
Journal of Information Technology Education Volume 6, 2007

Editor: Jancie Whatley

Know Your Discipline:
Teaching the Philosophy of Computer Science

Matti Tedre
University of Joensuu, Dept. of Computer Science and Statistics

Joensuu, Finland

matti.tedre@cs.joensuu.fi

Executive Summary
The diversity and interdisciplinarity of computer science and the multiplicity of its uses in other
sciences make it hard to define computer science and to prescribe how computer science should
be carried out. The diversity of computer science also causes friction between computer scien-
tists from different branches. Computer science curricula, as they stand, have been criticized for
being unable to offer computer scientists proper methodological training or a deep understanding
of different research traditions. At the Department of Computer Science and Statistics at the Uni-
versity of Joensuu we decided to include in our curriculum a course that offers our students an
awareness of epistemological and methodological issues in computer science, and we wanted to
design the course to be meaningful for practicing computer scientists. In this article the needs
and aims of our course on the philosophy of computer science are discussed, and the structure and
arrangements—the whys, whats, and hows—of that course are explained.

The course, which is given entirely on-line, was designed for advanced graduate or postgraduate
computer science students from two Finnish universities: the University of Joensuu and the Uni-
versity of Kuopio. The course has four relatively broad themes, and all those themes are tied to
the students’ everyday work or their own research topics. I have prepared course readings about
each of those four themes. The course readings describe, in a compact and simple form, the cru-
ces of the topics that are discussed in the course. The electronic version of the course readings
includes hyperlinks to a large number of articles that are available on-line. The course readings
are publicly available on the course home page, and they are licensed under the creative commons
license.

The first theme in the course is centered around a fundamental question—What is computer sci-
ence? Students are introduced to the disciplinary history of computer science, to a number of
characterizations of computer science made by the pioneers of the discipline, and to some meth-
odological and epistemological viewpoints on computer science. The second theme is centered
around the question—What is science? Students are introduced to, for instance, the concepts of

pure and applied science, “hard” and
“soft” sciences, the aims of science, the
scientific method, scientific reasoning,
the formation of scientific concepts and
theories, and the Science Wars.

The third theme concerns the division of
computer science into its theoretical,
engineering, and empirical traditions.
The lecture notes introduce the students
to descriptions of computer science that
emphasize the mathematical tradition

Material published as part of this publication, either on-line or
in print, is copyrighted by the Informing Science Institute.
Permission to make digital or paper copy of part or all of these
works for personal or classroom use is granted without fee
provided that the copies are not made or distributed for profit
or commercial advantage AND that copies 1) bear this notice
in full and 2) give the full citation on the first page. It is per-
missible to abstract these works so long as credit is given. To
copy in all other cases or to republish or to post on a server or
to redistribute to lists requires specific permission and payment
of a fee. Contact Publisher@InformingScience.org to request
redistribution permission.

Teaching the Philosophy of Computer Science

106

over other traditions and to descriptions that emphasize engineering or empirical traditions. The
fourth theme is the philosophy of science. Throughout the course terminology of the philosophy
of science is used, and the students are introduced to a number of central issues in the philosophy
of science, to some of the most notable schools in the philosophy of science, and to some critical
views of science.

This course is aimed at providing a broad understanding of the different traditions of computer
science, of the methodological differences between the branches of computer science, of the
strengths and limitations of the different traditions in computer science, and of how the philoso-
phy of science can be of help to computer scientists. In the course, critical reading and well-
argumented writing are encouraged. The students learn that there are many problems that do not
have clear-cut answers; they learn that there are many open problems where multiple incompati-
ble, yet credible viewpoints can be defended. The students also learn to articulate their own posi-
tions, to defend those positions, to comment and criticize other positions, and to reflect and re-
think their positions according to criticism. The students also get the chance to think about the
intellectual foundations of their own work and their own research studies.

Keywords: philosophy of computer science, foundations of computer science, computer science
education, course description

Background
Computer science is a relatively young discipline. Its birth can be traced to the 1940s, when
wider academic interest in automatic computing was triggered by the construction of the first
fully electronic, digital, Turing-complete computer, ENIAC, in 1945 and the concomitant birth of
the stored-program paradigm (see, e.g., Aspray, 2000). It still took some 20 years for computer
science to achieve a disciplinary identity distinct from fields such as mathematics, electrical engi-
neering, physics, and logic (cf. Atchison et al., 1968; Rice & Rosen, 2004). Throughout the short
history of electronic digital computing, there has been a great variety of approaches, definitions,
and outlooks on computing as a discipline. Arguments about the content of the field, its methods,
and its aims have sometimes been fierce, and the rapid pace of extension of the field has made it
even harder to define computer science (see Tedre, 2006, pp. 255-351).

Over the last 60 years, researchers in the fields of computing have brought together a variety of
scientific disciplines and research methodologies. The resulting science—computer science—
offers a variety of ways for explaining phenomena; most notably it offers computational models
and algorithms. The increased investments in research efforts in computer science have been
paralleled by the growth of the number of computing-centered fields, such as computer engineer-
ing, scientific computation, electrical engineering, decision support systems, architectural design,
and software engineering.

Although interdisciplinarity has made the development of computer science possible in the first
place (cf. Bowles, 1996; Puchta, 1996; Williams, 1985, p. 209), it also poses a very real challenge
to computer scientists. Firstly, it is not certain what kinds of topics should be considered to be
computer science proper. The attempts to describe computer science are invariably either very
narrow and applicable to only some subfields of computer science (e.g., Dijkstra, 1974), or so
broad that they do not exclude much (e.g., Newell, Perlis, & Simon, 1967). Secondly, it is very
difficult to come up with an overarching set of rules of how computer science research should
ideally be done. The subjects that computer scientists study include, for instance, programs,
logic, formulæ, people, complexity, machines, usability, and systems. An overarching set of rules
for computer science research should cover research in fields such as software engineering, com-
plexity theory, usability, the psychology of programming, management information systems, vir-

 Tedre

 107

tual reality, and architectural design. It is uncertain if an overarching, all-inclusive definition of
computer science is possible, and if such definition is even necessary.

It is important for computer scientists to understand the challenges (and possibilities) that the vast
diversity of computer science research can cause. Many disputes about how computer scientists
should work have their roots in different conceptions about what computer science actually is (cf.
Denning et al., 1989). Many misunderstandings and controversies between scientists from differ-
ent branches of computer science might be avoided by their understanding the research traditions
within which people in those branches work.

Even more importantly, computer scientists must know that the same approaches cannot be used
with the whole variety of subjects that computer scientists study. Mathematical and computa-
tional models are precise and unambiguous, yet they are confined to the abstract world of mathe-
matics and they fail to capture the richness of physical and social reality. Narratives and ethno-
graphies are rich in dimension and sensitive to detail, yet equivocal and context-dependent. Nar-
ratives have little use in deriving formulæ, and formal proofs have little explanatory power re-
garding usability.

It has been argued that there are three particularly lucid traditions in computer science: the theo-
retical tradition, the empirical tradition, and the engineering tradition (cf. Denning et al., 1989).
Already having those three research traditions in computer science raises some major problems.
The variety of research approaches within and among those traditions might bring about onto-
logical, epistemological, and methodological confusion. For instance, the theoretical (logico-
mathematical) tradition and the engineering tradition entail different ontological views about their
subjects of study, the empirical tradition and the theoretical tradition employ different method-
ologies, and the engineering tradition and the empirical tradition have different views about the
epistemological status of their research results. It is notoriously difficult to conduct research in
the intersection of research traditions without making a mess of it (e.g., Denzin & Lincoln, 1994,
pp. 2-3, 99-100).

Some authors who have conducted meta-research in the field of computing (e.g., Glass, 1995;
Tichy, Lukowicz, Prechelt, & Heinz, 1995) have argued that the analytical research tradition is
“seriously flawed” and “alarming” because the analytical research tradition does not necessitate
the use of empirical studies to empirically validate hypotheses, models, or designs. Note that
those authors do not actually argue that the analytical research tradition would be seriously
flawed and alarming in theoretical computer science, where the analytical research tradition ar-
guably suits best. What those authors seem to consider alarming is taking the analytical research
tradition outside its conventional logico-mathematical and philosophical domains. That is, those
authors argue that it is dubious to support scientific hypotheses only through forceful argumenta-
tion and anecdotal evidence, without any empirical testing.

In a similar manner, when Frederick P. Brooks Jr. (1996) warned that computer scientists should
not confuse their products with laws, his concern was that computer scientists mix up engineering
and natural science. His message was that if researchers follow the engineering tradition and aim
at building things, then they should not confuse novelty as a valuable feature of a product (unlike
the natural sciences where the smallest new findings about the world can be considered to con-
tribute to knowledge about the world). In the engineering tradition, the value of a product can be
measured in many ways (such as operationality, usability, cost-effectiveness, effectiveness, or
efficiency) but how value is measured in the engineering tradition is different from how value is
measured in the analytical tradition and in the empirical tradition.

Teaching the Philosophy of Computer Science

108

Methods from the analytical/theoretical tradition can certainly be utilized in empirical research,
methods of the empirical tradition can be utilized in engineering, and all other combinations of
the traditions may turn out useful, too. Yet, some caution is necessary when one moves between
traditions. For instance, one cannot formally prove either that an engineered product has the in-
tended qualities or that an engineered product will not fail (these notions were the coup de grâce
of the formal verification debate—see Fetzer, 1988; Smith, 1996[1985]). One can rarely empiri-
cally demonstrate the correctness of a theorem. Showing that a product can be built does not
demonstrate its utility or any other qualities—that is, showing that it is possible to build some-
thing does not mean that it is feasible or necessary to build it. The computer scientist who min-
gles traditions or disciplines must know each tradition or discipline well, or otherwise the result
may look flawed from the point of view of each tradition and discipline (Figure 1; cf. Denning et
al., 1989).

Although mixing disciplines can potentially lead to problems, to cope with the gamut of topics in
computer science, computer scientists often need to employ approaches and methods from a vari-
ety of fields. In this sense, computer scientists are expected to be bricoleurs, sort of academic
jacks-of-all-trades. But usually one cannot adopt only one aspect of a paradigm. If one adopts,
for instance, the methods from one paradigm, it is usually necessary to also adopt the standards,
boundaries of applicability, validation procedures, and even the epistemological and ontological
assumptions from that paradigm. If computer scientists choose to borrow from other fields only
the parts they like, the resulting computer science may not be valid in any of the fields that are
utilized. That can be a serious problem.

In addition to its intra-disciplinary diversification, computer science is increasingly applied in
other fields such as biology, physics, chemistry, and even psychology, sociology, and anthropol-
ogy. Algorithmic and computational models are utilized in an increasing variety of fields
(Easton, 2006). It has been argued that this sort of versatility is an advantage for the development
of computer science (Brooks, 1996). It is quite plausible that a better understanding of the as-
sumptions, constraints, limitations, and premises of computer science can help computer scien-
tists to accommodate computer science for the uses of other disciplines. It is also plausible that a
better understanding of computer science can make it easier to utilize knowledge from other dis-
ciplines for the benefit of computer science. Understanding the strengths and weaknesses of one's

Figure 1: Overlapping Intellectual Traditions in Computer Science

 Tedre

 109

own intellectual tradition can, at the very least, create a realistic image of one’s discipline, and
perhaps increase one's valuation of other intellectual traditions.

However, it is uncertain if computer science education can provide computer scientists the meth-
odological understanding and the disciplinary understanding that interdisciplinary work requires.
It has been argued that “the typical computing researcher draws his or her research skills from [1]
a background of mentoring; master-apprentice relationships with senior professors in a PhD pro-
gram; and from [2] patterning activities; examining the writings of successful prior researchers”
(Glass, 1995). From a curricula point of view, research methodology courses in a typical com-
puter science curriculum are rare; for instance, the official ACM/IEEE curriculum recommenda-
tions (Denning et al., 2001) do not include a course on methodology, research design, or research
paradigms.

In addition, it has been argued that computer scientists publish relatively few papers with experi-
mentally validated results (Tichy et al., 1995). Other researchers have argued that some comput-
ing branches are seriously inbred (Glass, Ramesh, & Vessey, 2004; Ramesh, Glass, & Vessey,
2004). Even other researchers have argued that research reports in computing fields rarely in-
clude an explanation of the research approach in the abstract, key word, or research report itself
(Vessey, Ramesh, Glass, 2002), which makes it difficult to analyze how computer scientists gen-
erally arrive at their results. Finally, despite the noted deficiencies in computer scientists' re-
search training, practicing computer scientists utilize a vast array of methods in their work. The
methodological diversity in computer science has been described by a number of authors (e.g.,
Alavi & Carlson, 1992; Choudrie & Dwivedi, 2005; Galliers & Land, 1987; Kitchenham, 1996;
Lai & Mahapatra, 1997; Mingers, 2003; Muller, Wildman, & White, 1993; Ramesh et al., 2004;
Randolph, 2007; Tichy et al., 1995; Vessey et al., 2002; Walsham, 1995; Zelkowitz & Wallace,
1997).

The charges above are serious. In other words, the charges are that (1) the official computer sci-
ence curriculum does not include courses in research paradigms or research methodology; (2)
many computer scientists learn their research skills from examining earlier research (mostly in
computer science); (3) research papers in computer science often lack a description of methodol-
ogy; yet (4) computer scientists utilize a large variety of methods and approaches (sometimes
without having sufficient knowledge for using them).

These accusations could, justly, offend many computer scientists. Certainly there must be many
academic institutions in which computer scientists are given proper training on research design,
research paradigms, working in interdisciplinary fields, epistemological and methodological con-
flicts, and so forth. Certainly many computer scientists meticulously report their research meth-
odology in their publications. And certainly, many computer scientists are knowledgeable about
the particular research methodologies they utilize. Also, at the Department of Computer Science
and Statistics at the University of Joensuu we have come to the conclusion that it is a proper part
of a computer scientist's education to be aware of the epistemological and methodological issues
in computer science. Hence, we have explicitly included, in our curriculum, a course that deals
with those issues—issues that properly fall in the domain of the philosophy of computer science.

Teaching the Philosophy of Computer Science
In this section a number of approaches to the philosophy of computer science are described, a
current problem of a lack of textbooks is discussed, and the curriculum of a course in the philoso-
phy of computer science being taught in our department is outlined. The reader should note that
the view of the philosophy of computer science presented here differs to a certain degree from the
philosophy of artificial intelligence, from the philosophy of information, from computing ethics,
and from the philosophy of the mind. The philosophy of computer science is a “philosophy of a

Teaching the Philosophy of Computer Science

110

specific discipline” in the same sense as the philosophy of physics, the philosophy of biology, and
the philosophy of mathematics (e.g., Colburn, 2000. pp. 129-131; Shapiro, 2000, pp. vii). Those
branches of philosophy deal with the questions and problems of specific academic disciplines.
The concerns typically include ontological, epistemological, and methodological issues, as well
as questions about the logic, ethics, and semantics of that discipline.

The Philosophy of Computer Science Elsewhere
The term philosophy of computer science is not well established. The term can be found in a
number of places, in different meanings. One of the original characterizations of the term is by
Timothy R. Colburn. Colburn (2000) dedicated the last part of his book Philosophy and Com-
puter Science to the “philosophy of computer science”, touching on issues such as the relation-
ships between computer science and mathematics, engineering, and experimental science; the
formal verification debate; levels of abstraction in computer science and the role of abstraction;
and what kinds of issues the philosophy of computer science deals with. Colburn's book offers a
fruitful starting point for the topic.

The January 1999 issue of The Monist (vol. 82, no. 1) was a special issue on the philosophy of
computer science, and the articles in that special issue constitute an eclectic array of topics
loosely connected under the umbrella term philosophy of computer science. The European Con-
ference on Computing and Philosophy (E-CAP) has a track on the philosophy of computer sci-
ence, and the extended abstracts available at the conference website offer an overview of the mul-
tiplicity of topics that are included under the track. Amnon H. Eden and Raymond Turner from
the University of Essex maintain a web collection of online and offline resources concerning the
philosophy of computer science (http://pcs.essex.ac.uk/). Also William J. Rapaport’s home page
for his course on the philosophy of computer science offers a good collection of online and off-
line texts (http://www.cse.buffalo.edu/~rapaport/584S07.html).

There are a number of good book-candidates for a course on the philosophy of computer sci-
ence—books by prominent people in the field, such as Luciano Floridi (1999, 2004), Timothy R.
Colburn (2000), Brian Cantwell Smith (1998), Terrell Ward Bynum, and James H. Moor (Bynum
& Moor, 2000; Moor & Bynum, 2003). If one widens the perspective to the philosophy of com-
puting in general, to the philosophy of information, or to the philosophy of artificial intelligence,
the number of potential textbooks grows enormous. However, I concur with William J. Rapa-
port’s (2005) opinion in that none of those books suffices as a textbook for a course on the phi-
losophy of computer science. The books above are outstanding monographs and anthologies, but
they are not appropriate textbooks for this course.

Several universities have offered courses under the title philosophy of computer science or some-
thing similar. In William J. Rapaport's reading-intensive course at the State University of New
York at Buffalo, USA, Rapaport preferred original articles to general overview articles, mono-
graphs, or anthologies. Rapaport's text in which he described his course (Rapaport, 2005) offers a
careful description of the articles he included in the course, along with rationales for choosing
those articles. In Mälardalen University, Sweden, Gordana Dodig-Crnkovic adopted a lecture-
centered approach with class discussions and a mini-conference with paper presentations for stu-
dents (Dodig-Crnkovic, 2006). One can easily find, in the Internet, courses on the philosophy of
computing, the philosophy of artificial intelligence, the philosophy of the mind, the philosophy of
information, and so forth, but those topics are significantly different from what is meant by the
term philosophy of computer science in this course. In this course we focus on philosophical is-
sues that should also concern those computer scientists who have no interest in philosophy in
general. The focus is practical and straightforward in the sense that we deal with issues that can
make a difference in our students’ work, research, and writing, and in the sense that we try not to
delve too deep into sophisticated speculations. In a word, we deal with philosophical issues that

 Tedre

 111

directly concern the everyday work of computer scientists. In the following section the approach
taken in this course is described.

The Philosophy of Computer Science Course at the University of
Joensuu
Our course, titled The Philosophy of Computer Science, is an online course with no contact teach-
ing. Students from two Finnish universities—the University of Joensuu and the University of
Kuopio—can participate in the course. An online course is the only viable alternative for a
course that is held simultaneously for students in spatially distant universities in a relatively large
and sparsely inhabited country. Similar to Rapaport's course, I designed this course to be read-
ing-intensive. I decided to include weekly tasks, which include reading, writing, reflecting, and
commenting on other students' writing.

The course is targeted for graduate (M.Sc) and postgraduate (PhD) students who have studied
computer science long enough to have an idea of what kinds of things computer scientists do.
Graduate students are required to have a M.Sc thesis topic chosen, and their coursework includes
an in-depth analysis of the philosophical foundations of their work. Postgraduate students are
also expected to relate their own research with the paradigms of computer science; describe the
intellectual foundations of their research; and explain the applicability, limitations, and bounda-
ries of their research results.

Since there was no obvious choice for a course textbook, and since giving non-native English
speakers a large number of original texts in English seemed unreasonable, I decided to prepare
course readings about a number of central themes in the course. This way I was able to pull to-
gether the essence of a good number of original texts without putting an undue burden of transla-
tion on the students. (For instance, in spring 2007 none of the 62 course participants were native
English speakers; there were students from Finland, Spain, Kenya, Russia, Kazakhstan, Mexico,
Zambia, Czech Republic, Nepal, Jordan, Tanzania, and Armenia.) The course readings describe
the cruces of the topics that are discussed in the course, yet the readings present those crucial
points in a more compact and hopefully simpler form than the original texts. To encourage criti-
cal reading and to offer pointers for further reading, the electronic version of the course readings
includes hyperlinks to all the articles that are available on-line. The course readings are publicly
available under the creative commons license (see Tedre, 2007).

Theme 1: What is computer science?
The question “What is computer science?” is fundamental to this course. It is also a fundamen-
tally multifaceted and fundamentally unresolved issue. The question of the identity of computer
science has puzzled even—and perhaps especially—the most authoritative figures of computer
science. Because of the question's relationship with other topics in the course, the question is ex-
plicitly visited three times during the course. During the first week of the course, the students are
asked to define, in their own words, computer science. After this, the students vote for their fa-
vorite definition and discuss three of the most favored definitions in a discussion forum. The stu-
dents are required to analyze the pros and cons of each of the three definitions in no less than 300
words per post. The aim is to lay the foundations for subsequent tasks.

The question is revisited after the students have become familiar with the disciplinary history of
computer science and after they have been introduced to a good number of viewpoints of com-
puter science by influential figures such as Newell, Simon, and Perlis (1967), George Forsythe
(1967), Richard Hamming (1969), Donald Knuth (1974b), Edsger Dijkstra (1974, 1987), Peter
Wegner (1976), Marvin Minsky (1979), Herbert A. Simon (1981), John E. Hopcroft (1987), Peter
J. Denning et al. (1989), George McKee (1995), Frederick P. Brooks Jr. (1996), and Glenn

Teaching the Philosophy of Computer Science

112

Brookshear (2003). The aim is to widen the students' perspectives on the different views of com-
puter science.

The question is revisited a third time after the students have become familiar with the ontological,
epistemological, and methodological issues in computer science. That is to say, during the course
the students read about the different views on the philosophy of science, about normative and de-
scriptive statements, about progress in science, about the limits of modeling and testing in com-
puter science, about the different aims of science, about explanation and understanding, and so
forth. At the end of the course the students are asked, a third time, to individually characterize
computer science. The aim is to deepen the students' analysis of computer science. They are also
required to submit a short text, in which they reflect on the changes in their characterizations—
that is—their learning.

Theme 2: What is science and how is it done?
In order to be able to discuss the meaning of science in computer science, the students need to
understand the difficulties in defining science. The term can indeed be read in a number of ways,
depending on the context. For instance, science can mean (1) a class of activities such as obser-
vation, description, and theoretical explanation; or (2) colloquially, any activity that resembles or
has characteristics like those: He has gotten boxing down to a science. Science can also refer to
(3) a sociocultural and historical phenomenon: Western science. Science can refer to (4) knowl-
edge (scientific knowledge) that is gained through experience; especially (5) knowledge that has
been logically arranged in the form of general laws (Knuth, 1974a), or (6) structured knowledge
derived from “the facts” (Chalmers, 1999, p. 1). Science can be understood as a (7) societal insti-
tution: Humanity should be governed by science, or a (8) world view: The scientific world view.
Science can also be thought of as (9) a specific style of thinking and acting (Bunge, 1998b, p. 3),
and even as (10) the profession of scientists.

To make the students familiar with the many faces of science, the students and I discuss, for in-
stance, whether pure and applied sciences are really separate things. The lecture notes portray the
problems of dichotomous positions towards science—problems such as the arguments that ap-
plied science is intellectually inferior to pure science and that pure science has become alienated
from practical, everyday matters (e.g., Knuth, 1991). The lecture notes also deal with the aims of
science; those aims are often considered to be exploration, description, explanation, and predic-
tion of phenomena (Wright, 1971, 1). The students must submit a short text in which they reflect
on the aim of their own research or thesis.

Because the course is specifically focused on the philosophy of computer science, the topics
above are tightly linked to computer science. We discuss, for instance, if computer science is a
science at all (Hartmanis, 1993), if there is a strict dividing line between pure and applied in
computer science (Knuth, 1991) and where that line can be seen, whether the theoretical construc-
tions of computer science are more like theorems or like laws (see Bunge, 1998a, p 391; Bunge,
1998b, p. 38ff), and what the aim of computer science is. The students continue to ponder
whether their own PhD or M.Sc theses deal with a priori or a posteriori knowledge; if they require
inductive, deductive, or abductive reasoning; and if they require causal explanations, functional
explanations, or intentional explanations of phenomena, or something else. The students are also
asked to analyze the aims, boundaries, and intellectual traditions of their own research—which is
something that is not always explicit in computer scientists' education.

Theme 3: Mathematics, engineering, and science
Understanding the intellectual connections of computer science is of major importance in under-
standing the nature of computer science. Based on a well-known tripartite of computer science
into its theoretical/mathematical tradition, modeling/abstraction tradition, and design/engineering

 Tedre

 113

tradition (Denning et al., 1989; Wegner, 1976), the roles that mathematics, engineering, and sci-
ence play in computer science are discussed. The central question is whether one of those three
traditions of computer science—or perhaps something else—is more central to computer science
than the others. The relationships between computer science, mathematics, empirical science,
and engineering are discussed separately. The aim of this theme is to clarify the contribution and
the role of each of the three traditions.

In theme 3, the students are faced with the “pivotal question” of whether computer science is re-
ducible to mathematics or logic (see Colburn, 2004). The students are first presented C.A.R.
Hoare's argument that computer science and programming are indeed reducible to mathematics
(Hoare, 1969). Hoare's argument is followed by the positions of the proponents of formal verifi-
cation (Dijkstra, 1972; Floyd, 1967; Naur, 1966; Wirth, 1971), its critics (De Millo, Lipton, &
Lipton, 1979; Fetzer, 1988), and some complementary viewpoints (Dobson & Randell, 1989;
Smith, 1996). The connection between mathematics and computer science is discussed further,
using a number of articles by eminent computer scientists (e.g., Dijkstra, 1974; Knuth, 1974b).
The post-software crisis debates of whether there should be more or less mathematics in the com-
puting curricula are discussed (e.g., Atchison et al., 1968; Austing, Barnes, Bonnette, Engel, &
Stokes, 1977; Davis, 1977; Glaser, 1974; Hamming, 1969; Kandel, 1972; Khalil & Levy, 1978;
Ralston & Shaw, 1980; Wishner, 1968). The students are asked to form a position of their own
and write a 200-300 word response to Hoare; they are then required to read each others' responses
and to write follow-ups to each others' texts. The aim of this theme is to portray the strong role
that mathematics plays in computer science, how computer scientists should work if computer
science were taken as a strictly mathematical field, and where the limits of the logico-
mathematical tradition lie.

Second, the students are presented the argument that computer science is an engineering disci-
pline; an argument which relies on the view that the goal of computer science is to design and
construct useful things (cf. Loui, 1995; Wegner, 1976). The students are presented with the view
that unlike mathematicians (who work with abstract things), computer scientists (who design
working computer systems) are bound by material resources, human constraints, and the laws of
nature. Engineers design complex, cost-effective systems with minimal resource consumption.
A contrast is also made to natural scientists who deal with naturally occurring phenomena, noting
that engineers deal with artifacts that are created by people. The students are asked to consider
what role engineering plays in computer science and in their own research topics (e.g., an auxil-
iary role, a dominating role, a complementary role, etc.).

To help students arrive at a broad understanding of what engineering in computer science means,
a number of central views of engineering are presented. The tenets of engineering presented in-
clude, for instance, that “progress is achieved primarily by posing problems and systematically
following the design process to construct systems that solve them” (Denning et al., 1989;
Wegner, 1976); that the “scientist builds in order to study, and the engineer studies in order to
build” (Brooks, 1996); that instead of being concerned with the discovery of laws and facts, engi-
neers are concerned with making things, be they computers, algorithms, or software systems
(Brooks, 1996); and that progress in engineering is documented by demonstrations instead of ex-
periments that support or refute hypotheses (Hartmanis, 1993). A general account of the engi-
neering method, which relies on engineering heuristics, is presented (Koen, 2003). Also some
think-pieces about the engineering argument in general and about the distinction between hard-
ware and software are presented (Holloway, 1995; Moor, 1978; Zelkowitz & Wallace, 1997).
The students are asked to make a well-grounded argument for whether computer science relies
mostly on abstract ideas, theories, structures, working hypotheses, implementations, or something
else. Again, the students are required to read each others' arguments and to comment on those

Teaching the Philosophy of Computer Science

114

arguments. The aim of this part is to discuss the significance, limits, and methods of the engi-
neering tradition in computer science.

Third, the students are presented the argument that computer science is an empirical science.
Some authors liken computer science to natural science, at least to some degree (cf. Tichy, 1998;
Denning, 1980) or argue that computer scientists study both naturally occurring and human-made
information processes (Denning, 2005). Others tend to think that computer science is an empiri-
cal science that studies artificial things (Knuth, 2001, p. 167; Simon, 1981). Many authors argue
that computer scientists should strive to work like physicists and other natural scientists do
(Feldman & Sutherland, 1979). Paul Rosenbloom (2004) argued that computer science is a new,
fourth domain of science, distinct from the physical sciences, which focus on nonliving matter;
the life sciences, which focus on living matter; and the social sciences, which focus on humans
and their societies. In the light of the discussion about what science is, the students are asked to
consider and report on whether computer science is indeed an empirical science (or experimental
science, or laboratory-based science).

The students are then familiarized with the scientific method and with the model of science based
on hypotheses, models, predictions, experiments, and analysis (e.g. Hempel, 1965; Kemeny,
1959; Popper, 1959[1935]). They are also presented the different ways in which one can model
and represent phenomena (Fetzer, 1999; Smith, 1996). The students are asked to give examples
of phenomena that are beyond the logico-mathematical tradition but that empirical research can
describe, predict, and control. They are also asked to make an argument about whether subject or
method of inquiry defines what is science, and to use their argument to analyze their own re-
search.

Finally, the students are presented counterarguments about why computer science might not pass
for a science. For instance, they are presented with the view that theories in computer science do
not explain fundamental phenomena (cf. Hartmanis, 1993) and the view that much of computer
science resembles exploration of uncharted territory rather than seeking solutions to clearly speci-
fied problems (Fletcher, 1995). A note is made that the observations about algorithm behavior,
the usability of machinery and software, or information retrieval, are observations of things that
computer scientists have constructed. It is noted that those observations might not bring to light
anything new about the world—those observations might only indicate how well previous com-
puter scientists had done their jobs. It is also noted that whereas research in the natural sciences
is based on observations (data) that scientists can explain, predict, and replicate, there is no data
in computer science beyond the computer and programs (McKee, 1995). At the end, the students
are asked to form a position of their own regarding the scientific nature of computer science, and
to write a 500-800 word essay on it. They are then required to read each other's essays and to
write two comments on other students’ essays.

Theme 4: What is the philosophy of science?
As the course title implies, the course is closely connected to the philosophy of science. Most
concepts and terms used in the course indeed belong to the vocabulary of the philosophy of sci-
ence. Because most of computer science students have no previous familiarity with the philoso-
phy of science, the students are given an introduction to a number of central issues in the philoso-
phy of science, such as the foundations of science, its central assumptions and limitations, its im-
plications, and what constitutes scientific progress. Three basic questions that appear often in the
philosophy of science are introduced: the ontological, epistemological, and methodological ques-
tions: “What is real?”, “How do we get to know about the reality?”, and “By which principles do
we form knowledge?” (Denzin & Lincoln, 1994, pp. 99-100). However broad and vague those
questions may appear at first, we continue from them to questions that are more specific and more
easily applicable to computer science topics.

 Tedre

 115

In this course specific questions are emphasized instead of very generic questions. More empha-
sis is given to questions about computer science than to generic questions about all sciences.
Students are required to relate questions central to the philosophy of science with their own PhD
or M.Sc thesis topics. The questions that are dealt with include, for instance, “What is scientific
knowledge and how is it different from other kinds of knowledge?”, “With what kinds of methods
is computer science research done?”, “What are the limits of scientific knowledge?”, “How does
computer science develop?”, “What role do argumentation, logic, confirmations, concepts, dem-
onstrations, and consensus play in computer science?”, “Are scientific results objective or subjec-
tive?”, and “What can be proven?”.

The course includes an introduction to some aspects of epistemology, such as the deep-rooted
phrase that “knowledge is justified true belief” and its refutation (Gettier, 1963), to various forms
of scientific explanation and understanding (Wright, 1971), and Hempel's model of scientific ex-
planation as well as the deficiencies of that model (Hempel, 1965, pp. 331-496). The course also
includes a short introduction to basic versions of some major schools in the philosophy of sci-
ence—rationalism, inductivism, logical positivism, falsificationism, and Kuhn's theory of scien-
tific revolutions. Some alternatives to and criticisms of those are also discussed; such as Feyera-
bend's anarchistic theory of science (Feyerabend, 1993) and new Bayesianism (Chalmers, 1999,
pp. 174-192). The aim of this part of the course is to familiarize the students with some basic
positions and some vocabulary in the philosophy of science.

Not only in this theme, but throughout the course, the students become familiar with a number of
central questions in the philosophy of science, such as the problem of causation (Hume, 1739,
sect. 6), the distinction between normative and descriptive arguments (Hume, 1739, Book III, pp.
507-521), the problem of growth of knowledge (e.g., Lakatos & Musgrave, 1970), the underde-
termination thesis (Duhem, 1977, pp. 183-188; Quine, 1980, pp. 20-46), the problem of induction
(Hume, 1777, Section IV,I:20-27,II:28-33), the problem with the theory-independence of facts
(e.g., Chalmers, 1999, pp. 12-18; Smith, 1998, pp. 49-50), necessary and sufficient conditions, the
problem with the progress of mathematics (Lakatos, 1976; Shapiro, 2000), and a number of other
topics.

At the end of the course the students are required to write an 800-1000 word discussion forum
post in which they choose and defend a philosophical position for their own research. They need
to clearly state the aims of their research and to utilize the lecture material to analyze the episte-
mological and methodological issues in their research. Each student is then asked to critically
evaluate the analyses of two other students using no less than 300 words.

Organizational issues
Grading online courses is difficult. The open questions include, for instance, if diligence should
be rewarded over insightfulness, if originality should be rewarded over mastery of the course con-
tent, how many times should one be able to revise one's texts, and if critical skills should be val-
ued over constructive skills. Although there clearly are no simple answers, I wanted to empha-
size the importance of writing and responding to other people’s writings, so in this course I
adopted a grading system that aims at some kind of a balance between rewarding work, or quan-
tity, and rewarding insight, or quality. The progressive grading system that I adopted is presented
in Figure 2. At the University of Joensuu, a five-point integer scale from 1 (at least 50% of
maximum points) to 5 (at least 90% of maximum points) is used in grading (zero indicates a fail-
ing grade).

I grade every task on a five-point integer scale. Students are required to complete 50% of the
tasks in order to pass the course, and those students who complete more than 80% of the tasks
cannot fail the course. With 50% completed tasks, the best possible grade is a 2, but the students

Teaching the Philosophy of Computer Science

116

who have completed 50% of the tasks will get grade 2 only if each completed tasks was given full
marks. The best grade 5 is available for students who complete at least 80% of the tasks. Also, if
the student completes more than 80% of the tasks, the minimum grade begins to increase. If the
student has completed 100% of the tasks, the minimum grade is 3. Grading is straightforward:
first the average of student's marks from completed tasks is calculated (1 ≤ m ≤ 5), and that aver-
age is summed with a base score that grows in a linear fashion from -3 (50% tasks completed) to
2 (100% tasks completed). During the course the students know what marks they have been
given from previous tasks.

As the course is held in two spatially distant universities, there are no lectures, tutorials, or face-
to-face group discussions. The course is run on an open source solution—the Moodle online
learning platform. The lecture readings are licensed under the creative commons license, which
is an open license that allows free copying and distribution of the material, but prohibits commer-
cial uses and modification of that material. The lecture notes are publicly available on-line
(http://cs.joensuu.fi/~mmeri/teaching/2007/philcs/).

Reading and grading students' writings is tedious work for teachers, especially in such a reading-
and writing-intensive course as this. Therefore, peer evaluation is emphasized. Although I moni-
tor and administer the discussion groups, the students spend a considerable amount of time read-
ing and commenting on each other's texts. Students are able to revise their texts based on the
comments of others, and I only evaluate the end products. This radically diminishes the amount
of feedback I need to write.

Conclusions
In the first section a short disciplinary history of computer science was presented, and it was ar-
gued that the interdisciplinary nature of computer science has fueled a growth of computer sci-
ence that is unparalleled by any other science, but that the same interdisciplinarity also poses
problems in disciplinary understanding of computer science. Today the term computer science
covers so many incommensurable research traditions that conflicts between paradigms are inevi-
table. Computer science education in general has been criticized as lacking methodological train-
ing and ignoring courses on research traditions. At the Department of Computer Science and Sta-
tistics at the University of Joensuu, Finland, we have introduced a course that addresses those
issues.

In the second section a number of courses around the world on the philosophy of computer sci-
ence were outlined, and some of the literature available on the topic was described. Especially

Figure 2: Completion of Tasks and Corresponding Grades

 Tedre

 117

the lack of suitable textbooks on the topic is a problem for many educators. My solution was to
rewrite the essential readings in a simplified and compact form. The number of topics that are
covered in the course is small compared to similar courses run in other academic institutions: I
have excluded or given less emphasis to topics such as the philosophy of artificial intelligence,
computer ethics, the philosophy of the mind, the philosophy of information, and the philosophy
of computing. This course is specifically about the philosophy of computer science as the phi-
losophy of a specific academic discipline.

This course is divided into four broader themes, which overlap to some degree. The first broad
theme is the identity of computer science. There are numerous accounts of what computer sci-
ence is, and in this course the merits and pitfalls of a good number of those accounts are dis-
cussed. The second broad theme is dissecting the term science. Different aspects of science, in-
cluding its aims, methods, logic, kinds of explanations, and boundaries, are analyzed. The third
broad theme is the famous tripartite of computer science into its mathematical, empirical, and
engineering traditions. Each tradition is considered separately, and the pros and cons, boundaries,
applicability, influences, methods, and other qualities of each are considered. The fourth broad
theme is the philosophy of science. The discussions include a number of central philosophical
issues that can easily be connected with computer science, such as the foundations of science, the
growth of scientific knowledge, scientific revolutions, the relationship of theory and observation,
underdetermination, and so forth.

This course offers students alternative viewpoints to what computer science is, how computer
scientists work, and why computer scientists work as they do. More importantly, this course en-
courages critical thinking more than many other courses in computer science. The students learn
that there are many problems that do not have clear-cut answers; they learn that there are open
problems where multiple incompatible, yet credible viewpoints can be defended. Students also
learn to form and defend their own positions, to comment and criticize other positions, and to re-
flect and revise their arguments according to criticism. Finally, the students have the chance to
thoroughly think about the intellectual foundations of their own work and their own theses.

Acknowledgements
I wish to thank two experts on e-learning, Pasi Silander and Lynette Nagel, for their advice on the
course arrangements. This work was funded by the East Finland Graduate School in Computer
Science and Engineering (ECSE) and the National Institute for International Education (NIIED)
of the Korean Government.

References
Alavi, M., Carlson, P. (1992). A review of MIS research and disciplinary development. Journal of

Management Information Systems, 8(4), 45-62.

Aspray, W. (2000). Was early entry a competitive advantage? US universities that entered computing in
the 1940s. IEEE Annals of the History of Computing, 22(3), 42-87.

Atchison, W. F., Conte, S. D., Hamblen, J.W., Hull, T.E., Keenan, T.A., Kehl, W.B., McCluskey, E.J.,
Navarro, S.O., Rheinboldt, W.C., Schweppe, E.J., Viavant W., & Young, D.M. (1968). Curriculum '68,
recommendations for academic programs in computer science. Communications of the ACM, 11(3),
151-197.

Austing, R.H., Barnes, B.H., Bonnette, D.T., Engel, G.L., & Stokes, G. (1977). Curriculum
recommendations for the undergraduate program in computer science: A working report of the ACM
Committee on Curriculum in Computer Science. ACM SIGCSE Bulletin, 9(2), 1-16.

Bowles, M.D. (1996). U.S. technological enthusiasm and the British technological skepticism in the age of
the analog brain. IEEE Annals of the History of Computing, 18(4), 5-15.

Teaching the Philosophy of Computer Science

118

Brooks, F.P., Jr. (1996). The computer scientist as Toolsmith II. Communications of the ACM, 39(3), 61-
68.

Brookshear, J.G. (2003). Computer science: An overview (7th edition). New York: Addison-Wesley.

Bunge, M. (1998a [1967]). Philosophy of science Vol. 1: From problem to theory (revised ed.). New
Brunswick, New Jersey, USA Transaction Publishers.

Bunge, M. (1998b [1967]). Philosophy of science Vol. 2: From explanation to justification (revised ed.).
New Brunswick, New Jersey, USA Transaction Publishers.

Bynum, T.W. & Moor, J.H. (2000). The digital phoenix: How computers are changing philosophy. Oxford,
UK: Blackwell Publishers.

Chalmers, A.F. (1999 [1976]). What is this thing called science? (3rd. edition). Queensland, Australia:
University of Queensland Press.

Choudrie, J. & Dwivedi, Y.K. (2005). Investigating the research approaches for examining technology
adoption issues. Journal of Research Practice, 1(1), Article D1.

Colburn, T.R. (2000). Philosophy and computer science. Armonk, NY, USA: M.E. Sharpe.

Colburn, T.R. (2004). Methodology of computer science. In L. Floridi (Ed.), The Blackwell guide to the
philosophy of computing and information (pp. 318-326). Cornwall, UK: Blackwell Publishing.

Davis, R.L. (1977). Recommended mathematical topics for computer science majors. ACM SIGCSE
Bulletin, 9(3), 51-55.

De Millo, R.A., Lipton, R.J., & Perlis, A.J. (1979). Social processes and proofs of theorems and programs.
Communications of the ACM, 22(5), 271-280.

Denning, P.J. (1980). What is experimental computer science? Communications of the ACM, 23(10), 534-
544.

Denning, P.J. (2003). Great principles of computing. Communications of the ACM, 46(11), 15-20.

Denning, P.J. (2005). Is computer science science? Communications of the ACM, 48(4), 27-31.

Denning, P.J. (Chairman), Comer, D.E., Gries, D., Mulder, M.C., Tucker, A., Turner, A.J., & Young, P.R.
(1989). Computing as a discipline. Communications of the ACM, 32(1), 9-23.

Denning, P. J., Chang, C. (chairmen) and IEEE/ACM Joint Task Force for Computing Curricula (2001).
Computing curricula 2001. Retrieved Feb 14 2007 from http://www.sigcse.org/cc2001/

Denzin, N.K. & Lincoln, Y.S. (Eds.). (1994). Handbook of qualitative research. London, UK: SAGE.

Dijkstra, E.W. (1972). The humble programmer. Communications of the ACM, 15(10), 859-866.

Dijkstra, E.W. (1974). Programming as a discipline of mathematical nature. American Mathematical
Monthly, 81(June-July), 608-612.

Dijkstra, E.W. (1987). Mathematicians and computing scientists: The cultural gap. Abacus, 4(4), 26-31.

Dobson, J. & Randell, B. (1989). Program verification: Public image and private reality. Communications
of the ACM, 32(4), 420-422.

Dodig-Crnkovic, G. (2006). What is philosophy of computer science? Experience from the Swedish
national course. European Conference on Computing and Philosophy – E-CAP'06, June 2006, NTNU,
Trondheim, Norway. Extended abstract retrieved Feb 14, 2007 from
http://www.anvendtetikk.ntnu.no/ecap06/program/Dodig-Crnkovic.pdf

Duhem, P.(1977 [1914]). The aim and structure of physical theory (2nd edition, 3rd reprint). New York,
USA: Atheneum.

Easton, T.A. (2006). Beyond the algorithmization of the sciences. Communications of the ACM, 49(5), 31-
33.

 Tedre

 119

Feldman, J.A. & Sutherland, W.R. (1979). Rejuvenating experimental computer science: A report to the
National Science Foundation and others. Communications of the ACM, 22(9), 497-502.

Fetzer, J.H. (1988). Program verification: The very idea. Communications of the ACM, 31(9), 1048-1063.

Fetzer, J.H. (1999). The role of models in computer science. Monist, 82(1), 20-36.

Feyerabend, P. (1993[1975]). Against method (3rd ed.). New York: Verso.

Fletcher, P. (1995). Readers’ corner: The role of experiments in computer science. Journal of Systems and
Software, 30 (1-2), 161-163.

Floridi, L. (1999). Philosophy and computing: An introduction. London: Routledge.

Floridi, L. (Ed.). (2004). The Blackwell guide to the philosophy of computing and information. Cornwall,
UK: Blackwell Publishing.

Floyd, R.W. (1967). Assigning meanings to programs. In Proceedings of Symposia in Applied Mathematics
vol. 19. Providence, Rhode Island, USA, 19-32.

Forsythe, G.E. (1967). A university's educational program in computer science. Communications of the
ACM 10(1), 3-11.

Galliers, R.D. & Land, F.F. (1987). Choosing appropriate information systems research methodologies.
Communications of the ACM, 30(11), 901-902.

Gettier, E.L. (1963). Is justified true belief knowledge? Analysis, 23, 121-123.

Glaser, G. (1974, November 6). Education 'inadequate' for business DP. Computerworld, VIII(45), 1-2.

Glass, R.L. (1995). A structure-based critique of contemporary computing research. Journal of Systems and
Software, 28, 3-7.

Glass, R.L., Ramesh, V., & Vessey, I. (2004). An analysis of research in computing disciplines.
Communications of the ACM, 47(6), 89-94.

Hamming, R.W. (1969). One man's view of computer science (ACM Turing lecture). Journal of the
Association for Computing Machinery, 16(1), 3-12.

Hartmanis, J. (1993). Some observations about the nature of computer science. In R.K. Shyamasundar
(Ed.), Lecture notes in computer science vol. 761, pp. 1-12.

Hempel, C.G. (1965). Aspects of scientific explanation and other essays in the philosophy of science. New
York, NY, USA: The Free Press.

Hoare, C.A.R. (1969). An axiomatic basis for computer programming. Communications of the ACM,
12(10), 576-580, 583.

Holloway, C.M. (1995). Software engineering and epistemology. ACM SIGSOFT Software Engineering
Notes, 20(2), 20-21.

Hopcroft, J.E. (1987). Computer science: The emergence of a discipline (Turing award lecture).
Communications of the ACM, 30(3), 198-202.

Hume, D. (1739). A treatise of human nature (Penguin Books edition, 1969). Aylesbury, UK: Penguin
Books.

Hume, D.(1777 [1748]). An enquiry concerning human understanding. London, UK: Selby-Bigge.

Kandel, A. (1972). Computer science - A vicious circle. Communications of the ACM, 15(6), 470-471.

Kemeny, J.G. (1959). A philosopher looks at science. Princeton, NJ, USA: Van Nost, Reinhold.

Khalil, H. & Levy, L.S. (1978). The academic image of computer science. ACM SIGCSE Bulletin, 10(2),
31-33.

Kitchenham, B.A. (1996). Evaluating software engineering methods and tool (Part 1: The evaluation
context and evaluation methods). Software Engineering Notes, 21(1), 11-15.

Teaching the Philosophy of Computer Science

120

Knuth, D.E. (1974a). Computer programming as an art. Communications of the ACM, 17(12), 667-673.

Knuth, D.E. (1974b). Computer science and its relation to mathematics. American Mathematical Monthly,
81(April), 323-343.

Knuth, D.E. (1991). Theory and practice. Theoretical Computer Science, 90, 1-15.

Knuth, D.E. (2001). Things a computer scientist rarely talks about. Stanford, California, USA: CSLI
Publications.

Koen, B.V. (2003). Discussion of the method: Conducting the engineer's approach to problem solving.
Oxford, UK: Oxford University Press.

Lai, V.S. & Mahapatra, R.K. (1997). Exploring the research in information technology implementation.
Information & Management, 32, 187-201.

Lakatos, I. (1976). Proofs and refutations: The logic of mathematical discovery (J. Worrall & E. Zahar
Eds.). Cambridge, UK: Cambridge University Press.

Lakatos, I. & Musgrave, A. (Eds.). (1970). Criticism and the growth of knowledge. London, UK:
Cambridge University Press.

Loui, M.C. (1995). Computer science is a new engineering discipline. ACM Computing Surveys, 27(1), 31-
32.

McKee, G. (1995). Computer science or simply 'computics'?. IEEE Computer, 28(12), 136.

Mingers, J. (2003). The paucity of multimethod research: A review of the information systems literature.
Information Systems Journal, 13(3), 233-249.

Minsky, M. L. (1979). Computer science and the representation of knowledge. In M.L. Dertouzos & J.
Moses (Eds.), The computer age: A twenty-year view, 392-421.

Moor, J.H. (1978). Three myths of computer science. The British Journal for the Philosophy of Science, 29,
213-222.

Moor, J.H. & Bynum, T.W. (2003). Cyberphilosophy: The intersection of philosophy and computing.
Oxford, UK: Blackwell Publishers.

Muller, M.J., Wildman, D.M. & White, E.A. (1993). Taxonomy of PD practices: A brief practitioner's
guide. Communications of the ACM, 36(4), 26-28.

Naur, P. (1966). Proof of algorithms by general snapshots. BIT, 6(4), 310-316.

Newell, A., Perlis, A.J., & Simon, H.A. (1967). Computer science. Science, 157(3795), 1373-1374.

Popper, K. (1959 [1935]). The logic of scientific discovery. London, Great Britain: Routledge.

Puchta, S. (1996). On the role of mathematics and mathematical knowledge in the invention of Vannevar
Bush's early analog computers. IEEE Annals in the History of Computing, 18(4), 49-59.

Quine, W.V.O. (1980 [1953]). From a logical point of view (2nd, revised edition). Cambridge,
Massachusetts: Harvard University Press.

Ralston, A. & Shaw, M. (1980). Curriculum '78 - Is computer science really that unmathematical?
Communications of the ACM, 23(2), 67-70.

Ramesh, V., Glass, R.L., & Vessey, I. (2004). Research in computer science: An empirical study. The
Journal of Systems and Software, 70, 165-176.

Randolph, J.J. (2007). Computer science education at the crossroads. A methodological review of the
computer science education research: 2000-2005. Utah State University, Logan, Utah, USA.
Retrieved April 12, 2007 from http://www.archive.org/details/randolph_dissertation/

Rapaport, W.J. (2005). Philosophy of computer science: An introductory course. Teaching Philosophy,
28(4), 319-341. Retrieved Feb 14, 2007 from
http://www.cse.buffalo.edu/~rapaport/Papers/rapaport_phics.pdf

 Tedre

 121

Rice, J.R. & Rosen, S. (2004). Computer sciences at Purdue University - 1962 to 2000. IEEE Annals of the
History of Computing, 26(2), 48-61.

Rosenbloom, P.S. (2004). A new framework for computer science and engineering. IEEE Computer,
37(11), 23-28.

Shapiro, S. (2000). Thinking about mathematics: The philosophy of mathematics. Oxford, UK: Oxford
University Press.

Simon, H.A. (1981). The sciences of the artificial (2nd ed.) Cambridge, Mass., USA: The MIT Press.

Smith, B.C. (1996 [1985]). Limits of correctness in computers. In R. Kling (Ed.), Computerization and
controversy: Value conflicts and social choices (2nd ed.) (pp. 810-825). San Diego, CA, USA:
Academic Press.

Smith, B.C. (1998 [1996]). On the origin of objects (MIT Paperback ed.). The MIT Press: Cambridge,
Mass., USA.

Tedre, M. (2006). The development of computer science: A sociocultural perspective. Joensuu, Finland:
Yliopistopaino. Retrieved Feb 14, 2007 from ftp://cs.joensuu.fi/pub/Dissertations/tedre.pdf

Tedre, M. (2007). Lecture notes in the philosophy of computer science. Lecture notes for the Department
of Computer Science and Statistics, University of Joensuu, Finland. Retrieved Feb 14, 2007 from
http://cs.joensuu.fi/~mmeri/teaching/2007/philcs/

Tichy, W.E. (1998). Should computer scientists experiment more? IEEE Computer, 31(5), 32-40.

Tichy, W.F., Lukowicz, P., Prechelt, L. & Heinz, E.A. (1995). Experimental evaluation in computer
science: A quantitative study. Journal of Systems and Software, 28, 9-18.

Vessey, I., Ramesh, V., & Glass, R.L. (2002). Research in information systems: An empirical study of
diversity in the discipline and its journals. Journal of Management Information Systems, 19(2), 129-
174.

Walsham, G. (1995). The emergence of interpretivism in IS research. Information Systems Research, 6(4),
376-394.

Wegner, P. (1976). Research paradigms in computer science. (IEEE) Proceedings of the 2nd international
conference on Software engineering. October 13-15, San Francisco, California, USA, 322-330.

Williams, M.R. (1985). A history of computing technology. New Jersey, USA: Prentice-Hall.

Wirth, N.(1971). Program development by stepwise refinement. Communications of the ACM, 14(4), 221-
227.

Wishner, R.P. (1968). Letters to the editor: Comment on Curriculum '68. Communications of the ACM,
11(10), 658.

Wright, G.H. von (1971). Explanation and understanding. London, UK: Routledge & Kegan Paul.

Zelkowitz, M.V. & Wallace, D. (1997). Experimental validation in software engineering. Information and
Software Technology, 39(1997), 735-743.

Teaching the Philosophy of Computer Science

122

Biography
Matti Tedre received a PhD degree in computer science in 2006
from the University of Joensuu, Finland. Since 2002 he has been
working in the Department of Computer Science and Statistics at the
University of Joensuu as an assistant, researcher, and lecturer (and
spent two years in South Korea visiting the universities of Yonsei and
Ajou). He has also been a visiting instructor at the University of Pre-
toria, South Africa. Earlier, he worked as a programmer and as a
software analyst. His research interests include social studies of com-
puter science, the history of computer science, and the philosophy of
computer science.

