
Journal of Information Technology Education Volume 6, 2007

Editor: Grandon Gill

A ‘Hands on’ Strategy for Teaching Genetic
Algorithms to Undergraduates

Anne Venables and Grace Tan
Victoria University, Melbourne City, Australia

Anne.Venables@vu.edu.au Grace.Tan@vu.edu.au

Executive Summary
Genetic algorithms (GAs) are a problem solving strategy that uses stochastic search. Since their
introduction (Holland, 1975), GAs have proven to be particularly useful for solving problems that
are ‘intractable’ using classical methods. The language of genetic algorithms (GAs) is heavily
laced with biological metaphors from evolutionary literature, such as population, chromosome,
crossover, cloning, mutation, genes and generations. For beginners studying genetic algorithms,
there is quite an overhead in gaining comfort with these terms and an understanding of their par-
allel meanings in the unfamiliar computing milieu of an evolutionary algorithm.

This paper describes a ‘hands on’ strategy to introduce and teach genetic algorithms to under-
graduate computing students. By borrowing an analogical model from senior biology classes,
poppet beads are used to represent individuals in a population (Harrison, 2001). Described are
several introductory exercises that transport students from an illustration of natural selection in
Biston betula moths, onto the representation and solution of differing mathematical and comput-
ing problems. Through student manipulation and interactions with poppet beads, the exercises
cover terms such as population, generation, chromosome, gene, mutation and crossover in both
their biological and computing contexts. Importantly, the tasks underline the two key design is-
sues of genetic algorithms: the choice of an appropriate chromosome representation, and a suit-
able fitness function for each specific instance. Finally, students are introduced to the notion of
schema upon which genetic algorithms operate.

The constructivist model of learning advocates the use of such contextual problems to create an
environment where students become active participants in their own learning (Ben-Ari, 1998;
Greening, 2000; Kolb, 1984). Initial student feedback about these “hands on” exercises has been
enthusiastic. As well, several students have made reference to the lessons learnt as the basis for
GA coding in subsequent open-ended assignments. It seems that once the hurdle of becoming
familiar with GA terminology has been surmounted, students find genetic algorithms to be par-
ticularly intriguing for their uncanny ability to solve incredibly complex problems quickly and
proficiently (Moore, 2001).

Keywords: Genetic Algorithms, Expe-
riential learning, Analogical model,
Constructivism

Material published as part of this publication, either on-line or
in print, is copyrighted by the Informing Science Institute.
Permission to make digital or paper copy of part or all of these
works for personal or classroom use is granted without fee
provided that the copies are not made or distributed for profit
or commercial advantage AND that copies 1) bear this notice
in full and 2) give the full citation on the first page. It is per-
missible to abstract these works so long as credit is given. To
copy in all other cases or to republish or to post on a server or
to redistribute to lists requires specific permission and payment
of a fee. Contact Publisher@InformingScience.org to request
redistribution permission.

A ‘Hands on’ Strategy for Teaching Genetic Algorithms

250

Introduction
The study of data structures and their algorithms is fundamental in most undergraduate informa-
tion technology and computer science programs and this can be simply evidenced by nearly
42,000 Google hits on the term “data structures course”. Renown for his seminal works in the
field, Donald Knuth (Softpanorama, 2006) is credited with saying "Languages come and go, but
algorithms stand the test of time". Others, like Alan Kay (2006), argue that many of the ideas
that are presented in computing have become dated and that “almost nothing exciting about com-
puting today has to do with data structures and algorithms”. We suggest that by introducing ge-
netic algorithms (GAs) in our undergraduate computing programs, it is possible to still pay rever-
ence to classical problems and their traditional algorithmic solutions whilst capturing the imagi-
nation of our students.

Genetic algorithms are a problem solving strategy that uses stochastic search. Since their intro-
duction in 1975 (Holland, 1975), GAs have proven to be particularly useful for solving problems
that are “intractable” using classical methods. In such situations, the problem is viewed as a land-
scape upon which possible solutions may be found. As seen in Figure 1, an individual solution is
located and represented by its coordinates. For optimisation problems, where one is looking for
the highest hill or the lowest valley, it can be seen that some individual solutions are better lo-
cated than others. Borrowing heavily from the language of biological evolution, these solu-
tions/individuals are said to be the fittest in a population of competing solutions. Then over suc-
cessive iterations, the GA evolves the population of competing solutions until it becomes a popu-
lation of consistently very fit individuals, as seen in Figure 2.

Figure 1: Landscape of the mathematical equation
2222

)()1(),(33)1(2 yxyx eyxxexyxf −−+−− −−−−= and six possible solutions
(Negnevitsky, 2005).

 Venables & Tan

 251

To better describe the process that is a genetic algorithm, one relies even more heavily upon the
biological metaphor. In a GA, each possible solution is coded using a data structure known as a
chromosome. A chromosome is composed of a string of genes, each gene representing a specific
input variable. Collectively the genes are used to evaluate the fitness of an individual solution.
Then, proportional to their specific fitness value, chromosomes are allowed to reproduce using
the genetic operators of crossover and mutation. So the fittest chromosomes are more likely to
reproduce and contribute to the next generation of chromosomes whereas less fit individuals
eventually become lost to future generations. Over successive iterations, the average fitness of the
whole population improves and the genetic algorithm can be expected to breed an optimal solu-
tion to the problem (Negnevitsky, 2005).

For beginners with little or no exposure to the language of evolutionary literature, there is a con-
siderable overhead of understanding genetic terminology and the underlying biological concepts
as applied in a GA. However, if the hurdle of becoming familiar with the language can be sur-
mounted, students find genetic algorithms to be particularly intriguing for their uncanny ability to
solve incredibly complex problems quickly and proficiently (Moore, 2001). This paper outlines a
strategy to quickly overcome student unfamiliarity with the biological concepts and language
used in genetic algorithms. Perhaps not surprisingly, the approach has been borrowed from intro-
ductory genetics courses and it has undergone modification as to situate it more naturally for
computing students.

Figure 2: Landscape of the mathematical equation
2222

)()1(),(33)1(2 yxyx eyxxexyxf −−+−− −−−−= and six ‘fitter’ solutions
(Negnevitsky, 2005).

A ‘Hands on’ Strategy for Teaching Genetic Algorithms

252

The “Hands On” Strategy
To introduce genetic algorithms to comput-
ing students, an analogical model is used.
As described by Harrison (2001), an ana-
logical model is one that helps “people
visualise the objects and processes which
they are trying to understand” and these
models typically use “a familiar object or
experience to inform the learner about new
and poorly understood objects, processes or
concepts.” In his research into the use of
models for teaching difficult science con-
cepts to teenagers, Harrison mentions that
several biology teachers reported success
using poppet bead models of genes and
chromosomes for genetics studies. Once a
popular children’s toy with which to make

jewelry, poppet beads are small plastic balls, about 10 mm in diameter of varying colours (Figure
3). Each bead has two sides: a male connecting extension, and a female socket which together
enable chains of poppet beads to be easily constructed into necklaces, bracelets and if needed,
chromosomes. Poppet beads are readily purchased from biological product suppliers.

Any introduction to genetic algorithms should always pay passing tribute to the mechanism of
natural selection, more commonly known as ‘survival of the fittest’. This can be easily achieved
by using the poppet bead models from senior biology classes. One can start with the historically
interesting story of Biston betularia moths. In the nineteenth century, butterfly and moth collect-
ing was a popular pastime. In the 1850s, avid collectors would easily acquire specimens of the
lightly coloured form of the moth known as Biston betularia typica but the more difficult to find
sooty coloured variant Biston betularia carbonaria was even more highly prized (Figure 4).
Some fifty years later the reverse was true. Examination of English museum butterfly collections
from the turn of the twentieth century show that by then, the dark coloured moths were far more
common. How could this have happened?

Although coming under some recent academic scrutiny (Hooper, 2002; Wells, 1999), Kettlewell’s
original experiments from the 1950s suggested that air pollution created by England’s industrial
revolution was responsible for the phenomenon (Kettlewell, 1955). His widely quoted experi-
ments supported the hypothesis that the darker moths were twice more likely to survive in the
polluted woods than their lighter counterparts, as they avoided bird predation by being better
camouflaged against the blackened tree trunks (Figure 5).

Figure 4: Two coloured variants of the same English moth:
Biston betularia typica and Biston betularia carbonaria

Figure 3: Examples of poppet beads

 Venables & Tan

 253

The First Exercise
Using poppet beads, it is easy to model a random population of moths. A moth can be easily rep-
resented by a string of black and white poppet beads. The proportion of white to black beads in
any one string/moth is totally random but for reasons that will become obvious later, we suggest
that each string consist of 8 beads.
Working in pairs, students are asked to commence with a population of eight moths, known in
biology as the founding population, F0. By examining each moth, students decide fitness in a
population where being black is an advantage. By counting the number of black beads in the pop-
pet bead string, a fitness score can be assigned to each moth. In Figure 6, the top left hand moth
has a fitness of 3 and the bottom right moth has a fitness of 5.

Students are asked to play ‘god’ and select the fittest 4 individuals and place them aside as mem-
bers of the next generation, F1. After discarding the remaining less fit moths, the students are
instructed to use new beads to clone, that is make copies of the best 4 individuals. Once this has
been done, the 4 clones are randomly divided into 2 pairs of 2, which will mate by the mechanism
of ‘crossover’ (Figure 7). A crossover occurs when a random break is made in the string of pop-
pet beads at the same location in the two parents. The beads from one parent are joined with the
complement of beads from the other parent, and vice versa to create new offspring that are a ge-

Figure 5: Two coloured moths on
a) a lichen covered tree trunk; b) a soot covered tree trunk

Figure 6: Eight ‘moths’ of varying fitness in a founding population, F0.

A ‘Hands on’ Strategy for Teaching Genetic Algorithms

254

netic mix of their component parents. The 4 resultant moths from these two matings are added to
the F1 population.

Finally, the last step in creating the F1 generation of moths is done by randomly selecting one
moth from the 8 and locating a single poppet bead in the string. A mutation is done on the poppet
bead by changing the bead either from black to white, or white to black (Figure 8).

It is possible to cover the key terminology for manipulation in a genetic algorithm by simply de-
scribing the above process to students as they create their moths for the F1 generation. By iterat-
ing the procedure described above, the mechanisms of cloning, crossover and mutation are rein-
forced for students as they fashion the next generation, being the grandchildren of generation F0
and labeled F2. Meanwhile, the overall fitness of the population is visibly changing with the
moths becoming collectively blacker (Figure 9). If the exercise is conducted in a tutorial or labo-
ratory setting, a quick look around the room will illustrate to students the stochastic nature of the
process, that is, no two groups started with the same F0 population. Regardless, by applying ‘sur-
vival of the fittest’ selections, each generation converges towards a near black population.

Figure 7: Two clones crossing over.

Figure 8: A mutation of one bead

 Venables & Tan

 255

Students are asked to predict what the population will look like in the F3 and F10 generations.
Naturally, a discussion follows on the consequences for the moth population should conditions
change and whiter moths are advantaged by selection. Additionally, at some stage the term
chromosome should come into conversation as an alternate name for the moth or the string being
manipulated.

The Follow-On Exercises
Next, students are introduced to a new problem, a computing problem rather than a biological
one. The task is to find all the numbers between 0 and 255 that have a binary representation
where the total number of 0s equals the total number of 1s. For example, 240 is one such number
with a binary representation of 11110000, as is 153 with a binary code of 10011001 and, with
some difficulty, it may be possible to iterate all the possibilities. By directing students towards a
string representation of using a set of 8 bits to represent any number between 0 and 255, students
may be reminded of the poppet bead model. In this new problem, white beads can be used to rep-
resent 0 and the black beads represent 1 and eight beads in a row is a simple representation of a
number in the range 0 to 255.

As in the moth exercise, students working in pairs randomly make a population of 8 different
numbers for an F0 generation. Next a decision about the calculation of an appropriate fitness
function needs to be made. In this task, it is not simply the number of black poppet beads in a
string, but the ratio of black beads when compared to white beads, that matters for each individual
number/chromosome being represented. A simple subtraction would suffice as a measure of how
close the number of black beads to white beads is. If the number of black beads minus the num-
ber of white beads is zero, then the string represents a number that solves the problem. By repeat-
ing the above procedures of cloning, crossover and mutation on the randomly generated F0 popu-
lation, it is possible for students to quickly breed within a few generations, a population of chro-
mosomes all with a low fitness value of 0. An important point for discussion with students is the
question about when to stop producing new generations. In a typical GA, termination is usually
decided when an end point has been reached such as all members of the population have the de-
sired fitness, as in the above example. Alternatively, a set number of generations is decided, as in
the moth example.

The above exercises illustrate several lessons to be learned by students. Firstly, when using a
genetic algorithm there are only two design issues to consider: What is a suitable chromosome

F0 F2F0 F2

Figure 9: The commencing F0 generation and after cloning, crossover

and mutation the resulting F2 of grandchildren

A ‘Hands on’ Strategy for Teaching Genetic Algorithms

256

representation for the problem? and What is a suitable fitness function? Secondly, GAs are to-
tally stochastic processes where the mechanism of ‘survival of the fittest’ quickly ensures that
randomly generated chromosomes evolve towards optimal solutions. Thirdly, genetic algorithms
will perform equally well whether a maximum or a minimum is desired in the problem.

A third problem, that of solving mathematical equations using genetic algorithms is then intro-
duced to students. Using a relatively simple equation, for example

z = x2 – 2y + 3

students are asked to find the minimum value that z may take if x and y can only have integer
values between 0 and 7? A discussion of possible strategies to solve this equation may suggest a
trial and error approach or partial differentiation as methods.

In using a genetic algorithm for the above example, students are reminded of the two main design
decisions, that is finding a suitable chromosome representation and an appropriate fitness func-
tion. In this instance, the equation for z is a suitable fitness function in deciding ‘survival of the
fittest’. For the chromosome representation, it is possible to represent both x and y side by side
on the chromosome as different genes. Since x can only have 8 possible values, from 0 to 7 in-
clusive, a 3 bit representation would suffice for all the possibilities. For example, if x = 0 this
would be represented by 000 and if x = 7 by 111. Likewise, the values for y would also require 3
bits. Hence, creating a suitable chromosome for this problem requires a 3 bit + 3 bit = 6 bit string
representation. Figure 10 shows a randomly generated chromosome representation of the values

of x = 5 and y = 2. After randomly gen-
erating a small number of individuals
then a poppet bead or paper exercise
over a few generations will find the
minimum solution quickly, being a
minimum value for z at –11 when x = 0
and y = 7.

An important concept in genetic algorithms is that of schema. A schema is the pattern of 1s and
0s on a chromosome that is manipulated by a genetic algorithm. In the classroom it is possible to
ask students for their best solution and get different answers for z from different groups. Typi-
cally, fitness values of -11, -10, -9 and –8 may be reported. Examination of these ‘good’ fitness
values and the chromosomes that yield them is shown in Figure 11. Attention can be drawn to the
pattern of bits that these ‘good’ solutions have in common. For this exercise, the first two bits
must be 0, and the fourth and fifth bits must be 1. This pattern is known as the schema for this
particular problem.

A discussion about the concept captured by schema representation is valuable. Good schemas are
affected by the genetic operators of crossover and mutation in the manipulation of a GA. Cross-
overs tend to preserve good schemas and mutations tend to disrupt them. When students move
onto implementing and running GAs on their computers, decisions will need to be made as to an
appropriate percentage of mutation and crossovers for each generation. Typically, most GAs
commence at about 70% for crossover rate but a much smaller rate, like 1% for mutation. It is
important that students know that they are expected to adjust these amounts during various trial
runs of their software.

Figure 10: An example of a 6 bit chromosome
representation when x = 5 and y = 2

 Venables & Tan

 257

Further Exercises
From the above introductory exercises it is possible to advance in different directions, dependent
on the intention for introducing students to genetic algorithms. We teach GAs as a small unit
within an artificial intelligence course, where they are compared to other problem solving strate-
gies such as expert systems, fuzzy logic and neural networks. Another valuable resource for
teaching genetic algorithms is the Internet where it is a simple matter to find applets that visibly
reinforce the main GA terminology and mechanism covered above. These applets are wonderful
tools to illustrate a wider range of genetic operations and evolutionary approaches to students.
One such example is http://www.rennard.org/alife/english/gavgb.html.

Our next step is to supply students with three small Java classes, one to run a genetic algorithm,
another to represent individual chromosomes and another one to handle report writing. Students
run these classes in solving one of the standard GA test problems known as the Sphere Model
where

Whilst running the test problem, students experiment with the genetic algorithm by varying the
number of generations, the number of individuals in each generation, the clone proportion, muta-
tion rate and the crossover rate. Examination of the code illustrates to students that the construc-
tion of the coded genetic algorithm closely follows their classroom experiments; there are genes
on chromosomes and a fitness function to do the ‘survival of the fittest’ selections. From these
laboratory experiments, it is possible for students to explore more difficult problems such as time-
tabling and scheduling problems (Negnevitsky, 2005, p. 235).

In our artificial intelligence course, we always set a major open-ended assessment where students
have free range to try and solve a problem using any of the approaches covered in classes. Last
year, the problem was to research and code an intelligent system that could solve Sudoku prob-
lems (Sudoku, 2005; Venables & Tan, 2006). This year, students were told to investigate and

0 0 0 1 1 1

0 0 1 1 1 1

0 0 0 1 1 0

0 0 1 1 1 0

x = 0 and y = 7 fitness = -11

x = 1 and y = 7 fitness = -10

x = 0 and y = 6 fitness = - 9

x = 1 and y = 6 fitness = - 8

 schema

Figure 11: Best four solutions to the problem in z = x2 – 2y + 3

 0 0 * 1 1 *

f (x) = ()∑ −
N

i
ix

1

21

A ‘Hands on’ Strategy for Teaching Genetic Algorithms

258

write software that could compose music. In both years, many students have chosen to apply a
genetic algorithm in their assignments, with varying results.

About the Sudoku problem, one student reported that “You don’t need to be a genius to figure out
that a GA stinks for solving this puzzle” adding that “Genetic Algorithms (GAs) cannot effectively
solve problems in which there is no way to judge the fitness of an answer other than right/wrong,
as there is no way to converge on the solution”. The experiences of the students attempting the
Sudoku problem were instructive in lectures this year, for underlining that GAs are useful in op-
timisation problems, but not always suitable in other circumstances. However, in their music
composition efforts, GAs were quite useful to many students as a mechanism to evolve more me-
lodic music from randomly generated notes. In an assignment submission, one student wrote “In
my code, I repeated the simple cloning process we used in class last week with the pop-it beads as
my chromosome breeding mechanism.”

The Constructivist Approach
After introducing genetic algorithms for the first time with the above exercises, the teaching staff
remained curious about the impact of this new approach. So to try and capture a snapshot of stu-
dent perceptions of the initial poppet bead exercise, a simple survey instrument was designed. At
the end of the unit, some 7 weeks after the introductory exercises were run, the students were
asked to return an anonymous survey in which the following questions were asked:

• Was the poppet bead exercise helpful to your understanding of genetic algorithms?

• Was the exercise unhelpful?

• Did you use a genetic algorithm in your assignment?

• Do you have any other comments about the poppet bead exercise?

Twenty surveys were returned and with one exception, they were uniformly enthusiastic about the
approach. Overall, the first question tended to be answered in most detail. Some typical re-
sponses were “It was taught in a way which didn’t make it seem difficult which was excellent”,
“Hands on experience is always better than just theory” and “Yes, I felt it helped me visualise
exactly what the lecturer was explaining”. There seemed to be little correlation between the de-
gree of enthusiasm shown in response to first question and the uptake of genetic algorithms as a
strategy for their assignment queried in the third question. However the responses to the final
question were more telling. Several students mentioned that they had used the methods learnt in
the poppet bead exercise as the basis for their coding in the assignment.

Such active and contextual learning as indicated by students, is one of the hallmark characteristics
of the constructivist model of learning widely reported in the educational literature. When stu-
dents engage in problem-based and experiential learning they become active participants in their
own learning. By arousing cognitive puzzlement, in this instance via their interactions and ma-
nipulation of poppet beads, students are stimulated in the synthesis of their own internal knowl-
edge (Ben-Ari, 1998; Greening, 2000; Kolb, 1984; Kolb & Fry, 1975; Neo & Neo, 2001; Savery
& Duffy, 2006; Tam, 2000).

In the science and mathematics education literature, constructivism is a powerful explanation of
understanding student learning, and it is applicable also to computing education (Ben-Ari, 1998;
Harrison, 2001). More specifically, Greening (2000) adopted an “ill-defined” large programming
task to create an environment conducive to student learning through the practical dimensions of
constructivism. Like Greening (2000, p. 95), we aim to achieve positive learning outcomes using
the poppet bead exercises through the following:

 Venables & Tan

 259

Cognitive puzzlement – For information technology students the use of a ‘hands on’ analogical
model is an unusual and unexpected experience. The quirkiness of using a once popu-
lar children’s toy to understand the language from genetics and its application in ge-
netic algorithms is a very useful stimulus to generate interest about GAs.

Inter-disciplinary problem domain – The cross fertilization of differing scientific disciplines is
particularly pertinent in the study of GAs. As mentioned earlier, commencing students
need an appreciation of both the biological and computing meanings of words, like
chromosome and generation, to be comfortable in designing and using genetic algo-
rithms as a problem solving strategy. Along the way, students develop a broader ap-
preciation of some historical aspects of evolutionary biology and computing science
and their relevance to each other.

Group work friendly – The introductory exercises are best carried out in pairs to enable easy ma-
nipulation of the bead model. By organizing and encouraging each other whilst trying
to manipulate, crossover, clone and mutate their beads/moths/chromosomes students
actively discuss the terminology and various aspects of the processes being simulated.
Additionally, these exercises are followed by an open-ended, and perhaps “ill-defined”,
programming assessment task where students are required to complete as a pair.

Authenticity – The size and nature of the introductory exercises does not detract from the legiti-
macy of the biological problem involving Biston betularia moths nor the computing
and mathematical problems that follow. In all cases, they are classical problems wor-
thy of attention.

Ownership – Surprisingly, students do verbally express ownership regarding their moth popula-
tions as they go about creating and destroying individuals. Such ownership seems to
come about due to their role as omnipresent beings that decide which chromosome
strings are chosen for deletion, crossover and mutation. Less frivolously and more im-
portantly students take ownership of the problem and their own learning when investi-
gating and coding for their follow up assessments. As mentioned earlier, students are
expected to assume responsibility for their chosen approaches and to experiment with
the differing genetic algorithms and other strategies.

Stimulate reflection and meta cognition – As mentioned by Greening (2000), “a lot of learning
happens as retrospective”. We know this to be true from evidence we have gained
from the research diaries that we ask students to record as they complete their open-
ended assessments (Venables & Tan, 2006).

Encourage cognitive scaffolding – Using poppet beads to introduce genetic algorithms provided a
framework in which students were able to discuss the concepts and mechanisms, safe in
the knowledge that others had experienced the same situations. The framework was
versatile in that it could be used to express biological concepts and be applied to com-
puting problems. Many students in their assignment submissions made reference to the
introductory exercises as the basis for their decisions regarding coding and experimen-
tation.

A ‘Hands on’ Strategy for Teaching Genetic Algorithms

260

Conclusion
"An algorithm must be seen to be believed."

Donald Knuth

Although Knuth was not referring to our approach for introducing genetic algorithms to under-
graduate students, in the light of constructivist model of student learning, his quote is nonetheless
pertinent. The described set of ‘hands on’ exercises allow students to build their own internal
knowledge using problems that span biology, computing and mathematics. Together they illus-
trate the cross disciplinary nature of GAs and they introduce the associated ‘biological’ language
and the underpinning concepts in a natural and meaningful way.

For undergraduates, genetic algorithms are an important heuristic strategy to teach. GAs naturally
give a contextual position of computing with other disciplines. GAs can be used to expand dis-
cussion on topics like data structures, hill climbing searches and path finding algorithms. As
well, by sparking student interest, it is hoped that these exercises will act as a springboard for ex-
ploring more about evolutionary algorithms and possibly other biologically inspired approaches
such as swarm intelligences and anthill search algorithms.

References
Ben-Ari, M. (1998). Constructivism in computer science education. Proceedings of the 29th SIGSCE Tech-

nical Symposium on Computer Science Education (SIGSCE 98), 30, 257-261.

Greening, T. (2000). Students seen flocking in programming assignments. Proceedings of the 5th Annual
SIGCSE/SIGCUE ITiCSE Conference on Innovation and Technology in Computer Science Education,
Helsinki, Finland, 93-96.

Harrison, A.G. (2001). Thinking and working scientifically: The role of analogical and mental models. Pro-
ceedings of the Australian Association for Research in Education Conference, Fremantle, W.A., 2-6
December 2001. Retrieved 24 August 2006, from http://www.aare.edu.au/01pap/har01126.htm

Holland, J.H. (1975). Adaptation in natural and artificial systems. University of Michigan Press, Ann Ar-
bor.

Hooper, J. (2002, May 11). Of moths and men: Intrigue, tragedy and the peppered moth. The Guardian
Newspaper Review.

Kay, A. (2006). Is computer science an oxymoron? Retrieved 27 October 2006 from
http://www.windley.com/archives/2006/02/alan_kay_is_com.shtml

Kettlewell, H.B.D. (1955). Selection experiments on industrial melanism in the Lepidoptera. Heredity, 9,
323-342.

Kolb, D.A. (1984). Experiential learning: Experience as the source of learning and development. Engle-
wood Cliffs, NJ: Prentice Hall.

Kolb, D.A. & Fry, R. (1975). Towards an applied theory of experiential learning. In C.L. Cooper (Ed.),
Theories of group process. Chichester: John Wiley.

Moore, M. (2001). Teaching students to use genetic algorithms to solve optimization problems. Journal of
Computing in Small Colleges. 16(3),19-25.

Neo, K.T.K & Neo, M (2001). A constructivist learning experience: Reconstructing a web site using web
based multimedia authoring tools. Australian Journal of Educational Technology, 17(3), 330-350.

Negnevitsky, M. (2005). Artificial intelligence: A guide to intelligent systems (2nd ed.). Addison Wesley.

 Venables & Tan

 261

Savery, J. R., & Duffy, T.M. (2006). Problem based learning: An instructional model and its constructivist
framework. Retrieved 10 October 2006 from
http://www3.uakron.edu/edfound/people/savery/papers/sav-duff.html

Softpanorama. (2006). Algorithms and data structures. Retrieved 27 October 2006 from
http://www.softpanorama.org/Algorithms/algorithms.shtml

Sudoku. (2005). Sudoku web site. http://www.sudoku.com/

Tam, M (2000): Constructivism, instructional design, and technology: Implications for transforming dis-
tance learning. Educational Technology and Society, 3(2), 50-60.

Venables, A. & Tan, G. (2006) Thinking and behaving scientifically in computer science: When failure is
an option! Journal of Information Technology Education, 5, 121-13. Available at
http://jite.org/documents/Vol5/v5p121-131Veneables138.pdf

Wells, J. (1999) Second thoughts about peppered moths: This classical story of evolution by natural selec-
tion needs revising. The Scientist, 13(11), 13.

Biographies
Anne Venables lectures in Computer Science at Victoria University,
Melbourne, Australia. She has research and teaching interests in artifi-
cial intelligence and intelligence systems. Originally trained in Genet-
ics, Anne spent several years as a secondary Science and Mathematics
teacher before migrating into tertiary education. Anne is interested in
innovations in education and has previously published in this field.

Grace Tan is a senior lecturer in Computer Science at Victoria Uni-
versity, Melbourne, Australia. Her research interests include investiga-
tions of innovative teaching methods, the development of graduate at-
tributes, and issues related to female students in computing courses and
Grace has published in these areas.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 300
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [305 305]
 /PageSize [432.000 648.000]
>> setpagedevice

