this section illustrate that seemingly simple concepts can become very
difficult to program if students do not have the proper level of comprehension of the syntax,
structure, and sometimes-arbitrary/inconsistent rules of a programming language. An updated
version of the Java language, know to some as Java 1.5 and to others as simply Java 5, makes
certain constructs easier to handle, for example “boxing” primitive objects, enumerations, and
generic typing (Austin, 2004). While this does make some code more readable it does little to
alleviate the overall complexity and consistency of the language.

White and Sivitanides (2002) stipulate that both procedural and object-oriented programming re-
quire cognitive skills at the “formal operations” level. Students must possess the capability to deal
with abstractions, solve problems systematically, and engage in mental manipulations. Once their
level of cognition is exceeded then “burnout” insures (or as my students would say, their brains
are fried). Students experiencing burnout are less likely to continue in a CS/IS program. There-
fore it is imperative to create strategies to present information in a manner that will allow average
students to succeed without experiencing a level of frustration that could possibly result in stu-
dents’ “burnout” mentality.

Paradigms and Tools
Dawson and Newman (2002, pp.126) put forward the notion of “empowerment” or the “act of
enabling” as the ultimate goal for IS/CS education. They believe that “the most useful attribute
we can give students is the confidence to find their own solutions to any given IT problem”. Once
students have attained the ability to learn something new from existing information, empower-
ment can be interpreted as the confidence to try new techniques, skills necessary to solve prob-
lems, and the ability to work effectively in a team. They go on to show that empowerment can be
achieved by giving students a realistic and challenging task that stretches them beyond their ex-
perience and encourages them to reflect on what they have learned. But how does one take a stu-
dent with no programming experience and get them to a level to where they can take on such as-
signments? What is the optimal mix of lecture and active learning? Should numerous small as-
signments be given to build their skills and confidence? Or should fewer more challenging as-
signments be given to allow them to experiment and learn with less time pressure? What tools
and techniques should be used to handle the different needs of “left-brained” and “right-brained”
thinkers? Should programming be taught depth-first or breadth-first?

Bruce, and others (2004) shed some light on this dilemma by identifying five learning strategies
to be employed by students and techniques that can be used to progress students from the most
basic strategy to more complex ones.

(1) Following – where learning to program is experienced as ‘getting through’ the unit.

(2) Coding – where learning to program is experienced as learning to code.

(3) Understanding and integrating – where learning to program is experienced as learning
to write a program through understanding and integrating concepts.

(4) Problem solving – where learning to program is experienced as learning to do what it
takes to solve a problem

(5) Participating or enculturation – where learning to program is experienced as discover-
ing what it means to become a programmer.

By the time students graduate and enter the job market they should be using the participating or
enculturation strategy for programming. It has been my experience that students cannot be ex-
pected to reach that level in the first or even second programming course. Therefore it is neces-
sary to employ both curriculum and instructional techniques that enable them to progress in their

Teaching Introductory Programming to IS Students

502

learning styles. The Information Systems curriculum at my university starts students with an in-
troduction to programming, followed by courses such as Intermediate Programming, Database,
Data Communications, Systems Analysis, and ends with a Capstone Projects course. As the stu-
dents advance through the course sequence they are expected to develop advanced learning meth-
ods, (refer to Table 2). During Introduction to Business Programming the students start with the
‘following” technique, often using in-class learning exercises or examples from the book to guide
them while coding their assignments. As students gain more confidence and their skills increase
they rely less on adapting examples and more on their own programming skills. Many exhibit
this transition by adding features to programs that were not specifically required by the assign-
ment (or even demonstrated in class), and by refusing help during active learning sessions. Inter-
mediate Business Programming students start the course with at least a “coding” level of tech-
nique. The Intermediate course requires them to write web-based programs that access databases.
This, in turn, compels the students to enter the “understanding and integrating” stage as they are
required to integrate knowledge from the Database and Data Communications courses. The fol-
lowing sections detail teaching paradigms and tools used to help students progress from stage 1 to
stage three of the Bruce model during their first two programming courses.

Table 2: Curriculum mapped to learning

Course Techniques employed by students

Introduction to Business Programming 1) Following, 2) Coding

Intermediate Business Programming 2) Coding, 3) Understanding and Integrating

Database 3) Understanding and integrating

Data Communications 3) Understanding and integrating

Systems Analysis and Design 4) Problem solving

Capstone Projects 5) Participation

Metaphors, Demonstrations, and Active Learning
In order to empower my students in their study of Java programming , my students must learn
three things almost simultaneously; they must learn Java syntax and structure, a sizable portion of
the Java class library, and how to think in an object-oriented manner and convert those thoughts
into code. Much of this is memorization of rules and exceptions to rules, too much of which
leads to frustration and burnout. Astrachan (1998) demonstrates how metaphors and demonstra-
tions (referred to by the author as hooks and props) can be used to help make complex concepts
understandable and memorable. These include Dr Seuss’s Cat in the Hat book to demonstrate
recursion and a “Frisbee” (Astrachan, 1998, pp. 22-23) in a plastic bag to demonstrate parameters
passed by reference.

McConnell (1996) adds two other active learning techniques that could be useful for both intro-
ductory and intermediate programming. Algorithm tracing fits where students work together to
predict how an algorithm will function based on different inputs, and physical activities (role
playing) work where each student takes the part of a different object. The algorithm tracing tech-
nique could be combined with a lecture on using an interactive debugger. In this way students not
only learn how to step through code manually (desk checking), but also learn to set break points,
examine variables, and control program execution in the debugger. An easy to use interactive de-
velopment environment (IDE) in the classroom is necessary to support this and other active learn-
ing activities.

 Pendergast

 503

In order to improve retention rates and make my teaching of java more effective, I changed from
a depth first strategy to a breadth first strategy in my introduction to programming course. In the
past students built applications that concentrated on the fundamentals of programming (variable
definitions, control structures, OO design principles). These assignments had little or no GUI
(graphical user-interface) elements, requiring only console mode of programming, involving text-
based input and output (I/O). Under the “breadth first” approach I still cover basic java state-
ments, control structures, class definition, basic GUI design, and file I/O. The assignments are
designed to allow students to learn to build java applications using objects from the standard li-
braries (e.g., swing, io, util) using an interactive IDE. In depth theory on object-oriented pro-
gramming is held off for a later course. I believe that creating applications with a standard GUI
interface in the introductory course gives the students a sense of achievement and puts to the fore-
front issues of interface design and usability.

In addition to changing to a breadth first approach, I try to set student expectations in the courses
by likening learning to program to learning to communicate in a foreign language. Students are
cautioned not to expect to be fluent until they have completed the entire IS curriculum (advanced
programming, database, networking, and capstone projects). I help set the expectations of stu-
dents in the Introduction to Business programming course by explaining that they will be learning
at the “words and phrases level”. By that I mean they will gain the ability to read and understand
Java code (or at least know where to look things up), and the ability to write small programs to
perform explicit tasks (calculate mortgage payments, maintain lists of employees). Classes are
taught in a computer classroom (28 student PCs and an instructor station) and consist of 50%
demonstration (sample programs) and 50% active learning. Students are shown examples of pro-
gramming concepts in the first half of the laboratory session, and then given a short program to
work on in the second half. Example codes created in class are posted on the class web site each
week.

Programming assignments are started in class where help is available. This enables students to
learn from one another’s mistakes and to progress past the inevitable stumbling blocks the new
concept presents. In the beginning of the semester students rely heavily on my examples, many of
them typing in the examples as I build them at the front of the room, thus displaying the “follow-
ing” learning methodology. As the semester progresses students rely less on the in-class exam-
ples and more on their reasoning ability to create programs. This is evidenced by the questions
they ask, fewer students ask, “what do I type next” and many ask, “why am I getting this error”.
Some students are confident enough to work ahead during the lecture portion of the class so that
they can complete their assignments early. By the end of the semester students are comfortable
with the syntax of the language and the development tools. They rarely ask how to fix syntax er-
rors or which language construct should be used. This indicates that they have reached coding
level (2) of learning and are ready to progress to the understanding and integrating level (3), ac-
cording to the Bruce model (2004)

In my Intermediate Business Programming course they learn at the “short story and novelette”
level. Here they have fewer, but longer assignments that can be considered a complete application
(albeit one with limited features). For example, an application that maintains a product inventory
database table and has the ability to perform searches and generate reports. During this course
students are presented with technologies necessary in order to create applications in different en-
vironments. These include database access techniques (SQL) and introductory web programming
(Java Server Pages). The assignments they create require them to integrate knowledge presented
to them in this course, with knowledge from the introductory programming course, and the
knowledge they are receiving in their database course (taken concurrently with intermediate pro-
gramming). As in the introduction to programming, class sessions are split between lecture and
active learning. Diagrams (in the form of rudimentary UML collaboration diagrams) are used to

Teaching Introductory Programming to IS Students

504

show how the various components of their programs interact with one another and the rest of the
system. In this manner, level 3 methods of learning are incorporated into the course, requiring
students to think at this level. Those students who have trouble making the transition still have
their textbook and in-class examples to draw on; however, they quickly learn that these only pre-
sent fragments of the picture and that they must work to integrate them.

Interactive Development Environments
If active learning is to be experienced in programming courses, then a suitable set of program-
ming tools, including a debugger, needs to be available (Kolling et al., 1995). In selecting an IDE
for course work there is a need to balance the amount of complexity of the IDE with the benefits
of a full-featured environment. Cost is another factor. An IDE that is too expensive is unlikely to
be adopted by the University and would not be affordable for students to install on their own PCs.
Many textbooks come with free versions, evaluation versions, and stripped down versions of
IDEs. Naugler and Surendran (2004) stipulate that the overhead of learning complex IDEs must
be offset by their use in more than one course. They also recommend that if a complex IDE is
used at the introductory level, then only a subset of its features must be used. Naugler and Suren-
dran go on to caution about hidden costs of a product, academic neutrality of competing compa-
nies, and to emphasize formal education over tool-based training.

I’ve taught Java programming to students using a variety of programming environments. These
environments have ranged from simple text editor/command line programs such as Textpad (©
Helios Software) to fully integrated development environments such as Forte(© Sun Microsys-
tems), JBuilder (© Borland), and most recently, NetBeans (© NetBeans.org). I’ve settled, for the
time being, on Netbeans for several reasons:

• It is free to the students and university from http://www.netbeans.org. It requires little or
no attention from our IT staff. As an open-source program it does not promote one com-
pany over another (Borland versus Sun).

• Tutorials on its use are available.

• It has features that ease learning, namely the visual identification of syntax errors (the
lines of code with syntax errors are underlined in red, if you hover your cursor over the
line the error is displayed in a window). Keywords and comments are color coded in blue
and gray respectively.

• Visual cues are built in to help students find matching { }, [], and (). However, these
cues don’t seem to stop students from writing programs with extra or missing braces { }.
This generally results in an obtuse compiler error message on a subsequent line, followed
by every remaining statement in the program being flagged as erroneous.

• It has an integrated debugger (useful for intermediate and advanced programming
courses).

• It has an integrated form editor, useful for visual programming. The value of this cannot
be understated. The use of a visual editor for creating interfaces allows beginning stu-
dents to create professional looking interfaces and reduces the amount of memorization
of library classes.

• It pops up a hint window showing a list of possible selections and a definition of each.
This helps to reduce the amount of memorization required.

• It supports the development of applications, applets, and server pages. This includes the
Apache Tomcat server, useful for debugging servlets and Java server pages. Students are

http://www.netbeans.org/

 Pendergast

 505

not required to install and configure the server since it is run automatically from within
the IDE.

• It as an optional mobility pack that can be added to allow the creation of Java programs
for PDAs and cellular phones.

• It can be used throughout our curriculum as it supports database access, provides mecha-
nisms for version control, JAR packaging, and Javadoc.

NetBeans is, however, a full-featured IDE that has many features not immediately useful (and
even confusing) to beginning students. Yet, I’ve found that the students have little problem using
NetBeans to create programs. In the beginning most adopt the “following” method of learning
the Netbean workbench interface, that is, they write down and follow procedures I give them. As
students become more advanced they find new features of the IDE and take advantage of them. -

There is a continuing, and often childish, debate within the Java community over which IDE is
better, Eclipse or Netbeans. Proof of this is the 580,000 hits produced when Googling the phrase
“Netbeans versus Eclipse”. Falkman (2005) reviews the differences between the two IDEs, point-
ing out Eclipse’s use of Standard Widget Toolkit (SWT) in place of Swing GUI objects. SWT
objects rely on the GUI widgets native to the host O.S., allowing them to look and act like appli-
cations developed for that O.S. According to Falkman this was done for performance reasons but
at the expense of using nonstandard classes. In addition, Netbean’s use of Swing objects pre-
serves look and feel across platforms and many companies have invested heavily in the Swing
interface (Udell, 2002). Gallardo (2004) correctly points out Netbeans and Eclipse are feature for
feature well matched. They are both extensible; therefore, any feature that one has can be filled in
with third party plugins. Both have the ability to create projects, write and debug both web-based
and traditional applications, perform version control, and package applications. Both have power-
ful corporate support, Netbeans is sponsored by Sun Microsystems and Eclipse by IBM. Cur-
rently, Eclipse is the market share leader for Java IDEs (Binstock, 2006). When I moved away
from Borland’s JBuilder in 2002 I wanted to adopt an IDE that would have an ease of use compa-
rable to Microsoft’s Visual Development Environment. A big part of this is an integrated forms
editor. At the time, Netbeans (then known as Forte) had such feature, whereas Eclipse did not.
Also, creation and testing of web-based applications is made easy in Netbeans since it has the
Apache Tomcat web server bundled in. With Eclipse, using Tomcat means an additional
download and install, plus the use of valuable class time to explain how to configure and manage
a web server. Obviously, it is worthwhile to revisit the selection of an IDE each year and a
change to Eclipse may be in our future.

Introduction to Business Programming Course Structure
As previously stated, I moved from a depth first to a breadth first approach to teaching the intro-
ductory programming class. In general, depth first courses stress teaching of core language con-
structs such as control structures, basic data types (up to arrays), and arithmetic statements, as
well as basic algorithms. User interfaces are often "text only" with GUI elements being put off to
later courses. Breadth first approaches may take many forms, but usually include basic GUI in-
teraction; some data processing (arithmetic statements); and a limited set of file I/O. The implica-
tions for this are that students are able to create complete applications with GUI interfaces that
perform file I/O, but they will be less proficient in using some of the basic control structures and
data structures. This gap is filled in during the intermediate and advanced programming courses.
The motivations for using a breadth first approach is to give students a broad view of what pro-
gramming is during their first course (which is often when the students make their decisions to
remain in a major program of study). Additionally, as the students are more likely to have a feel-

Teaching Introductory Programming to IS Students

506

ing of accomplishment when they complete a program which has much of the same look and feel
of typical commercial applications they have used in the past.

In my course I use Daniel Liang's Introduction to Java Programming, Comprehensive Version,
(Liang, 2007) and the Netbeans 5.0 IDE environment. The comprehensive edition was chosen
over the core version of the book so that the same book could be used in both the Introduction
and Intermediate programming classes.

Every assignment presents a application-driven approach employing a specific GUI development
In the beginning the students create simple forms using the NetBeans graphical editor and a
"null" layout manager to practice programming, doing application logic, and then back-end data
resources. More complex interfaces using multiple panes, menus, and advanced layout managers
(grid, border, flow) are covered in the second portion of the course. The final part of the course
covers exception handling and file I/O. Students are evaluated using eight to ten programming
assignments, three exams, and in class participation.

Course Outline
• Introduction to programming and basic computer architecture, role and responsibility of

the programmer, ethical responsibility of system builders.
• Chapter 1 and Tutorial, Introduction to Java and Netbeans

o Creating a project and an application
o Creating a simple data entry form program (JFrame, JTextField, JLabel, JButton ob-

jects).
o Compiling and running the program

• Chapter 2 Data types and operations
o Arithmetic operators, operator precedence.
o Assignment – simple calculator that adds, subtracts, multiplies, divides, raises num-

bers to a power (Math.pow), and performs modulo operations.
• Chapter 3,4 Control Statements

o Stress if, while, and for.
o Mention switch, do-while, and variations.
o Assignment – use if statements and JCheckBox objects to determine if you are "To-

tally Cool".
o Assignment – use for loop to calculate future value of an investment, F = P(1 + r)n

for a range of years. Incorporate JTextArea for results.
• Chapter 6 Arrays

o Stress declaring, creating, accessing array elements, and sequential search.
o Use of Arrays object to sort and fill.
o Mention advanced searching and sorting techniques
o Assignment – Basic array operations, load an array with random numbers, provide

operations for displaying the array (in a JTextArea), finding the average value, find-
ing the smallest value, and sorting (using Arrays object).

• Catch-up and review, exam 1
• Chapters 12,15 Graphical User Interfaces (GUI) Programming

o Stress JFrames, GridLayout, BorderLayout, FlowLayout. Controls JTextField, JLa-
bel, JButton, JCheckBox, JRadioButton, JComboBox, JPanel, JTextArea, JScroll-
Pane, JToolBar, JMenu elements.

o Become proficient in designing containment hierarchies and using the Netbeans GUI
editor

 Pendergast

 507

o Mention other layout managers, advanced elements (JTable, JList, JTree), and how
to create the interfaces without the GUI editor (using just a text editor).

o Assignment – replicate the MS Windows calculator application scientific mode GUI.
• Chapter 5, Methods

o Stress defining methods, calling methods, call by value, variable scope, and when to
use methods.

o Mention access specifiers, storage specifiers, overloading methods,
o Assignment – create methods that calculate future value, mortgage payments, and

future value of annuities. Incorporate these into a GUI interface to create a financial
calculator.

• Chapter 7, Objects and Classes
o Stress defining classes, proper naming conventions, defining variables and methods,

toString(). Design of data storage objects e.g. Employee, Student, Course, Library-
Book, etc.

o Mention storage specifiers, access specifiers, static variables, and OO design lan-
guages such as UML.

o Assignment – create an Employee class capable of holding an employee's first name,
last name, job title, and wage. Incorporate the class into a form-based application
capable of creating employee objects, and inserting them into a JComboBox, and de-
leting them from a JComboBox.

• Catch-up and Review, exam 2
• Chapter 17 Exception Handling

o Stress Try/Catch/Finally clauses, Exception object hierarchy, checked versus un-
checked exceptions. Demonstrate use of try/catch for handing NumberFormatExcep-
tions generated by Integer.parseInt and Double.parseDouble.

o Mention generating and throwing exceptions.
o Assignment – Revise previous assignment to handle NumberFormatExceptions

generated when handling employee wage data.
• Chapter 18 Input and Output

o Stress Character versus Binary Streams, use of PrintWriter, BufferedReader,
JFileChooser, File, ObjectInputStreams, and ObjectOutputStreams. Discuss basic
sequence of operations for New, Open, Save, and Save-As operations.

o Mention other forms of binary data files, parsing text input, advanced serializable
features, and input file filters.

o Assignment – modify Employee assignment to allow employees objects to be stored
and retrieved from an ObjectStream (Open, Save, Save-As operations). Use
JFileChooser, ObjectInputStream, and ObjectOutputStream objects.

• Review
• Finals week

A Typical Class
Class either meet once a week for a 2 hour and 45 minute session or twice a week in two 75-
minute sessions. Classes are held in a 28-seat computer classroom. Each student has his or her
own workstation (PC-Windows XP). As students arrive they login to their workstations and open
both the class notes (in a web browser) and Netbeans. Most have this done before the period be-
gins, the rest are able to get their stations ready during the opening class announcements. The pe-
riod begins with a 15-20 minute introduction of a Java programming construct (the didactic por-
tion). This is followed by the creation of a demonstration program to illustrate the concept and
common errors that occur when using it. During this time most students will follow along on
their workstations, interrupting with questions or to resolve problems. The students are then given

Teaching Introductory Programming to IS Students

508

a problem similar to the example just worked to resolve together in class. This active learning
starts with the framing of the question, then one or more students will volunteer the procedure to
solve the problem (pseudo-code), finally each student will attempt to create a program or proce-
dure that implements the solution. This learning is then reinforced with a take-home assignment
due the following week. If time permits the students are allowed to start their assignment in class
and receive one-on-one help from the instructor. For example, a 75 minute period might be bro-
ken down as follows:

• Lecture: Show array declaration and creation concepts, review for-loop syntax. (20 min-
utes)

• Demonstration: Show a how to calculate the sum of the values of items in an array of
doubles. (10 minutes)

• Active Learning: Have the students create a procedure to find the min (or max) value in
the array, they are free to help one another or work on their own. (30 minutes)

• Assignment: Students create a program that loads an array with random numbers; pro-
vide operations for displaying the array; finding the average value, finding the smallest
value, and sorting (using Arrays object). (15 minutes)

For each of my courses I create a website containing syllabus, assignments, class notes, links to
online tutorials, and the sample programs created in class. Written comments on the course
evaluation given at the end of the semester indicate that the information posted on the web is well
received. Having the notes available online allows the students to actively participate in the lec-
ture and enables them to follow along with the in class examples on their workstations. I chose
not to use a Web classroom tool such as Angel (http://www.angellearning.com) or WebCT, in-
stead the information is posted on a standard web page. Students use campus email or their own
email to submit assignments. Students are encouraged to ask questions in class, in person during
office hours, and via email. Since most of my students live off campus and I’m willing to answer
email on weekends, email seems to be the preferred means to ask for help.

Assessing Outcomes

Assessing the Student
For grading purposes, students are evaluated on eight to ten programming assignments, three ex-
ams, and class participation. The course score is weighted 60% exams, 35% assignments, and 5%
participation. The programming assignments are graded on a ten-point scale with about half of
the points being awarded for correct function, the other half for programming style and user inter-
face design. The exams are a combination of multiple choice and short essays. The multiple
choice questions are designed to measure the understanding of Java's syntax and rules, the essays
portion to see if students can complete short segments of code, identify errors in code, or explain
how to solve a problem. Grades are a necessary evil, useful both for motivating the student and
for recording their achievements so they can be later compared with their peers for jobs and
graduate school admissions. The balance I find it necessary to strike is how much to weigh the
assignment versus the exams. If not enough weight is given to assignments then they tend not to
be turned in. On the other hand, I find it prudent not to give too much weight to assignments sim-
ply because it is not always possible to know how much of the work is done by the student and
how much help was received from other students, or from examples found in books and on the
internet. Exams allow me to test the depth of understanding of the material in the assignments and
compel the students to study material not specifically required by the assignments.

http://www.angellearning.com/

 Pendergast

 509

In addition to the formal evaluation tools I've also found it useful for students to perform informal
self-assessment of their work. I conduct this in the form of a simple survey following a project or
team assignments. Surveys I have used in the past ask such things as: how much time was spent
on the assignment; what was the most difficult task; what was the easiest task; what you would do
differently next time. As one might expect, students list "starting sooner" as the primary thing that
they would do differently next time. User interface design/building is usually listed as the enjoy-
able, and data management/handling the most difficult. Tables 3 and 4 present data from a recent
group assignment given to the Intermediate Programming Class. In this assignment students
worked in groups of 3 or 4 to create a program that automated the completion of the U.S. 1040EZ
tax return. The program was required to gather the data from the user in a series of forms located
on a tabbed pane. This involved determining if the taxpayer is eligible to use the form; collect
personal information and income information; calculate the taxes and refunds using Tax Rate
Schedules; store the results in binary format; and print the tax return. On the survey the students
were asked to indicate which of the programming areas they perceived as difficult. File I/O and
Data Management as the most difficult issues (reference Table 3). The data management was dif-
ficult for them since this was the first group project they had worked on that required each team
member to create a separate GUI form (based on Java Swing library’s JPanel) and share data ob-
jects between them. The key lies in the communication between the forms whenever a data item
changes. Table 4 shows how the students allocated their time between the various lifecycle tasks.

Perhaps more revealing (and more useful) than grades would be to track the student progress
through (Bruce, et al., 2004) five levels of learning (Refer to Table 2). Since the progression is
done across a series of courses it would be necessary to employ a self-assessment instrument at
the end of each course. Informal indications of progress can be seen through the questions stu-
dents ask and the assignments they turn in. For example, at what point are they able to correct
their own syntax errors, do they experiment and add features not required by the assignment, do
they ask for direction in implementing advanced feature. Invariably students who earn an A or B
in the Introduction to Business Programming course have successfully progressed into level 2.
Those earning a C most often are students who have not progressed beyond stage one, but have
put in the effort to struggle through assignments. Figure 1 shows the percentages of students get-
ting an A or B each term, Note the disparity between fall and spring semesters. During the fall
semester the course is taught in the evening. This has two consequences, first, a large percentage

Table 3
Student self assessment of difficulty

Programming function % Indicating
difficulty

File I/O

Printing

Tax Calculations

Data management

User Interfaces

64%

21%

21%

36%

7%

Table 4
Time allocation for the project

Task Average
% time spent in task

Project management

Version Control

Programming

User Interface Design

Debugging

Final testing

Other

11%

9%

43%

11%

15%

9%

2%

Teaching Introductory Programming to IS Students

510

of the class are older students who work full time and have more computer expertise, and second,
the class is taught in one 2 hour and 45 minute block instead of two 75-mintue blocks.

Assessing the Course
My university employs an end-of-the-semester student evaluation of the course. Like surveys
given at many universities the questions are not course specific and the results are not available
until several weeks after the semester is over. The numeric portion of the survey is a reasonable
indicator of student satisfaction (with the instructor) and the written portion of the survey, if com-
pleted, can be revealing about what the students are especially pleased or displeased with. Figure
2 presents semester evaluations for Fall 2001 through Spring 2006. In addition to the university
sponsored end-of-term survey I ask the students to complete an anonymous mid-semester survey
to gauge their reaction to course material, pace, assignments, and my teaching style.

Introductory students reaching level 2

0

10

20

30

40

50

60

70

80

1 2 3 4

Semester Fall 2001 to Spring 2006

%
 s

tu
de

nt
s

Fall

Spring

Figure 1 - Introductory students successfully reaching level 2 (note, no data is given for
Fall 2002, Spring 2003 due to sabbatical leave)

 Pendergast

 511

An interesting gauge of my students learning ability can be found by examining the assignments
given in each semester. My confidence in the abilities of the students grew as the course evolved
and improved. This raised my expectations of students in subsequent semesters. The increase in
expectations and performance can be observed by gauging the function points (Pressman, 2005)

Semester Evaluations 2001-2006
scale of 1 to 5, 5 being the best

3
3.2
3.4
3.6
3.8

4
4.2
4.4
4.6
4.8

5

Fall 2001 Spring
2002

Fall 2003 Spring
2004

Fall 2004 Spring
2005

Fall 2005 Spring
2006

Semester

Sc
or

e

Figure 2 – Instructor Course Evaluations for Introduction to Programming (note,

no data is given for Fall 2002, Spring 2003 due to sabbatical leave)

Function Points per Assignment

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

Fall
2001

Spring
2002

Fall
2003

Spring
2004

Fall
2004

Spring
2005

Fall
2005

Spring
2006

Fall
2006

Semester

Fu
nc

tio
n

Po
in

ts

Figure 3 – Function points per assignment

Teaching Introductory Programming to IS Students

512

per assignment. In each semester for the Introduction to Business Programming course I give my
students between 8 and 10 programming assignments. A review of the last eight semesters’ work
shows an increase in the average number of function points per assignment from 5 in 2001 to 11
in 2006 (reference Figure 3). The function points shown are unabridged counts of the number of
inputs, outputs, inquiries, and interfaces to other systems, as well as external data files.

In the spring of 2006 our university instituted the evaluation of course and curriculum via Aca-
demic Learning Compacts (ALC) (Florida Gulf Coast University, 2006). The ALCs identify the
core student learning outcomes for each major. These learning outcomes are linked to the re-
quirements of the major and the mission and goals of the college and university. Information is
collected and evaluated each year to assess the effectiveness of the curriculum. The information
collected from key courses includes assignments, grading rubrics, course grades, examinations,
grade distributions, student self-assessments, ETS exam scores, and student surveys. The result-
ing report is then returned to the faculty to help improve their courses. It is too early to tell if
these reports will have enough detail to be helpful to faculty. But they do constitute a form of
peer review of teaching.

Conclusions
Teaching success can be measured in many ways. Deans and department heads look at enroll-
ment rates, retention rates, and graduation rates. From their perspective, my results for the past
several years are mixed. The dropout rate in introductory programming has fallen from 17% (Fall
2001) to 7% (Spring 2006), reference Figure 4, The percentage of students passing the course
with an A, B, or C grade has risen from 50% in Fall 2001 to 71% in Spring 2006. Student satis-
faction with the course, as measured by semester end evaluations, has risen from 3.67/5.0 (Fall
2001) to 4.71/5.0 (Spring 2006). However, enrollment in introduction to programming has de-

% Students withdrawing from Introduction to Programming

0%

2%

4%

6%

8%

10%

12%

14%

16%

18%

Fall 2001 Spring
2002

Fall 2003 Spring
2004

Fall 2004 Spring
2005

Fall 2005 Spring
2006

Semester

%
 W

ith
dr

aw
ls

Figure 4 – Dropout rate from Fall 2001 to Spring 2006 (note, no data is given for Fall

2002, Spring 2003 due to sabbatical leave)

 Pendergast

 513

clined from 60 students in the 2001-2002 school year to 33 students in the 2005-2006 school
year. Part of this decline can be explained by the growth of the Computer Science major that was
established in fall of 2002. Enrollments for fall 2006 show a significant (40%+) increase over fall
2005.

In the Introduction to Programming class, students are successful at completing the series of short
assignments, each assignment demonstrating their knowledge about one aspect of the Java lan-
guage (e.g. arrays and for loops). The last few assignments in this class build upon one another to
form a complete application (e.g. contact list manager). Some students do struggle initially with
the Netbeans IDE, especially in regard to creating and managing projects. Part of these problems
stem from previous experience with computer programs (MS Word, Excel, PowerPoint) that have
only one file (.doc, .xls, .ppt) associated with an assignment. The other problem comes from their
learning to move their projects to and from the computer lab to their home PCs. This problem
has largely been alleviated by the use of USB memory drives (thumb drives) and/or students
choosing to bring laptops to class.

In the Intermediate Programming course students are given several weeks to complete their as-
signments with adequate instructor contact time to solve problems. However, many students fail
at completing the assignments on time because they put them off to the last week, working in-
stead on other courses or leisure activities. Another tendency of my students is to try to write the
entire program before debugging any of it. This occurs despite my best efforts to teach the in-
cremental programming techniques. They are then faced with a program several hundred lines
long and no real idea of what portion works and what does not. To combat this I have instituted a
series of intermediate due dates. This forces the students to begin the projects and to do incre-
mental programming tasks. This approach could be combined with a simple scheduling (like
PERT/CPM) chart in order to give a real-world feel to the projects.

The most effective changes I’ve made involve setting student expectations, recognizing and ad-
dressing aspects of the Java language that are difficult to learn, incorporating a full featured IDE
that has a form designer, and the use of active learning. The use of active learning gives me the
opportunity to gauge student understanding and allows them to learn from one another (and one
another’s mistakes). Setting proper expectations helps to keep students focused on what they are
to learn. Students who come into the course fearful of learning to program are less apprehensive,
and those students coming into the course expecting to learn everything at once (or in one semes-
ter) are more satisfied. In the future I plan to develop a student self-assessment tool to help them
gauge their progress in advancing through the stages of becoming a programmer.

References
Ala-Mutka, K., Uimonen, T., & Järvinen, H. (2004). Supporting students in C++ programming courses

with automatic program style assessment. Journal of Information Technology Education, 3(1), 245-
262. Available at http://jite.org/documents/Vol3/v3p245-262-135.pdf

Association for Information Systems (2002). IS 2002 standards. Last retrieved: 27-11-2006 from
http://www.aisnet.org/Curriculum/IS2002-12-31.pdf

Astrachan, O. (1998). Concrete teaching: Hooks and props as instructional technology. ACM SIGCSE Bul-
letin, 30(3), 21-24. [Proceedings of the 6th Annual Conference on the Teaching of Computing/3rd An-
nual Conference on Integrating Technology into Computer Science Education].

Austin, C. (2004). J2SE 5.0 in a nutshell. Last retrieved: 27-11-2006 from
http://java.sun.com/developer/technicalArticles/releases/j2se15/

http://jite.org/documents/Vol3/v3p245-262-135.pdf
http://www.aisnet.org/Curriculum/IS2002-12-31.pdf
http://java.sun.com/developer/technicalArticles/releases/j2se15/

Teaching Introductory Programming to IS Students

514

Bergin, J, & Naps, T. (1998). Java resources for computer science instruction. The Working Group Reports
Of The 3rd Annual SIGCSE/SIGCUE Iticse Conference On Integrating Technology Into Computer Sci-
ence Education, December, 14-34.

Binstock, A. (2006, September 18). Genuitec brightens up Eclipse. InfoWorld. Last retrieved: 27-11-2006
from http://www.javaworld.com/javaworld/jw-09-2006/jw-0918-iw-myeclipse.html

Bruce, C., Buckingham, L, Hynd, J.,McMahon, C., Roggenkamp, M., & Stoodley, I. (2004). Ways of ex-
periencing the act of learning to program: A phenomenographic study of introductory programming
students at university. Journal of Information Technology Education, 3(1), 143-160. Available at
http://jite.org/documents/Vol3/v3p143-160-121.pdf

Culwin, F. (1999). Object Imperatives! ACM SIGCSE Bulletin, 31(1), 31-36. [The Proceedings of the Thir-
tieth SIGCSE Technical Symposium on Computer Science Education].

Dawson, R.J., & Newman, I.A. (2002). Empowerment in IT education. Journal of Information Technology
Education, 1(2), 125-141. Available at http://jite.org/documents/Vol1/v1n2p125-142.pdf

Decker, R., & Hirshfield, S. (1994). The top10 reasons why object-oriented programming can’t be taught in
CS 1. ACM SIGCSE Bulletin, 26(1), 51-55. [Selected Papers of the Twenty-Fifth Annual SIGCSE
Symposium on Computer Science Education].

Falkman, D. (2005). IDE wars: Has NetBeans 4.1 eclipsed Eclipse? Java Boutique. Last retrieved: 27-11-
2006 from http://javaboutique.internet.com/reviews/netbeans41/

Florida Gulf Coast University (2006). Academic learning compact for B.S. in computer information sys-
tems. Last retrieved: 27-11-2006 from http://www.fgcu.edu/OCI/70.asp

Gallardo, D. (2004). Migrating to Eclipse: A developer’s guide to evaluating Eclipse vs Netbeans. IBM.
Last retrieved: 27-11-2006 from http://www-128.ibm.com/developerworks/webservices/library/os-
ecnbeans/

Hensel, M. (1998). The approaching crisis in computing education: Enrollment, technology, curricula,
standards, and their impact on educational institutions. Journal of Information Systems Education,
9(4), 24-27.

Kölling, M., Koch, B., & Rosenberg, J. (1995). Requirements for a first year object-oriented teaching lan-
guage. ACM SIGCSE Bulletin, 27(1). [Papers of the 26th SIGCSE technical symposium on Computer
science education].

Lewis, J.P., & Neuman, U. (2003). Performance of Java versus C++. Last retrieved: 27-11-2006 from
http://www.idiom.com/~zilla/Computer/javaCbenchmark.html

Liang, Y.D., (2007). Introduction to Java programming: Comprehensive version (6th ed.). Prentice Hall.

Mangione, C., (1998). Performance tests show Java as fast as C++. JavaWorld, Last retrieved: 27-11-2006
from http://www.javaworld.com/javaworld/jw-02-1998/jw-02-jperf_p.html

McConnell, J., (1996). Active learning and its use in computer science. ACM SIGCSE Bulletin, 28(1), 52-
54. [Proceedings of the Conference on Integrating Technology into Computer Science Education].

Naugler, D., & Surendran, K. (2004). Simplicity first: Use of tools in undergraduate computer science and
information systems teaching. Information Systems Education Journal, 2(5), 3-11.

Noll, C. L., & Wilkins, M. (2002). Critical skills of IS professionals: A model for curriculum development.
Journal of Information Technology, 1(3), 143-154.

Pendergast, M. (2005). Teaching Java to IS students: Top ten most heinous programming errors. Proceed-
ings of the Association of Information Systems Americas Conference AMCIS 2003, Omaha, NE, Au-
gust 2005

Pressman, R.S. (2005). Software engineering: A practitioner's approach (6th ed). McGraw-Hill.

Reddy, A. (2000). Java coding style guide. Sun MicroSystems. Last retrieved: 27-11-2006 from
http://developers.sun.com/prodtech/cc/products/archive/whitepapers/java-style.pdf

http://www.javaworld.com/javaworld/jw-09-2006/jw-0918-iw-myeclipse.html
http://jite.org/documents/Vol3/v3p143-160-121.pdf
http://jite.org/documents/Vol1/v1n2p125-142.pdf
http://javaboutique.internet.com/reviews/netbeans41/
http://www.fgcu.edu/OCI/70.asp
http://www-128.ibm.com/developerworks/webservices/library/os-ecnbeans/
http://www-128.ibm.com/developerworks/webservices/library/os-ecnbeans/
http://www.idiom.com/~zilla/Computer/javaCbenchmark.html
http://www.javaworld.com/javaworld/jw-02-1998/jw-02-jperf_p.html
http://developers.sun.com/prodtech/cc/products/archive/whitepapers/java-style.pdf

 Pendergast

 515

Sim, E. & Wright, G. (2002). A comparison of adaptation-innovation styles between information systems
majors and computer science majors. Journal of Information Systems Education, 13(1), 29-35.

Sun MicroSystems. (2004). The Mars mission continues. Last retrieved: 27-11-2006 from
http://www.sun.com/aboutsun/media/features/mars.html

TIOBE Software (2006). TIOBE programming community index for November 2006. Last retrieved: 27-
11-2006 from http://www.tiobe.com/index.htm?tiobe_index

Tyma, P. (1998). Why we are using Java, again? Communications of the ACM, 41(6), 38-42.

Udell, J. (2002, July 5). Eclipse casts shadows. InfoWorld. Last retrieved: 27-11-2006 from
http://www.javaworld.com/javaworld/jw-07-2002/jw-0705-iw-eclipse.html

White, G., & Sivitanides, M. (2002). A theory of the relationships between cognitive requirements of com-
puter programming languages and programmers’ cognitive characteristics. Journal of Information Sys-
tems Education, 13(1), 60-66.

Zweben, S., & Aspray. W. (2004). Undergraduate enrollments drop; Department growth expectations mod-
erate. 2002-2003 Taulbee Survey, Computing Research Association. Last retrieved: -27-11-2006 from
http://www.cra.org/CRN/articles/may04/taulbee.html

Biography
Dr. Pendergast is an Associate Professor in the Computer Information
Systems Department within the College of Business at Florida Gulf
Coast University. Dr. Pendergast has a M.S. and Ph.D. in Management
Information Systems from the University of Arizona and B.S.E. in
Electrical Computer Engineering from the University of Michigan. He
has worked as an analyst and engineer for Control Data Corporation,
Harris Corporation, Ventana Corporation, and as an Assistant Profes-
sor at the University of Florida and Washington State University. His
research interests include computer-supported cooperative work, data
communications, software engineering, terrain modeling, and group
support systems.

http://www.sun.com/aboutsun/media/features/mars.html
http://www.tiobe.com/index.htm?tiobe_index
http://www.javaworld.com/javaworld/jw-07-2002/jw-0705-iw-eclipse.html
http://www.cra.org/CRN/articles/may04/taulbee.html

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AbadiMT-CondensedExtraBold
 /AbadiMT-CondensedLight
 /AdobeSansMM
 /AdobeSerifMM
 /AgencyFB-Bold
 /AgencyFB-Reg
 /AharoniBold
 /Algerian
 /AllegroBT-Regular
 /AlmanacMT
 /Aloisen
 /AmazoneBT-Regular
 /AmericanaBT-Bold
 /AmericanaBT-ExtraBold
 /AmericanaBT-ExtraBoldCondensed
 /AmericanaBT-Italic
 /AmericanaBT-Roman
 /AmerTypewriterITCbyBT-Medium
 /AndaleMono
 /AndaleMonoIPA
 /AngsanaNew
 /AngsanaNew-Bold
 /AngsanaNew-BoldItalic
 /AngsanaNew-Italic
 /AnniesHand-Plain
 /ArdleysHand-Plain
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /ArronsHand-Plain
 /AubreysHand-Plain
 /AvantGardeITCbyBT-Book
 /AvantGardeITCbyBT-BookOblique
 /AvantGardeITCbyBT-Medium
 /AvantGardeITCbyBT-MediumOblique
 /BalloonBT-Bold
 /BalloonBT-ExtraBold
 /BalloonBT-Light
 /BankGothicBT-Medium
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BeeskneesITC
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BelweBT-Bold
 /BelweBT-Light
 /BelweBT-Medium
 /BelweBT-RomanCondensed
 /BenguiatGothicITCbyBT-Bold
 /BenguiatGothicITCbyBT-BoldItal
 /BenguiatGothicITCbyBT-Book
 /BenguiatGothicITCbyBT-BookItal
 /BenguiatITCbyBT-Bold
 /BerlingAntiqua-Bold
 /BerlingAntiqua-BoldItalic
 /BerlingAntiqua-Italic
 /BerlingAntiqua-Roman
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BernhardFashionBT-Regular
 /BernhardModernBT-Bold
 /BernhardModernBT-BoldItalic
 /BernhardTangoBT-Regular
 /BibleScrT
 /BlackadderITC-Regular
 /BlippoBT-Black
 /BonApetitMT
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /Bookdings
 /BookmanITCbyBT-Demi
 /BookmanITCbyBT-DemiItalic
 /BookmanITCbyBT-Light
 /BookmanITCbyBT-LightItalic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolOne-Regular
 /BookshelfSymbolThree-Regular
 /BookshelfSymbolTwo-Regular
 /BradleyHandITC
 /Braggadocio
 /BremenBT-Bold
 /BritannicBold
 /Broadway
 /BrodyD
 /Brush445BT-Regular
 /Brush738BT-RegularA
 /BrushScriptBT-Regular
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Castellar
 /CataneoBT-Bold
 /CataneoBT-Light
 /CataneoBT-Regular
 /CataneoBT-RegularSwash
 /CaxtonBT-Bold
 /CaxtonBT-BoldItalic
 /CaxtonBT-Book
 /CaxtonBT-BookItalic
 /CaxtonBT-Light
 /CaxtonBT-LightItalic
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /CharlesworthBold
 /CheltenhamBT-Bold
 /CheltenhamBT-BoldCondensed
 /CheltenhamBT-BoldCondItalic
 /CheltenhamBT-BoldExtraCondensed
 /CheltenhamBT-BoldHeadline
 /CheltenhamBT-BoldItalic
 /CheltenhamBT-BoldItalicHeadline
 /CheltenhamBT-Italic
 /CheltenhamBT-Roman
 /CheltenhamITCbyBT-Bold
 /CheltenhamITCbyBT-BoldItalic
 /CheltenhamITCbyBT-Book
 /CheltenhamITCbyBT-BookItalic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CommercialScriptBT-Regular
 /CommonBullets
 /CooperBlack
 /CooperBT-Black
 /CooperBT-BlackHeadline
 /CooperBT-BlackItalic
 /CooperBT-BlackItalicHeadline
 /CooperBT-BlackOutline
 /CooperBT-Bold
 /CooperBT-BoldItalic
 /CooperBT-Light
 /CooperBT-LightItalic
 /CooperBT-Medium
 /CooperBT-MediumItalic
 /CopperplateGothic-Bold
 /CopperplateGothicBT-Bold
 /CopperplateGothic-Light
 /CordiaNew
 /CordiaNew-Bold
 /CordiaNew-BoldItalic
 /CordiaNew-Italic
 /CosmicPlain
 /CosmicTwoPlain
 /CountdownD
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CrystalsHand-Plain
 /CurlzMT
 /DauphinPlain
 /David-Bold
 /David-Reg
 /DavidTransparent
 /Desdemona
 /DirectionsMT
 /DiskusD-Medi
 /EdgertonsHand-Plain
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /ElliesHand-Plain
 /EmbassyBT-Regular
 /EnglischeSchT-Bold
 /EnglischeSchT-DemiBold
 /EnglischeSchT-Regu
 /English111AdagioBT-Regular
 /English111PrestoBT-Regular
 /English111VivaceBT-Regular
 /English157BT-Regular
 /EngraversMT
 /EnviroD
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /ErasITC-Ultra
 /EurostileBold
 /EurostileRegular
 /EwieD
 /FelixTitlingMT
 /FencesPlain
 /FixedMiriamTransparent
 /FlashD-Bold
 /FlashD-Ligh
 /FlemishScriptBT-Regular
 /FlorasHand-Plain
 /FootlightMTLight
 /Formal436BT-Regular
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FrankRuehl
 /Freehand471BT-Regular
 /Freehand591BT-RegularA
 /FreestyleScript-Regular
 /FrenchScriptMT
 /FrutigerLinotype-Bold
 /FrutigerLinotype-BoldItalic
 /FrutigerLinotype-Italic
 /FrutigerLinotype-Roman
 /FuturaBlackBT-Regular
 /FuturaBT-Bold
 /FuturaBT-BoldCondensed
 /FuturaBT-BoldCondensedItalic
 /FuturaBT-BoldItalic
 /FuturaBT-Book
 /FuturaBT-BookItalic
 /FuturaBT-ExtraBlack
 /FuturaBT-ExtraBlackCondensed
 /FuturaBT-ExtraBlackCondItalic
 /FuturaBT-ExtraBlackItalic
 /FuturaBT-Heavy
 /FuturaBT-HeavyItalic
 /FuturaBT-Light
 /FuturaBT-LightCondensed
 /FuturaBT-LightItalic
 /FuturaBT-Medium
 /FuturaBT-MediumCondensed
 /FuturaBT-MediumItalic
 /GailsHand-Plain
 /GandoBT-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /GeometricSlab703BT-Bold
 /GeometricSlab703BT-BoldCond
 /GeometricSlab703BT-BoldItalic
 /GeometricSlab703BT-Light
 /GeometricSlab703BT-LightItalic
 /GeometricSlab703BT-Medium
 /GeometricSlab703BT-MediumCond
 /GeometricSlab703BT-MediumItalic
 /GeometricSlab703BT-XtraBold
 /GeometricSlab703BT-XtraBoldCond
 /GeometricSlab703BT-XtraBoldItal
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /GeorgiaRef
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GloucesterMT-ExtraCondensed
 /GoudyHandtooledBT-Regular
 /GoudyOldStyleBT-Bold
 /GoudyOldStyleBT-BoldItalic
 /GoudyOldStyleBT-Italic
 /GoudyOldStyleBT-Roman
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudySansITCbyBT-Black
 /GoudySansITCbyBT-BlackItalic
 /GoudySansITCbyBT-Bold
 /GoudySansITCbyBT-BoldItalic
 /GoudySansITCbyBT-Light
 /GoudySansITCbyBT-LightItalic
 /GoudySansITCbyBT-Medium
 /GoudySansITCbyBT-MediumItalic
 /GoudyStout
 /Gradl
 /Haettenschweiler
 /HarlowSolid
 /HarpoonPlain
 /Harrington
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /HighTowerText-Italic
 /HighTowerText-Reg
 /HoboBT-Regular
 /HolidaysMT
 /Home
 /Home-Bold
 /Home-Italic
 /Humanist521BT-Bold
 /Humanist521BT-BoldItalic
 /Humanist521BT-Italic
 /Humanist521BT-Roman
 /Impact
 /ImpressBT-Regular
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /Inter
 /IrisUPC
 /IrisUPCBold
 /IrisUPCBoldItalic
 /IrisUPCItalic
 /JamesHand-Plain
 /Jokerman-Regular
 /JolenesHand-Plain
 /JuiceITC-Regular
 /Julius-BThyssen
 /KabelITCbyBT-Book
 /KabelITCbyBT-Ultra
 /KaufmannBT-Bold
 /KaufmannBT-Regular
 /KeypunchPlain
 /KeystrokesMT
 /KidsPlain
 /KinoMT
 /KorinnaITCbyBT-Bold
 /KorinnaITCbyBT-KursivBold
 /KorinnaITCbyBT-KursivRegular
 /KorinnaITCbyBT-Regular
 /KristenITC-Regular
 /KunstlerschreibschD-Bold
 /KunstlerschreibschD-Medi
 /KunstlerScript
 /LasVegasD
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LevenimMT
 /LevenimMTBold
 /LibertyBT-Regular
 /Lithograph-Bold
 /LithographLight
 /LubalinGraphITCbyBT-Bold
 /LubalinGraphITCbyBT-Book
 /LubalinGraphITCbyBT-Medium
 /LubalinGraphITCbyBT-XtraLight
 /LuciaBT-Regular
 /LucidaBlackletter
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /LydianBT-Bold
 /LydianBT-BoldItalic
 /LydianBT-Italic
 /LydianBT-Roman
 /LydianCursiveBT-Regular
 /Magneto-Bold
 /MaiandraGD-DemiBold
 /MaiandraGD-Regular
 /Map-Symbols
 /MatisseITC-Regular
 /MaturaMTScriptCapitals
 /MeadBold
 /MercuriusScriptMT-Bold
 /MicrosoftSansSerif
 /Minion-Web
 /MiniPicsArtJam
 /MiniPicsClassic
 /MiniPicsLilCritters
 /MiniPicsLilEdibles
 /MiniPicsLilEvents
 /MiniPicsLilStuff
 /MiniPicsLilVehicles
 /MiniPicsRedRock
 /Miriam
 /MiriamFixed
 /MiriamTransparent
 /Mistral
 /Modern-Regular
 /Monotypecom
 /MonotypeCorsiva
 /MonotypeSorts
 /MonotypeSorts2
 /MotterFemD
 /MS-Mincho
 /MSOutlook
 /MSReference1
 /MSReference2
 /MurrayHillBT-Bold
 /Narkisim
 /NevisonCasD
 /NewsGothicMT
 /NewsGothicMT-Bold
 /NewsGothicMT-Italic
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /OCRAbyBT-Regular
 /OCRAExtended
 /OCRB10PitchBT-Regular
 /OldEnglishTextMT
 /Onyx
 /OrbitBbyBT-Regular
 /OzHandicraftBT-Roman
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /PartiesMT
 /PepitaMT
 /PepperPlain
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /PioneerITCbyBT-Regular
 /PlacardMT-Condensed
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /PosterBodoniBT-Roman
 /PresidentPlain
 /Pristina-Regular
 /PTBarnumBT-Regular
 /QuestsHand-Plain
 /QuicksilverITC-Normal
 /QuillScript-Normal
 /QuorumITCbyBT-Black
 /QuorumITCbyBT-Light
 /QuorumITCbyBT-Medium
 /RageItalic
 /RansomBold
 /RansomBoldItalic
 /RansomItalic
 /RansomRegular
 /Ravie
 /RefSpecialty
 /Ribbon131BT-Bold
 /Ribbon131BT-Regular
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /Rod
 /RodTransparent
 /ScriptMTBold
 /SeagullBT-Bold
 /SeagullBT-Heavy
 /SeagullBT-Light
 /SeagullBT-Medium
 /SerifaBT-Bold
 /SerifaBT-Italic
 /SerifaBT-Roman
 /SerifaBT-Thin
 /ShowcardGothic-Reg
 /SignsMT
 /SimSun
 /SloganD
 /SnapITC-Regular
 /SnellBT-Black
 /SnellBT-Bold
 /SnellBT-Regular
 /SouvenirITCbyBT-Demi
 /SouvenirITCbyBT-DemiItalic
 /SouvenirITCbyBT-Light
 /SouvenirITCbyBT-LightItalic
 /SportsThreeMT
 /SportsTwoMT
 /SquareSlabserif711BT-Bold
 /SquareSlabserif711BT-Light
 /SquareSlabserif711BT-Medium
 /Staccato222BT-Regular
 /Staccato555BT-RegularA
 /Stencil
 /StymieBT-Bold
 /StymieBT-BoldItalic
 /StymieBT-ExtraBold
 /StymieBT-ExtraBoldCondensed
 /StymieBT-Light
 /StymieBT-LightItalic
 /StymieBT-Medium
 /StymieBT-MediumItalic
 /Swiss911BT-ExtraCompressed
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TechnicalItalic
 /TechnicalPlain
 /TempusSansITC
 /TiffanyITCbyBT-Demi
 /TiffanyITCbyBT-DemiItalic
 /TiffanyITCbyBT-Heavy
 /TiffanyITCbyBT-HeavyItalic
 /TiffanyITCbyBT-Light
 /TiffanyITCbyBT-LightItalic
 /Times-Bold
 /Times-BoldItalic
 /TimeScrD-Bold
 /TimeScrD-Ligh
 /TimeScrD-Medi
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /TLAsian
 /TLCentralEurope
 /TLCyrillic2
 /TLEastEurope2
 /TLHelpCyrillic
 /TLNaskh2
 /TLNaskhHelp31
 /TransportMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /TypoUprightBT-Regular
 /VacationMT
 /VAGRoundedBT-Regular
 /VanessasHand-Plain
 /Vb02
 /VbAVT
 /VBjrnet
 /VBmw
 /VBox
 /VBRH
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VerdanaRef
 /VinerHandITC
 /VivaldiD
 /Vivaldii
 /VladimirScrD
 /VladimirScript
 /Webdings
 /WendysHand-Plain
 /Westminster
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-Bold
 /ZapfChanceryITCbyBT-Demi
 /ZapfChanceryITCbyBT-Medium
 /ZapfChanceryITCbyBT-MediumItal
 /ZapfDingbats
 /ZapfElliptical711BT-Bold
 /ZapfElliptical711BT-BoldItalic
 /ZapfElliptical711BT-Italic
 /ZapfElliptical711BT-Roman
 /ZurichBT-BlackExtended
 /ZurichBT-RomanExtended
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 310
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 310
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 310
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /SyntheticBoldness 1.000000
 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f007200200069006d00700072006f0076006500640020007000720069006e00740069006e00670020007100750061006c006900740079002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [300 300]
 /PageSize [612.000 792.000]
>> setpagedevice

