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Executive Summary 
Genetic algorithms (GAs) are a problem solving strategy that uses stochastic search.  Since their 
introduction (Holland, 1975), GAs have proven to be particularly useful for solving problems that 
are ‘intractable’ using classical methods. The language of genetic algorithms (GAs) is heavily 
laced with biological metaphors from evolutionary literature, such as population, chromosome, 
crossover, cloning, mutation, genes and generations. For beginners studying genetic algorithms, 
there is quite an overhead in gaining comfort with these terms and an understanding of their par-
allel meanings in the unfamiliar computing milieu of an evolutionary algorithm. 

This paper describes a ‘hands on’ strategy to introduce and teach genetic algorithms to under-
graduate computing students.  By borrowing an analogical model from senior biology classes, 
poppet beads are used to represent individuals in a population (Harrison, 2001). Described are 
several introductory exercises that transport students from an illustration of natural selection in 
Biston betula moths, onto the representation and solution of differing mathematical and comput-
ing problems.  Through student manipulation and interactions with poppet beads, the exercises 
cover terms such as population, generation, chromosome, gene, mutation and crossover in both 
their biological and computing contexts.  Importantly, the tasks underline the two key design is-
sues of genetic algorithms: the choice of an appropriate chromosome representation, and a suit-
able fitness function for each specific instance.  Finally, students are introduced to the notion of 
schema upon which genetic algorithms operate. 

The constructivist model of learning advocates the use of such contextual problems to create an 
environment where students become active participants in their own learning (Ben-Ari, 1998; 
Greening, 2000; Kolb, 1984).  Initial student feedback about these “hands on” exercises has been 
enthusiastic. As well, several students have made reference to the lessons learnt as the basis for 
GA coding in subsequent open-ended assignments.  It seems that once the hurdle of becoming 
familiar with GA terminology has been surmounted, students find genetic algorithms to be par-
ticularly intriguing for their uncanny ability to solve incredibly complex problems quickly and 
proficiently (Moore, 2001).   
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Introduction 
The study of data structures and their algorithms is fundamental in most undergraduate informa-
tion technology and computer science programs and this can be simply evidenced by nearly 
42,000 Google hits on the term “data structures course”. Renown for his seminal works in the 
field, Donald Knuth (Softpanorama, 2006) is credited with saying "Languages come and go, but 
algorithms stand the test of time".  Others, like Alan Kay (2006), argue that many of the ideas 
that are presented in computing have become dated and that “almost nothing exciting about com-
puting today has to do with data structures and algorithms”.  We suggest that by introducing ge-
netic algorithms (GAs) in our undergraduate computing programs, it is possible to still pay rever-
ence to classical problems and their traditional algorithmic solutions whilst capturing the imagi-
nation of our students. 

Genetic algorithms are a problem solving strategy that uses stochastic search.  Since their intro-
duction in 1975 (Holland, 1975), GAs have proven to be particularly useful for solving problems 
that are “intractable” using classical methods.  In such situations, the problem is viewed as a land-
scape upon which possible solutions may be found. As seen in Figure 1, an individual solution is 
located and represented by its coordinates. For optimisation problems, where one is looking for 
the highest hill or the lowest valley, it can be seen that some individual solutions are better lo-
cated than others. Borrowing heavily from the language of biological evolution, these solu-
tions/individuals are said to be the fittest in a population of competing solutions. Then over suc-
cessive iterations, the GA evolves the population of competing solutions until it becomes a popu-
lation of consistently very fit individuals, as seen in Figure 2. 

 

Figure 1: Landscape of the mathematical equation 
2222

 )()1(),( 33)1(2 yxyx eyxxexyxf −−+−− −−−−=  and six possible solutions 
(Negnevitsky, 2005). 
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To better describe the process that is a genetic algorithm, one relies even more heavily upon the 
biological metaphor. In a GA, each possible solution is coded using a data structure known as a 
chromosome.  A chromosome is composed of a string of genes, each gene representing a specific 
input variable.  Collectively the genes are used to evaluate the fitness of an individual solution.  
Then, proportional to their specific fitness value, chromosomes are allowed to reproduce using 
the genetic operators of crossover and mutation.  So the fittest chromosomes are more likely to 
reproduce and contribute to the next generation of chromosomes whereas less fit individuals 
eventually become lost to future generations. Over successive iterations, the average fitness of the 
whole population improves and the genetic algorithm can be expected to breed an optimal solu-
tion to the problem (Negnevitsky, 2005).   

For beginners with little or no exposure to the language of evolutionary literature, there is a con-
siderable overhead of understanding genetic terminology and the underlying biological concepts 
as applied in a GA. However, if the hurdle of becoming familiar with the language can be sur-
mounted, students find genetic algorithms to be particularly intriguing for their uncanny ability to 
solve incredibly complex problems quickly and proficiently (Moore, 2001).  This paper outlines a 
strategy to quickly overcome student unfamiliarity with the biological concepts and language 
used in genetic algorithms. Perhaps not surprisingly, the approach has been borrowed from intro-
ductory genetics courses and it has undergone modification as to situate it more naturally for 
computing students.   

Figure 2: Landscape of the mathematical equation  
2222

 )()1(),( 33)1(2 yxyx eyxxexyxf −−+−− −−−−=  and six ‘fitter’ solutions 
(Negnevitsky, 2005). 
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The “Hands On” Strategy 
To introduce genetic algorithms to comput-
ing students, an analogical model is used.  
As described by Harrison (2001), an ana-
logical model is one that helps “people 
visualise the objects and processes which 
they are trying to understand” and these 
models typically use “a familiar object or 
experience to inform the learner about new 
and poorly understood objects, processes or 
concepts.”  In his research into the use of 
models for teaching difficult science con-
cepts to teenagers, Harrison mentions that 
several biology teachers reported success 
using poppet bead models of genes and 
chromosomes for genetics studies.  Once a 
popular children’s toy with which to make 

jewelry, poppet beads are small plastic balls, about 10 mm in diameter of varying colours (Figure 
3). Each bead has two sides: a male connecting extension, and a female socket which together 
enable chains of poppet beads to be easily constructed into necklaces, bracelets and if needed, 
chromosomes.  Poppet beads are readily purchased from biological product suppliers. 

Any introduction to genetic algorithms should always pay passing tribute to the mechanism of 
natural selection, more commonly known as ‘survival of the fittest’.  This can be easily achieved 
by using the poppet bead models from senior biology classes.  One can start with the historically 
interesting story of Biston betularia moths.  In the nineteenth century, butterfly and moth collect-
ing was a popular pastime.  In the 1850s, avid collectors would easily acquire specimens of the 
lightly coloured form of the moth known as Biston betularia typica but the more difficult to find 
sooty coloured variant Biston betularia carbonaria was  even more highly prized (Figure 4).  
Some fifty years later the reverse was true.  Examination of English museum butterfly collections 
from the turn of the twentieth century show that by then, the dark coloured moths were far more 
common. How could this have happened? 

 
Although coming under some recent academic scrutiny (Hooper, 2002; Wells, 1999), Kettlewell’s 
original experiments from the 1950s suggested that air pollution created by England’s industrial 
revolution was responsible for the phenomenon (Kettlewell, 1955).  His widely quoted experi-
ments supported the hypothesis that the darker moths were twice more likely to survive in the 
polluted woods than their lighter counterparts, as they avoided bird predation by being better 
camouflaged against the blackened tree trunks (Figure 5).   

Figure 4: Two coloured variants of the same English moth: 
Biston betularia typica and Biston betularia carbonaria 

Figure 3: Examples of poppet beads  
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The First Exercise 
Using poppet beads, it is easy to model a random population of moths.  A moth can be easily rep-
resented by a string of black and white poppet beads.  The proportion of white to black beads in 
any one string/moth is totally random but for reasons that will become obvious later, we suggest 
that each string consist of 8 beads.   
Working in pairs, students are asked to commence with a population of eight moths, known in 
biology as the founding population, F0.  By examining each moth, students decide fitness in a 
population where being black is an advantage. By counting the number of black beads in the pop-
pet bead string, a fitness score can be assigned to each moth.  In Figure 6, the top left hand moth 
has a fitness of 3 and the bottom right moth has a fitness of 5. 

 
Students are asked to play ‘god’ and select the fittest 4 individuals and place them aside as mem-
bers of the next generation, F1.  After discarding the remaining less fit moths, the students are 
instructed to use new beads to clone, that is make copies of the best 4 individuals.  Once this has 
been done, the 4 clones are randomly divided into 2 pairs of 2, which will mate by the mechanism 
of ‘crossover’ (Figure 7). A crossover occurs when a random break is made in the string of pop-
pet beads at the same location in the two parents.  The beads from one parent are joined with the 
complement of beads from the other parent, and vice versa to create new offspring that are a ge-

Figure 5: Two coloured moths on  
a) a lichen covered tree trunk; b) a soot covered tree trunk 

Figure 6: Eight ‘moths’ of varying fitness in a founding population, F0.  
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netic mix of their component parents.  The 4 resultant moths from these two matings are added to 
the F1 population. 

 
Finally, the last step in creating the F1 generation of moths is done by randomly selecting one 
moth from the 8 and locating a single poppet bead in the string.  A mutation is done on the poppet 
bead by changing the bead either from black to white, or white to black (Figure 8).  

 
It is possible to cover the key terminology for manipulation in a genetic algorithm by simply de-
scribing the above process to students as they create their moths for the F1 generation.  By iterat-
ing the procedure described above, the mechanisms of cloning, crossover and mutation are rein-
forced for students as they fashion the next generation, being the grandchildren of generation F0 
and labeled F2.  Meanwhile, the overall fitness of the population is visibly changing with the 
moths becoming collectively blacker (Figure 9). If the exercise is conducted in a tutorial or labo-
ratory setting, a quick look around the room will illustrate to students the stochastic nature of the 
process, that is, no two groups started with the same F0 population.  Regardless, by applying ‘sur-
vival of the fittest’ selections, each generation converges towards a near black population. 

Figure 7: Two clones crossing over. 

Figure 8: A mutation of one bead  
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Students are asked to predict what the population will look like in the F3 and F10 generations.  
Naturally, a discussion follows on the consequences for the moth population should conditions 
change and whiter moths are advantaged by selection.  Additionally, at some stage the term 
chromosome should come into conversation as an alternate name for the moth or the string being 
manipulated. 

The Follow-On Exercises 
Next, students are introduced to a new problem, a computing problem rather than a biological 
one.  The task is to find all the numbers between 0 and 255 that have a binary representation 
where the total number of 0s equals the total number of 1s.  For example, 240 is one such number 
with a binary representation of 11110000, as is 153 with a binary code of 10011001 and, with 
some difficulty, it may be possible to iterate all the possibilities.  By directing students towards a 
string representation of using a set of 8 bits to represent any number between 0 and 255, students 
may be reminded of the poppet bead model.  In this new problem, white beads can be used to rep-
resent 0 and the black beads represent 1 and eight beads in a row is a simple representation of a 
number in the range 0 to 255.   

As in the moth exercise, students working in pairs randomly make a population of 8 different 
numbers for an F0 generation.  Next a decision about the calculation of an appropriate fitness 
function needs to be made.  In this task, it is not simply the number of black poppet beads in a 
string, but the ratio of black beads when compared to white beads, that matters for each individual 
number/chromosome being represented.  A simple subtraction would suffice as a measure of how 
close the number of black beads to white beads is.  If the number of black beads minus the num-
ber of white beads is zero, then the string represents a number that solves the problem.  By repeat-
ing the above procedures of cloning, crossover and mutation on the randomly generated F0 popu-
lation, it is possible for students to quickly breed within a few generations, a population of chro-
mosomes all with a low fitness value of 0. An important point for discussion with students is the 
question about when to stop producing new generations.  In a typical GA, termination is usually 
decided when an end point has been reached such as all members of the population have the de-
sired fitness, as in the above example. Alternatively, a set number of generations is decided, as in 
the moth example. 

The above exercises illustrate several lessons to be learned by students.  Firstly, when using a 
genetic algorithm there are only two design issues to consider: What is a suitable chromosome 

F0 F2F0 F2

 
Figure 9: The commencing F0 generation and after cloning, crossover  

and mutation the resulting F2 of grandchildren 
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representation for the problem? and What is a suitable fitness function?  Secondly, GAs are to-
tally stochastic processes where the mechanism of ‘survival of the fittest’ quickly ensures that 
randomly generated chromosomes evolve towards optimal solutions.  Thirdly, genetic algorithms 
will perform equally well whether a maximum or a minimum is desired in the problem. 

A third problem, that of solving mathematical equations using genetic algorithms is then intro-
duced to students.  Using a relatively simple equation, for example 

z = x2 – 2y + 3  

students are asked to find the minimum value that z may take if x and y can only have integer 
values between 0 and 7?  A discussion of possible strategies to solve this equation may suggest a 
trial and error approach or partial differentiation as methods.   

In using a genetic algorithm for the above example, students are reminded of the two main design 
decisions, that is finding a suitable chromosome representation and an appropriate fitness func-
tion.  In this instance, the equation for z is a suitable fitness function in deciding ‘survival of the 
fittest’.  For the chromosome representation, it is possible to represent both x and y side by side 
on the chromosome as different genes.  Since x can only have 8 possible values, from 0 to 7 in-
clusive, a 3 bit representation would suffice for all the possibilities.  For example, if x = 0 this 
would be represented by 000 and if x = 7 by 111.  Likewise, the values for y would also require 3 
bits.  Hence, creating a suitable chromosome for this problem requires a 3 bit + 3 bit = 6 bit string 
representation.  Figure 10 shows a randomly generated chromosome representation of the values 

of x = 5 and y = 2.  After randomly gen-
erating a small number of individuals 
then a poppet bead or paper exercise 
over a few generations will find the 
minimum solution quickly, being a 
minimum value for z at –11 when x = 0 
and y = 7.   

An important concept in genetic algorithms is that of schema.  A schema is the pattern of 1s and 
0s on a chromosome that is manipulated by a genetic algorithm.  In the classroom it is possible to 
ask students for their best solution and get different answers for z from different groups.  Typi-
cally, fitness values of -11, -10, -9 and –8 may be reported.  Examination of these ‘good’ fitness 
values and the chromosomes that yield them is shown in Figure 11. Attention can be drawn to the 
pattern of bits that these ‘good’ solutions have in common.  For this exercise, the first two bits 
must be 0, and the fourth and fifth bits must be 1.  This pattern is known as the schema for this 
particular problem. 

A discussion about the concept captured by schema representation is valuable. Good schemas are 
affected by the genetic operators of crossover and mutation in the manipulation of a GA.  Cross-
overs tend to preserve good schemas and mutations tend to disrupt them.  When students move 
onto implementing and running GAs on their computers, decisions will need to be made as to an 
appropriate percentage of mutation and crossovers for each generation.  Typically, most GAs 
commence at about 70% for crossover rate but a much smaller rate, like 1% for mutation.  It is 
important that students know that they are expected to adjust these amounts during various trial 
runs of their software.  

 

Figure 10: An example of a 6 bit chromosome 
representation when x = 5 and y = 2 
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Further Exercises 
From the above introductory exercises it is possible to advance in different directions, dependent 
on the intention for introducing students to genetic algorithms.  We teach GAs as a small unit 
within an artificial intelligence course, where they are compared to other problem solving strate-
gies such as expert systems, fuzzy logic and neural networks.  Another valuable resource for 
teaching genetic algorithms is the Internet where it is a simple matter to find applets that visibly 
reinforce the main GA terminology and mechanism covered above. These applets are wonderful 
tools to illustrate a wider range of genetic operations and evolutionary approaches to students. 
One such example is http://www.rennard.org/alife/english/gavgb.html.  

Our next step is to supply students with three small Java classes, one to run a genetic algorithm, 
another to represent individual chromosomes and another one to handle report writing.  Students 
run these classes in solving one of the standard GA test problems known as the Sphere Model 
where 

 

 

Whilst running the test problem, students experiment with the genetic algorithm by varying the 
number of generations, the number of individuals in each generation, the clone proportion, muta-
tion rate and the crossover rate.  Examination of the code illustrates to students that the construc-
tion of the coded genetic algorithm closely follows their classroom experiments; there are genes 
on chromosomes and a fitness function to do the ‘survival of the fittest’ selections.  From these 
laboratory experiments, it is possible for students to explore more difficult problems such as time-
tabling and scheduling problems (Negnevitsky, 2005, p. 235). 

In our artificial intelligence course, we always set a major open-ended assessment where students 
have free range to try and solve a problem using any of the approaches covered in classes.  Last 
year, the problem was to research and code an intelligent system that could solve Sudoku prob-
lems (Sudoku, 2005; Venables & Tan, 2006).  This year, students were told to investigate and 

0 0 0 1 1 1 

0 0 1 1 1 1 

0 0 0 1 1 0 

0 0 1 1 1 0 

  
x = 0   and    y = 7   fitness = -11 

 

x = 1   and    y = 7   fitness = -10 

 

x = 0   and    y = 6   fitness = - 9 

 

x = 1   and    y = 6   fitness = - 8 

 

  schema           

  

  

Figure 11: Best four solutions to the problem in z = x2 – 2y + 3 
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write software that could compose music. In both years, many students have chosen to apply a 
genetic algorithm in their assignments, with varying results.   

About the Sudoku problem, one student reported that “You don’t need to be a genius to figure out 
that a GA stinks for solving this puzzle” adding that “Genetic Algorithms (GAs) cannot effectively 
solve problems in which there is no way to judge the fitness of an answer other than right/wrong, 
as there is no way to converge on the solution”.  The experiences of the students attempting the 
Sudoku problem were instructive in lectures this year, for underlining that GAs are useful in op-
timisation problems, but not always suitable in other circumstances.  However, in their music 
composition efforts, GAs were quite useful to many students as a mechanism to evolve more me-
lodic music from randomly generated notes. In an assignment submission, one student wrote “In 
my code, I repeated the simple cloning process we used in class last week with the pop-it beads as 
my chromosome breeding mechanism.” 

The Constructivist Approach 
After introducing genetic algorithms for the first time with the above exercises, the teaching staff 
remained curious about the impact of this new approach.  So to try and capture a snapshot of stu-
dent perceptions of the initial poppet bead exercise, a simple survey instrument was designed. At 
the end of the unit, some 7 weeks after the introductory exercises were run, the students were 
asked to return an anonymous survey in which the following questions were asked: 

• Was the poppet bead exercise helpful to your understanding of genetic algorithms? 

• Was the exercise unhelpful? 

• Did you use a genetic algorithm in your assignment? 

• Do you have any other comments about the poppet bead exercise? 

Twenty surveys were returned and with one exception, they were uniformly enthusiastic about the 
approach.  Overall, the first question tended to be answered in most detail.  Some typical re-
sponses were “It was taught in a way which didn’t make it seem difficult which was excellent”, 
“Hands on experience is always better than just theory” and “Yes, I felt it helped me visualise 
exactly what the lecturer was explaining”.  There seemed to be little correlation between the de-
gree of enthusiasm shown in response to first question and the uptake of genetic algorithms as a 
strategy for their assignment queried in the third question. However the responses to the final 
question were more telling.  Several students mentioned that they had used the methods learnt in 
the poppet bead exercise as the basis for their coding in the assignment.   

Such active and contextual learning as indicated by students, is one of the hallmark characteristics 
of the constructivist model of learning widely reported in the educational literature. When stu-
dents engage in problem-based and experiential learning they become active participants in their 
own learning.  By arousing cognitive puzzlement, in this instance via their interactions and ma-
nipulation of poppet beads, students are stimulated in the synthesis of their own internal knowl-
edge (Ben-Ari, 1998; Greening, 2000; Kolb, 1984; Kolb & Fry, 1975; Neo & Neo, 2001; Savery 
& Duffy, 2006; Tam, 2000).   

In the science and mathematics education literature, constructivism is a powerful explanation of 
understanding student learning, and it is applicable also to computing education (Ben-Ari, 1998; 
Harrison, 2001).  More specifically, Greening (2000) adopted an “ill-defined” large programming 
task to create an environment conducive to student learning through the practical dimensions of 
constructivism. Like Greening (2000, p. 95), we aim to achieve positive learning outcomes using 
the poppet bead exercises through the following: 
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Cognitive puzzlement – For information technology students the use of a ‘hands on’ analogical 
model is an unusual and unexpected experience.  The quirkiness of using a once popu-
lar children’s toy to understand the language from genetics and its application in ge-
netic algorithms is a very useful stimulus to generate interest about GAs.   

Inter-disciplinary problem domain – The cross fertilization of differing scientific disciplines is 
particularly pertinent in the study of GAs. As mentioned earlier, commencing students 
need an appreciation of both the biological and computing meanings of words, like 
chromosome and generation, to be comfortable in designing and using genetic algo-
rithms as a problem solving strategy.  Along the way, students develop a broader ap-
preciation of some historical aspects of evolutionary biology and computing science 
and their relevance to each other. 

Group work friendly – The introductory exercises are best carried out in pairs to enable easy ma-
nipulation of the bead model.  By organizing and encouraging each other whilst trying 
to manipulate, crossover, clone and mutate their beads/moths/chromosomes students 
actively discuss the terminology and various aspects of the processes being simulated.  
Additionally, these exercises are followed by an open-ended, and perhaps “ill-defined”, 
programming assessment task where students are required to complete as a pair. 

Authenticity – The size and nature of the introductory exercises does not detract from the legiti-
macy of the biological problem involving Biston betularia moths nor the computing 
and mathematical problems that follow.  In all cases, they are classical problems wor-
thy of attention. 

Ownership – Surprisingly, students do verbally express ownership regarding their moth popula-
tions as they go about creating and destroying individuals.  Such ownership seems to 
come about due to their role as omnipresent beings that decide which chromosome 
strings are chosen for deletion, crossover and mutation.  Less frivolously and more im-
portantly students take ownership of the problem and their own learning when investi-
gating and coding for their follow up assessments.  As mentioned earlier, students are 
expected to assume responsibility for their chosen approaches and to experiment with 
the differing genetic algorithms and other strategies.  

Stimulate reflection and meta cognition – As mentioned by Greening (2000), “a lot of learning 
happens as retrospective”.  We know this to be true from evidence we have gained 
from the research diaries that we ask students to record as they complete their open-
ended assessments (Venables & Tan, 2006).   

Encourage cognitive scaffolding – Using poppet beads to introduce genetic algorithms provided a 
framework in which students were able to discuss the concepts and mechanisms, safe in 
the knowledge that others had experienced the same situations.  The framework was 
versatile in that it could be used to express biological concepts and be applied to com-
puting problems.  Many students in their assignment submissions made reference to the 
introductory exercises as the basis for their decisions regarding coding and experimen-
tation. 



A ‘Hands on’ Strategy for Teaching Genetic Algorithms 

260 

Conclusion 
"An algorithm must be seen to be believed."  

Donald Knuth 

Although Knuth was not referring to our approach for introducing genetic algorithms to under-
graduate students, in the light of constructivist model of student learning, his quote is nonetheless 
pertinent.  The described set of ‘hands on’ exercises allow students to build their own internal 
knowledge using problems that span biology, computing and mathematics.  Together they illus-
trate the cross disciplinary nature of GAs and they introduce the associated ‘biological’ language 
and the underpinning concepts in a natural and meaningful way.   

For undergraduates, genetic algorithms are an important heuristic strategy to teach. GAs naturally 
give a contextual position of computing with other disciplines.  GAs can be used to expand dis-
cussion on topics like data structures, hill climbing searches and path finding algorithms.  As 
well, by sparking student interest, it is hoped that these exercises will act as a springboard for ex-
ploring more about evolutionary algorithms and possibly other biologically inspired approaches 
such as swarm intelligences and anthill search algorithms.    
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