
Journal of Information Technology Education Volume 6, 2007

Editor: Grandon Gill

Teaching Database Modeling and Design:
Areas of Confusion and Helpful Hints

George C. Philip, Ph. D.
College of Business, The University of Wisconsin – Oshkosh,

Oshkosh, WI, USA

Philip@uwosh.edu

Executive Summary
This paper identifies several areas of database modeling and design that have been problematic
for students and even are likely to confuse faculty. Major contributing factors are the lack of clar-
ity and inaccuracies that persist in the presentation of some basic database concepts in textbooks.
The paper analyzes the problems and discusses ways to minimize them. Specifically, the paper
discusses the practical role of normalization in database design, addresses the confusion in repre-
senting attributes with repeating values, discusses how to remove inconsistencies in defining rela-
tions and first normal form, simplifies the process of identifying candidate keys to normalize rela-
tions, clarifies the conditions under which insertion and deletion anomalies may occur, and sheds
light on the confusion in defining weak entities.

Normalization plays a vital role in both the theory and the practice of database design. The top-
down approach popularly used in relational database design creates a conceptual schema that is
represented by entity-relationship (E-R) models, and then uses mapping rules to convert the con-
ceptual schema to relation schemas. Because E-R modeling is an intuitive process, errors could
occur in identifying entities and their relationships, resulting in un-normalized relations. Un-
normalized relations also could result from converting files in legacy systems and spreadsheets to
relational tables. Normalization plays a key role in verifying the goodness of design of such rela-
tions and in improving the design.

The concept of repeating values in relations plays a major role in defining relations and first nor-
mal form. Yet, textbooks in general do not distinguish between multi-valued and single-valued
attributes in a schema. This lack of clarity may result in conflicting interpretations of the schema.
The paper presents a simple solution to the problem.

The lack of clarity in defining the terms tables, relations, and first normal form (1NF) in text-
books is another potential source of confusion. Some books define relation as a table with no
duplicate tuples, and only atomic values. These books then redundantly define 1NF as a relation
with only atomic values. Others define a relation as a table with columns and rows, and state that

a relation is in 1NF if each value is
atomic. These definitions fail to specify
an important requirement of 1NF that
there are no duplicate tuples. A third
definition of 1NF that fails to include
this property is that a table is in first
normal form if each value is atomic.

A challenging task for many students
during the normalization process is
checking whether a determinant is a

Material published as part of this publication, either on-line or
in print, is copyrighted by the Informing Science Institute.
Permission to make digital or paper copy of part or all of these
works for personal or classroom use is granted without fee
provided that the copies are not made or distributed for profit
or commercial advantage AND that copies 1) bear this notice
in full and 2) give the full citation on the first page. It is per-
missible to abstract these works so long as credit is given. To
copy in all other cases or to republish or to post on a server or
to redistribute to lists requires specific permission and payment
of a fee. Contact Publisher@InformingScience.org to request
redistribution permission.

mailto:Philip@uwosh.edu�

Teaching Database Modeling and Design

482

candidate key. The standard method is to check whether every attribute of the relation is func-
tionally dependent on the determinant. The paper presents a method that involves only the de-
terminants, and therefore makes it easier to identify candidate keys. The paper also provides an
alternate definition of Boyce-Codd Normal Form (BCNF), which is easier to apply.

Discussions in textbooks and other literature on the topic of normalization often give students the
impression that data redundancy in un-normalized relations leads to all three types of anomalies –
insertion, deletion, and update. The paper shows that though data redundancy generally results in
insertion and deletion anomalies, that is not always the case. The conditions under which inser-
tion/deletion anomalies don’t occur are discussed.

Guidelines for mapping conceptual schema to relational tables often use the terms strong entity
and weak entity to provide separate mapping rules for each. It is shown that the definition of
weak entity as presented in many textbooks, however, is inaccurate. These books define weak
entity using logical dependence rather than identifier dependence of entities.

The paper shows that several database design concepts and techniques commonly are presented
inaccurately or ambiguously in textbooks and are problematic for students. However, as presented
in the paper, simple solutions exist to minimize students’ problems in these areas.

Keywords: Teaching database design, data modeling, multi-valued attributes, Boyce-Codd Nor-
mal Form, normalization, candidate key, weak entity, First Normal Form.

Introduction
Database design has been an integral part of MIS curricula for decades. This field is well-
established, with an abundant supply of research papers and textbooks, many of which have un-
dergone several revisions. Yet, lack of clarity and inaccuracies in the presentation of some basic
database modeling and design concepts persist in textbooks. This, in turn, creates confusion and
difficulty for students, and even for faculty. This paper identifies such problems in several areas
and provides helpful hints for faculty and students. Specifically, the paper discusses the practical
role of normalization in database design, addresses the confusion in representing attributes with
repeating values, discusses how to remove inconsistencies in defining relations and first normal
form, simplifies the process of identifying candidate keys to normalize relations, clarifies the
conditions under which insertion and deletion anomalies may occur, and sheds light on the confu-
sion in defining weak entities. The discussions here are based on an examination of seventeen
database textbooks (Connolly & Begg, 2005; Date, 2004; Elmasri & Navathe, 2007; Frost & Van
Slyke, 2006; Gillenson, 2005; Hoffer, Prescott, & McFadden, 2007; Kifer, Bernstein, & Lewis,
2006; Kroenke, 2006; Mannino, 2007; Post, 2005; Pratt & Adamski, 2008; Riccardi, 2003; Rob
& Coronel, 2006; Rob & Semaan, 2004; Ullman & Widom, 2008; Umanath & Scamell, 2007;
Watson, 2005).

Practical Significance of Normalization
Because several areas discussed here are related to normalization, we first examine the practical
role of normalization and normal forms in designing databases. Database design may use a vari-
ety of inputs, including existing/proposed forms, reports, queries and transactions, data stored in
spread sheets and legacy systems, and entities/attributes identified from knowledge of the busi-
ness. Thus, for example, to develop a database for a new inventory control system to replace an
existing spreadsheet-based system, the designer might use existing spreadsheets, reports, and ad-
ditional data items represented by entities, such as vendors and product lines, that are identified
from user requirements and knowledge of the business.

 Philip

 483

The Top-down Approach
In order to translate the data from various sources to a well-designed database, the top-down ap-
proach popularly used in relational database design uses three basic steps: 1) Create a conceptual
schema that is represented by entity-relationship models, 2) Create a logical schema by mapping
the conceptual schema to relation schemas using mapping rules, and 3) Apply normalization rules
to test the goodness of the design and to improve the design, if necessary.

In general, if the attributes, entities, and their relationships are identified correctly, the proper
application of mapping rules should result in normalized relations. However, because E-R
modeling is an intuitive process, errors could occur in identifying entities and their relationships
and in applying mapping rules, resulting in un-normalized relations. Consider a segment of an
order form for a mail-order nursery, shown in Table 1.

Table 1: Segment of an Order Form

Martha Jones
2253 Lake Breeze
Oshkosh, WI 54901

Cust#: 23476

Date: 9/24/2007

Item# Description Qty Unit Price Item Total

65729 Blue Scabiosa 3 2.00 $6.00

14159 Mixed Hosta 2 3.33 $6.66

66711 Missouri Primrose 3 2.00 $6.00

For office use only: Order#: ______ Cost of Items $18.66

Experience with student assignments indicates that inexperienced designers are likely to make
mistakes in identifying entities and their relationships. Two common mistakes are:

1) Correctly recognize Customer as an entity, but incorrectly group the rest of the information as
a single Order entity with a one-to-many relationship between Customer and Order. Applying the
mapping rules to this conceptual schema would result in an un-normalized Order schema with
data redundancy: Order (Order#, Date, Cust#, Item#, Description, Qty, Unit Price).

2) Correctly identify all three entities - Customer, Order, and Item - but incorrectly identify the
relationship between Order and Item as one-to-many, resulting in an un-normalized Item schema:
Item(Item#, Order#, Description, and Unit Price).

The number of entities erroneously represented in un-normalized relations resulting from the top-
down approach tends to be small since some breakdown of the set of attributes already took place
during creation of the conceptual schema by identifying at least some of the entities. Un-
normalized relations also could result from converting spreadsheets and files in legacy systems to
relational tables.

Verifying and Achieving Goodness of Design
A key role of normalization is to use a more scientific approach to verify the goodness of design
of relation schemas that result from the top-down approach and from conversion of non-relational
files. Thus, the goodness of design of the schema, Order (Order#, Date, Acct#, Item#,
Description, Qty, Unit Price), which was mapped above from an incorrectly identified Order
entity, may be tested by applying the definition of BCNF: a relation is in BCNF if, and only if,
every candidate key is a determinant. Functional dependencies that represent the business rules

Teaching Database Modeling and Design

484

related to the Order entity indicate that Item# is one of the determinants because it uniquely
determines description and unit price. But it is not a candidate key by itself because it doesn’t
uniquely determine Order# or Qty, leading to the conclusion that the design of Order is not good.

In addition to testing the goodness of design, the functional dependencies (FDs) derived from
business rules during the normalization process also help to break down un-normalized relations
to normalized relations. For example, in the relation Order (Order#, Date, Cust#, Item#,
Description, Qty, Unit Price), the functional dependencies Item# -> (Description, Unit Price) help
to recognize Item (Item#, Description, Unit Price) as a separate relation. Similarly, the
dependency (Order#, Item#) -> Qty indicates another relation that consists of the three attributes.

Normalization also can be used in a second approach to database design called the bottom-up
approach, which starts with a single large relation schema, often called the universal relation, that
consists of the set of all attributes. The set may consist of attributes from multiple sources, such
as reports, forms, transactions, and data files. As a result, the universal relation schema tends to
represent a larger number of entities than the number of entities in a schema resulting from the
top-down approach. In this approach, normalized relations are constructed by identifying the
relationship among individual attributes as the starting point. As noted by Elmasri and Navathe
(2007, p. 336), “this method is not very popular in practice because it suffers from the problem of
having to collect a large number of binary relationship among attributes as the starting point.” It
would be simpler to first break down such large relations to smaller relations by identifying the
entities, and then to map the entities to relations using the top-down approach. The discussions
here are aimed at relations resulting from such a top-down approach.

Formal algorithms have been developed to break down un-normalized relations to normalized
relations. An algorithm to synthesize 3NF relations by combining individual functional depend-
encies of an un-normalized relation is provided by Bernstein (1976). A different decomposition
algorithm to break down an un-normalized relation to BCNF relations is provided in several text-
books (Elmasri & Navathe, 2007, p. 388; Kifer et al., 2006, p. 219; Ullman and Widom, 2008,
p.92). Application of these algorithms, however, requires that the designer provide an accurate
list of all the functional dependencies in the relation. This could be a tedious task for large rela-
tions. Further, these algorithms may produce different results depending on the order in which the
input is provided and, also, may result in more relations than are desirable (Umanath & Scamell,
2007).

Because normalization beyond BCNF (4th, 5th, and Domain-Key normal forms) is of less practical
significance, those higher normal forms are not included in this discussion. Since the require-
ments for a relation to be in BCNF includes the requirements for first, second, and third normal
forms, normalizing a relation could be taught without teaching the first three normal forms. How-
ever, these three normal forms, which are presented in almost all textbooks that discuss BCNF,
help to bring sharper focus on the specific types of undesirable FDs that contribute to data redun-
dancy.

Dependency Preservation
Third normal form (3NF), and hence 1NF and 2NF that are included in its common definitions, is
of further importance because some un-normalized relations cannot be decomposed to BCNF re-
lations that preserve all functional dependencies (Elmasri & Navathe, 2007, p. 395; Ullman &
Widom, 2008, p. 94). However, any relation can be decomposed to 3NF relations that preserve
all the functional dependencies (Biskup, Dayal, & Bernstein, 1979). Functional dependencies
represent business rules that are constraints on the database. Therefore, if a functional depend-
ency is not represented in any one of the decomposed relations, enforcing the corresponding
business rule through other means becomes more difficult.

 Philip

 485

The lack of dependency preservation in decomposition of certain relations to BCNF is illustrated
by the following relation schema that represents information on student internships.

INTERNSHIP (StudentId, Organization, SupervisorPhone, PerformanceRating)

A student is allowed to have only one internship with the same organization, but may have multi-
ple internships if they are at different organizations. SupervisorPhone uniquely identifies the stu-
dent’s internship supervisor who is an employee of the sponsor organization. The business rules
are represented by the following FDs:

fd1: (StudentId, Organization) -> SupervisorPhone

fd2: (StudentId, Organization) -> PerformanceRating

fd3: SupervisorPhone -> Organization

Relation INTERNSHIP is in 3NF because there are no functional dependencies between non-key
attributes. However, Internship is not in BCNF because fd3 implies that SupervisorPhone is a
determinant, but it is not a candidate key. The practical problem is that the relation allows the
inconsistency of having two or more different organizations associated with the same phone num-
ber in different rows, thus violating fd3.

There are two possible decompositions of INTERNSHIP into BCNF relations:

Option 1: One option is to decompose INTERNSHIP to two relations, shown below:

ST_SUP (StudentId, SupervisorPhone, PerformanceRating)

SUP_ORG (SupervisorPhone, Organization)

This option preserves fd3, but it doesn’t preserve fd1 and fd2. An effect of not preserving fd1:
(StudentId, Organization) -> SupervisorPhone is that the set of two relations allows two different
phone numbers for the same (StudentId, Organization) combination. Similarly, not preserving
fd2: (StudentId, Organization) -> PerformanceRating allows two different PerformanceRatings
for the same (StudentId, Organization) combination. Sample records in the two tables ST_SUP
and SUP_ORG illustrate these problems.

Student Id SupervisorPhone PerformacneRating

112344 424-3151 4

ST_SUP

112344 233-4121 5

SupervisorPhone Organization

424-3151 Acme Inc

SUP_ORG

233-4121 Acme Inc

A natural join of the two tables would show the student-organization combination (112233,
Acme Inc) associated with two different phone numbers 424-3151 and 424-4121, violating the
fd1, and two different PerformanceRatings 4 and 5, violating fd2.

Teaching Database Modeling and Design

486

Student ID Organization SupervisorPhone PerformanceRating

112344 Acme Inc 424-3151 4

Join of ST_SUP
and SUP_ORG

112344 Acme Inc 424-4121 5

Option 2: A second way to decompose INTERNSHIP to BCNF relations is:

ST_ORG (StudentId, Organization, PerformanceRating)

PHONE_ORG (SupervisorPhone, Organization).

These relation schemas preserve fd2 and fd3; but do not preserve
fd1: (StudentId, Organization)-> SupervisorPhone. Again, the effect of not preserving fd1 would
be to allow two different SupervisorPhone numbers for the same student-organiztion combina-
tion, as explained above.

This option also suffers from a more serious problem of failing to produce a lossless join decom-
position. That is, a natural join of any state of the two relations may fail to yield the original rela-
tion state. The join may result in additional spurious tuples. Since lossless join is considered to be
an extremely important property (Umanath & Scamell, 2007, p. 366), option 1 is preferred. It
should be noted that every un-normalized relation can be decomposed to 3NF relations or BCNF
relations, which meet the lossless join condition (Biskup et al., 1979; Ullman & Widom, 2008).

In the case of un-normalized relations that cannot be decomposed to BCNF relations that preserve
the functional dependencies, the designer needs to choose between the redundancy of the 3NF
and the lack of dependency preservation in BCNF. Thus, in the current example, one needs to
choose between two designs: 1) the 3NF relation INTERNSHIP that suffers from potential incon-
sistencies of having two or more organizations associated with the same phone number; 2) the
BCF relations in ST_SUP and SUP_ORG, which suffer from problems in enforcing the func-
tional dependencies fd1 and fd2. In such cases, understanding 3NF and lower normal forms that
are included in its common definitions is important to the designer. The problem due to lack of
dependency preservation may be minimized by using materialized views that store data separate
from the base tables and refresh the data when the base tables change (Umanath & Scamell,
2007)

The problem with dependency preservation discussed above indicates the practical significance of
applying the normalization theory along with the top-down approach to data modeling to produce
well-designed relations, and to choose between designs that are not optimal. Next we address the
lack of clarity in several areas related to data modeling and normalization.

Representing Repeating Values
A core concept in the definition of 1NF is “repeating values” or “multi-valued” attributes. Typical
definitions include: 1) a table is in first normal form if it doesn’t have any multi-valued or com-
posite attributes; and 2) a table is in first normal form if each value in a tuple is atomic. Tables
with multi-valued attributes may result from converting legacy systems. such as COBOL files,
and from incorrect mapping of entities with multi-valued attributes. Though the concept of multi-
valued attributes (or, repeating values) is simple, the lack of clarity in representing repeating val-
ues could be a source of confusion. Attributes with repeating values commonly are illustrated in
textbooks by showing data (the relation state) along with relation schema. For example, the table
EMPLOYEE with a multi-valued composite attribute, skills (skill_id, skill_level), would be rep-
resented as shown in Table 2. Skill_id and Skill_level represent the ID and level of an em-
ployee’s skills, respectively.

 Philip

 487

Table 2: EMPLOYEE with repeating values; not in 1NF

Emp_Id Emp_Name Skill_id Skill_level

10110 John Smith 22 1

 25 3

10120 Mark Adams 15 2

 22 4

Although the use of data along with the schema identifies multi-valued attributes, very few text-
books present any method to identify a multi-valued attribute using schema alone. Consider the
schema shown above without the data:

 EMPLOYEE (Emp_Id, Emp_Name, Skill_id, Skill_level)

Given the above schema (with no data), and the business rule that an employee may have multi-
ple skills, students have difficulty deciding whether EMPLOYEE is a table with repeating values
(not in 1NF) as shown in Table 2, or whether it is a relation in 1NF but not in second normal
form, as shown in Table 3. To make this decision with no additional information in the schema,
one needs to know how the data is represented. If the data is represented as shown in Table 2,
then Emp_Id would be a key and Skill_id and Skill_level are repeating values. On the other hand,
if the data is represented as shown in Table 3, then the combination of Emp_Id and Skill_Id
would be the key and Skill_id and Skill_level are not multi-valued. In this case, EMPLOYEE is
in 1NF, but not in 2NF.

Table 3: EMPLOYEE in 1NF

Emp_Id Emp_Name Skill_id Skill_level

10110 John Smith 22 1

10110 John Smith 25 3

10120 Mark Adams 15 2

10120 Mark Adams 22 4

As relations often are represented using schema without showing the data, it is important that the
schema clearly distinguishes multi-valued attributes from single-valued attributes. The distinc-
tion between the schemas represented in Table 2 and Table 3 can be made clear without using
data, by employing a notation like braces {} to represent multi-valued attributes (Elmasri &
Navathe, 2007).

 EMPLOYEE (Emp_Id, Emp_Name, {Skills(Skill_id, Skill_level)})

A simplified version would be:

 EMPLOYEE (Emp_Id, Emp_Name, {Skill_id, Skill_level})

The use of braces indicates that a tuple may have multiple Skill_id and Skill_level. On the other
hand, the representation of EMPLOYEE without braces,

EMPLOYEE (Emp_Id, Emp_Name, Skill_id, Skill_level),

indicates that each tuple has only one Skill_id and Skill_level.

Teaching Database Modeling and Design

488

Almost all textbooks do not provide any method to represent multi-valued attributes in the
schema.

It should be noted that specifying the key(s) and the functional dependencies would help students
distinguish between tables in 1NF and those not in 1NF. For example, given the business rule that
an employee may have multiple skills, EMPLOYEE (Emp_Id, Emp_Name, Skill_id, Skill_level)
is not in 1NF because Skill_id and Skill_level are multi-valued attributes. On the other hand,
EMPLOYEE (Emp_Id, Emp_Name, Skill_id, Skill_level) is in 1NF because each tuple has only
one value for Skill_id and Skill_level. However, if the intent is to let students determine FDs and
keys based on business rules, it defeats the purpose to provide such information.

Tables, Relations, and First Normal Form
The definitions of the terms tables, relations, and first normal form are of fundamental importance
to teaching normalization. The lack of clarity in defining these terms in textbooks is a potential
source of confusion for students of database design. One group of textbooks defines normal form
using the term table, and another group defines normal form using the term relation, which is
more consistent with mainstream database literature. Inaccuracies are prevalent in defining nor-
mal forms using both these terms.

Some textbooks that use the term relation define relation as a table with the following
characteristics: 1) Each tuple (row) represents an instance of an entity or relationship, that is,
there are no duplicate tuples; or, in other words, a relation has at least one key, 2) Each value in a
tuple is atomic, that is, there are no multi-valued or composite attributes, 3) The order of tuples
and attributes is not significant. This definition is consistent with the database literature. But,
these books then define first normal form as follows: a relation is in first normal form if each
value in a tuple is atomic. The above definitions of relation and first normal form are somewhat
confusing. If the definition of a relation includes the characteristics of having atomic values, then
any table that is a relation is already in first normal form. There is no need to impose the
requirement of atomic values again on a relation for it to be in 1NF. As stated by Elmasri and
Navathe (2007, p. 358), “First normal form (1NF) is now considered to be part of the definition of
a relation in the basic (flat) relational model.” Date (2004) points out that in mathematics, a
relation need not be in 1NF, but in the relational model, a relation by definition is in 1NF.
Student confusion could be reduced by making it clear that the term relation, as defined above, is
in 1NF because a relation has only atomic values. Some books use the term “un-normalized
relation” to refer to relations that have non-atomic values. Again, this is not consistent with the
database literature.

Other textbooks define relation as a table with columns and rows. Then, the first normal form is
defined the same way as stated above: a relation is in first normal form if each value in a tuple is
atomic. Without a more formal definition of table, the combination of the above two definitions
fails to specify an important property of a relation in first normal form: that there are no duplicate
tuples, that is, it has at least one key. These definitions would classify the table shown in Table 4
as a relation in 1NF, though it doesn’t qualify as a relation because it has duplicate tuples that
represent two different students with the same name, John B. Adams.

Table 4: A Table not in First Normal Form

Course# Student Name Grade

Bus 311 John B. Adams B

Bus 311 Sarah Mueller A

Bus 311 John B. Adams B

 Philip

 489

A couple of books attempt to specify this requirement by stating that for a relation to be in 1NF,
each attribute must be dependent on the primary key. This statement is confusing because a pri-
mary key is not a primary key if each attribute is not dependent on it. A better way of stating this
is that the relation must have at least one key.

A third group of textbooks uses the term table to define normal forms inaccurately. A typical
definition is: a table is in first normal form if each value is atomic. Again, this definition fails to
specify the property that a relation in 1NF has no duplicate tuples. Applying this definition would
lead to the wrong conclusion that Table 4 is in 1NF.

To eliminate the confusion and make the definitions consistent with the literature, a relation
should be defined as a table with the three major properties specified earlier: each value is atomic,
there are no duplicate tuples, and the order of tuples and attributes is not significant. In addition, it
should be stated that a relation, by virtue of its property that it has only atomic values, is in first
normal form.

Normalizing Relations
This section identifies the problem students encounter in normalizing relations when they use the
approach commonly presented in textbooks to identify candidate keys. A simplified approach to
identify candidate keys is presented.

BCNF: Conventional Method
A relation is in BCNF, if and only if, every determinant is a candidate key. A determinant is any
set of attributes on which another set of attributes is fully functionally dependent. A set of
attributes Y is fully functionally dependent on another set of attributes X if it is functionally
dependent on X and not functionally dependent on any subset of X. A set of attributes Y is
functionally dependent on another set of attributes X, that is, X -> Y, if for every valid instance of
X, the values of X uniquely determine the values of Y.

A set of attributes X is a candidate key if all other attributes of the relation are fully functionally
dependent on X. That is, X uniquely determines all other attributes.

A common method used in textbooks to check whether a relation is in BCNF is to identify the
determinants and verify that every determinant is a candidate key. An area that is particularly dif-
ficult for students is identifying the candidate keys, because the standard definition of candidate
key, presented earlier, involves checking whether all other attributes of the relation are dependent
on it.

Consider the un-normalized relation, ORDER, similar to the one discussed earlier under the top-
down approach:

ORDER (OrderNo, OrderDate, CustNo, PmtMethod, ItemNo, ItemName, UnitPrice,
OrderQty)

UnitPrice represents the standard price per unit, which is assumed to be the same for a product in
all orders. ItemName is not unique. PmtMethod represents the single method of payment for an
order.

When students are provided with the business rules and asked to normalize relations like ORDER
and explain their rationale, their answers and comments indicate that it is relatively easier for
them to identify the determinants than to identify the candidate keys. Identifying a determinant is
simpler because, to be a determinant, only one attribute needs to be dependent on it. For exam-
ple, OrderNo is identified as a determinant typically by noting that there is only one OderDate
associated with an OrderNo, that is, OrderDate is dependent on OrderNo. Similarly, the single

Teaching Database Modeling and Design

490

dependency (OrderNo + ItemNo) -> OrderQty establishes that (OrderNo + ItemNo) is a determi-
nant.

Student comments, however, show that they are more confused about identifying the candidate
key(s), and they make more mistakes because it involves checking whether each attribute of the
relation is functionally dependent on a determinant. Thus, to identify (OrderNo + ItemNo) as a
candidate key, students need to establish seven dependencies involving seven attributes, such as
(OrderNo + ItemNo) -> PmtMethod and (OrderNo + ItemNo) -> UnitPrice. The larger the num-
ber of dependencies to check, the more time-consuming and complex the process becomes, in-
creasing the chance for errors.

A simpler method to identify candidate keys is presented. This method is then used to simplify
the process of checking whether a relation is in BCNF.

A Simpler Method to Identify Candidate Keys
The proposed approach is based on the assertion that, after the determinants are identified, check-
ing whether a determinant is a candidate key doesn’t have to involve all the attributes of a rela-
tion. The transitivity property of functional dependency (Armstrong, 1974) states that:

 If A -> B, and B -> C, then A -> C

Thus if a determinant uniquely determines all other determinants, then the determinant uniquely
determines all other attributes of a relation. That is, a determinant is a candidate key if it
uniquely determines all other determinants.

An equivalent definition is: a determinant is a candidate key if all other determinants are func-
tionally dependent on it. Using this property to identify candidate keys eliminates the need to
check the dependency between a determinant and all other attributes of the relation. It is neces-
sary to check only the dependency between a determinant and all other determinants, thus reduc-
ing the number of attributes to work with.

Using the proposed definition to verify that (OrderNo + ItemNo) is a candidate key, it is neces-
sary to check only whether the other two determinants, OrderNo and ItemNo, are functionally
dependent on (OrderNo + ItemNo). That is, verify that

 (OrderNo + ItemNo) -> OrderNo, and

 (OrderNo + ItemNo) -> ItemNo.

Both are trivial dependencies since the attribute on the right side is a subset of the attributes on
the left side, leading to the conclusion that {OrderNo, ItemNo} is a candidate key. Thus the pro-
posed definition eliminates the need to check whether all other attributes are dependent on (Or-
derNo + ItemNo).

Similarly, for OrderNo to be a candidate key, ItemNo and (OrderNo + ItemNo) must be depend-
ent on OrderNo. That is, we need to check whether

 OrderNo -> (?) ItemNo, and

 OrderNo -> (?) (OrderNo + ItemNo).

Because the first dependency does not hold in this relation, OrderNo is not a candidate key,
though it is a determinant.

It should be noted that even when using the conventional definition of a candidate key, one could
show that a determinant like OrderNo is not a candidate key, by examining the single dependency
OrderNo -> ItemNo that doesn’t hold. But, the advantage of using the proposed definition that
uses only determinants is that it helps students to focus their attention on determinants, so that

 Philip

 491

they don’t have to decide which one of the entire set of attributes should be checked for lack of
dependency. For example, using the conventional definition of candidate keys, students might
examine any one of the dependencies (OrderNo -> UnitPrice), (OrderNo -> PmtMethod),
(OrderNo -> OrderQty), etc., in any order. Because determinants are typically identifiers of
entities (or relationships between entities), it would be easier to examine the dependency between
two determinants than the dependency between a determinant that is the identifier of one entity
and an attribute of another entity. For example, it would be easer to check the direct dependency
OrderNo -> ItemNo than the indirect dependency OrderNo -> UnitPrice, which is based on two
relationships OrderNo to ItemNo, and ItemNo to UnitPrice.

Alternate Definition of BCNF
The definition of candidate key presented earlier states that a determinant is a candidate key if all
other determinants are functionally dependent on it. Applying this definition to BCNF yields an
alternate definition of BCNF:

A relation is in BCNF if every determinant determines every other determinant; that is, if every
determinant is functionally dependent on every other determinant.

In the special case when a relation has only one determinant, then the determinant is a candidate
key, because every relation, by definition, has at least one candidate key. Hence, a relation with
only one determinant is in BCNF.

In summary, a relation is in BCNF if

1) it has only one determinant, or

2) it has multiple determinants, and every determinant is functionally dependent on
every other determinant.

Thus, to test whether ORDER is in BCNF, it is necessary to consider only the dependency be-
tween the three determinants:

1) OrderNo, 2) ItemNo, and 3) {OrderNo, ItemNo}.

Though, as discussed earlier, OrderNo and ItemNo are dependent on (OrderNo + ItemNo), there
is no functional dependency between OrderNo and ItemNo, leading to the conclusion that
ORDER is not in BCNF.

Multiple Candidate Keys
An additional example is presented to illustrate the application of the proposed approach when
there are multiple candidate keys. Consider a normalized relation, CLASS, which stores informa-
tion on each class offered in a semester in a university:

CLASS (ClassId, Course#, Sec#, Bldg, Room#, Day, Time, FacultyId, #OfStudents).

ClassId is a unique identifier of each class offered. It is assumed that, for a given class, there is
only a single value for each of the attributes Course#, Sec#, Bldg, Room, Day, Time, FacultyId,
and #OfStudents.

ClassId could be identified as a determinant based on a single dependency like ClassId->Course#.
Similarly, (Course# + Sec#) could be identified as a key based on a dependency like
(Course#+Sec#) -> ClassId. The test for BCNF could be done using either its standard definition
or the proposed definition. Applying the standard definition requires checking whether ClassId
and (Course# + Sec#) each determine all other attributes. To use the alternate definition, it is
necessary to verify only that ClassId -> {Course# + Sec#}, and that {Course# + Sec#} -> ClassId.

Teaching Database Modeling and Design

492

Because both dependencies hold, CLASS is in BCNF. Again, the simplified approach does not
require verifying that all attributes are dependent on each determinant.

Insertion and Deletion Anomalies
Discussions on normalization in textbooks and other literature often give students the impression
that data redundancy in un-normalized relations leads to all three types of anomalies: insertion,
deletion, and update. A typical statement is: “Data redundancy and consequent modification (in-
sertion, deletion, and update) anomalies can be traced to “undesirable” functional dependencies in
a relational schema” (Umanath & Scamell, 2007, p. 345). The three anomalies are commonly de-
fined as:

1. Insertion anomaly: Information on an instance of one entity cannot be inserted without
inserting a tuple representing an instance of a related entity. This is the most common
description of insertion anomaly.

2. Deletion anomaly: information on one entity cannot be deleted under certain situations
without losing information on another entity.

3. Update anomaly: a change in the value of an attribute may have to be made in multiple
tuples.

Although data redundancy in relations always results in update anomalies, some un-normalized
relations that have data redundancy do not suffer from insertion anomaly, or from deletion anom-
aly.

Consider the relation AUTHOR, shown in Table 5, which keeps information on authors and
books for a publishing company:

Table 5: AUTHOR

Contract# AuthorID AuthorName BookId BookTitle Royalty

10001 1010 A. Adams 10010 Intro Database 4%

10002 1020 B. Brown 10010 Intro Database 5%

10003 1020 B. Brown 10020 Intro Java 8%

The relationship between authors and books is assumed to be many-to-many. The royalty may
vary with the author and the book. The combination of AuthorId and BookId is a candidate key.
A contract# is assigned for each author and book combination to serve as a surrogate key.

AUTHOR is clearly not in BCNF. Both AuthorName and BookTitle are stored redundantly. This
results in update anomaly, as expected, making it necessary to make any changes in AuthorName
and BookTitle in multiple tuples. However, the relation AUTHOR does not suffer from insertion
anomaly as defined in 1(a), or from deletion anomaly, if Contract# is selected as the primary key.
Information on an author can be inserted without inserting information on any book written by
the author, by assigning a contract#, so that the book information can be added later. The same is
true about inserting author information without inserting book information. Similarly, the infor-
mation on the single author of a book can be deleted without deleting the information on the
book, since Contract# is the primary key.

Consider a second example involving a relation CLASS, shown in Table 6, which contains in-
formation on courses and sections, with a one-to-many relationship between them.

 Philip

 493

Table 6: CLASS

ClassId Course# Course Name Section# Room# FacultyId

1001 Bus211 Intro MIS 01 Clow 241 403355

1002 Bus211 Intro MIS 02 Clow 105 403355

1003 Bus315 Database 01 HS 107 403355

The un-normalized relation suffers from data redundancy. However it does not suffer from inser-
tion or deletion anomalies. Deleting the single section of the course Bus315, for example, doesn’t
require deleting the Course# and Course Name for Bus315 since the surrogate key, ClassId, is the
primary key. Similarly, a course without sections can be inserted without any problem.

Insertion and deletion anomalies also may be encountered in relations that do not suffer from data
redundancy or update anomalies (Philip, 2002). Consider a schema that shows the current as-
signment of faculty members to office rooms:

FACULTY_OFFICE (Fac_id, Fac_name, Fac_dept, Office_Id, Bldg, Room#, SqFt).

A faculty member is assumed to have zero or one office, and an office is assigned to zero or one
faculty member, resulting in a (zero-or-one)-to-(zero-or-one) relationship. Fac_name and
Fac_dept are single valued attributes of faculty. Bldg, Room#, and SqFt are single valued attrib-
utes of office. As shown by Philip (2002), such a table meets the requirements of a relation.

FACULTY_OFFICE does not suffer from duplication of data or resulting update anomalies, be-
cause the relationship between office and faculty is 1:1. However, if Fac_id, for example, is se-
lected as the primary key, then information on offices that are not assigned to any faculty cannot
be inserted into the relation, resulting in insertion anomaly. Similarly, if a faculty member leaves,
his/her information cannot be deleted without losing the information on his/her office, if any, re-
sulting in deletion anomaly. The same anomalies exist if Office_Id, or the combination of
(Fac_id + Office_id), is selected as the primary key.

Student confusion can be minimized by making it clear that though data redundancy generally
results in insertion and deletion anomalies, that is not always the case. When a surrogate key is
used in place of a composite key, data redundancy may not result in insertion and deletion
anomalies, as in the examples shown above. Similarly, insertion and deletion anomalies may be
encountered in relations that do not suffer from update anomalies, when a relation represents two
entities with a 1:1 relationship.

Weak Entities
The term weak entity often is used to refer to a certain type of entity to facilitate prescribing rules
to map them to relations. The definition of weak entity as presented in many textbooks, however,
could be an area of confusion for students and faculty. Two common definitions of weak entity
found in textbooks are:

Definition 1: A weak entity is an entity that doesn’t have a complete identifier of its own. The
identifier of the weak entity is formed by combining the identifier of another entity with attrib-
ute(s) of the weak entity. An entity that doesn’t have a complete identifier of its own is also
called an ID-dependent entity.

Definition 2: A weak entity is an entity whose existence depends on some other entity. This defi-
nition is commonly based on the logical dependence of an entity on another entity. For example,
Hoffer et al. (2007, p. 98) state: “the weak entity has no business meaning in an E-R diagram.”

Teaching Database Modeling and Design

494

Pratt and Adamski (2008, p. 216) state: “…because an order cannot exist without a customer, the
relationship between customers and orders is existence dependency.” It should be noted that an
order typically has its own identifier (an order number); but this statement considers order to be a
weak entity because it is logically dependent on a customer. Statements by Kifer et al. (2006, p.
84) support this view: “Sometimes designers choose to strip weak entity types of their key attrib-
utes and have the entities identified through their relationship with the master entity…. For ex-
ample, the DEPENDENT entity might have the Name attribute, but not the SSN attribute.” These
statements indicate that the definition of weak entity based on logical dependence allows its own
complete identifier (SSN) for a weak entity (DEPENDENT), thus contradicting Definition 1.

To further illustrate that ID-dependence and logical dependence are not the same, consider two
entities, APPLICANT and APPLICATION with a 1:Many relationship, as shown in Figure 1.
Application# is a key for APPLICATION.

APPLICATION APPLICANTSUBMIT

APPT_No

APPT_Name

APPT_Phone

Date

Position

Status

Application#

Figure 1: Strong/weak Entities

The first definition of weak entity would not classify APPLICATION as a weak entity because
APPLICATION has its own identifier, Application#. On the other hand, the second definition,
which generally is based on the logical dependence of an entity on another entity, would classify
APPLICATION as a weak entity, because an application cannot logically exist without an appli-
cant.

All logically dependent entities are not ID-dependent, as shown in the above example where
APPLICATION is logically dependent on APPLICANT, yet it is not ID-dependent. But, all ID-
dependent entities are logically dependent on another entity because an ID-dependent entity
depends on another entity to have an identifier. For example, an alternate version of
APPLICATION that doesn’t have the identifier Application# wouldn’t have a complete identifier
of its own, and therefore it would be classified as an ID-dependent entity. In this case, the
identifier of APPLICATION would include the identifier of APPLICANT, and therefore,
APPLICATON would be logically dependent on APPLICANT.

A significant majority of the textbooks use definition 1 (ID-dependency) for weak entity. How-
ever, most others continue to use definition 2 (logical dependency), which is an earlier definition
of weak entity. It should be noted that a very small number of books use the term existence de-
pendence, but describe the term essentially as ID-dependence. It is important to note that a major
reason for defining weak entity is to help specify mapping rules that are unique to ID-dependent
entities, like how to form the primary key by combining the key of the strong entity(ies) with at-
tribute(s) of the weak entity. These special rules do not apply to entities like “Order” that are
only logically dependent and not ID-dependent on another entity like “Customer.” Therefore, a
weak entity should be defined as an ID-dependent entity, as done in a majority of the books, to
bring more consistency. If the term weak entity is used to represent logically dependent entities,
then it should be made clear that the mapping rules unique to ID-dependent entities do not apply
to all logically dependent entities.

 Philip

 495

Review of Textbooks
Table 7 presents a summary of the treatment of four areas in each textbook that was considered in
this study: representation of multivalued attributes, definition of relation, definition of 1NF, and
description of weak entity. Some areas discussed earlier in this paper are not included in Table 7.
The alternate definitions of candidate key and BCNF provided in this paper are not presented in
any of the books. So, separate data on individual books on this topic is not included in Table 7.
Similarly, none of the books discuss relations in which data redundancy may not lead to insertion
and deletion anomalies, or relations that suffer from insertion and deletion anomalies without any
data redundancy. These areas also are not included in Table 7.

Table 7: Summary of Textbook Reviews
Textbook
(Authors)

Multivalued
Attributes

Represented by:

Definition of
Relation

Definition of
First Normal

Form

Weak Entity
Described as

Connolly &
Breggs

Schema+data Accurate Confusing Existence/ID
dependence*

Date None Accurate Accurate Existence/ID
dependence

Elmasri &
Navathe

Schema alone Accurate Accurate ID dependence

Frost &
Van Slyke

Schema+data Not Provided Incomplete ID dependence

Gillenson

Schema+data Accurate Incomplete Not defined

Hoffer et al Schema+data Accurate Confusing Logical
dependence

Kifer et al. None Accurate Accurate Logical
dependence

Kroenke None Accurate Accurate Logical
dependence

Mannino

Schema+data Not Provided Accurate ID dependence

Post

Schema+data Incomplete Incomplete Not defined

Pratt &
Adamski

Schema alone Accurate Confusing Existence
Dependence**

Riccardi

None Incomplete Confusing ID dependence

Rob &
Coronel

Schema+data Incomplete Accurate ID dependence

Rob &
Semaan

Schema+data Not Provided Confusing ID dependence

Ullman &
Widom

None Accurate Confusing ID dependence

Umanath &
Scamell

Schema+data Accurate Confusing ID dependence

Watson

None Incomplete Incomplete ID dependence

* The term existence dependency is used in the book to represent ID-dependence.
** Not clear whether existence dependence means logical or ID dependence.

Teaching Database Modeling and Design

496

Summary
This paper showed that several database design concepts and techniques are commonly presented
inaccurately or ambiguously in textbooks and are problematic for students. These areas include
representation of repeating values, definitions of table, relation, and first normal form, identifying
candidate keys, the relationship between data redundancy and insertion/deletion anomalies, and
the definition of weak entities. The paper described the source of the problems and discussed
simple solutions to make concepts more clear and techniques more efficient.

References
Armstrong, W. (1974). Dependency structure of data base relationships. Proceedings of the IFIP Congress.

Bernstein, P. A. (1976). Synthesizing third normal form relations from functional dependencies. ACM
Transactions on Database Systems, 1(4), 277-298.

Biskup, J., Dayal, U., & Bernstein, P. A. (1979). Synthesizing independent database schemas. ACM SIG-
MOD International Conference on Management of Data, 143-152.

Connolly, T., & Begg, C. (2005). Database systems: A practical guide to design, implementation, and
management. Reading, MA: Addison Wesley.

Date, C. J. (2004). An introduction to database systems. Reading, MA: Addison-Wesley.

Elmasri, R., & Navathe, S. (2007). Fundamentals of database systems. Reading, MA: Addison-Wesley.

Frost, R., & Van Slyke C. (2006). Database design and development: A visual approach. Upper Saddle
River, NJ: Prentice Hall.

Gillenson, M. L. (2005). Fundamentals of database management systems. Danvers, MA: Wiley.

Hoffer, J. A., Prescott, M. B., & McFadden, F. R. (2007). Modern database management. Reading, MA:
Addison-Wesley.

Kifer, M., Bernstein, A., & Lewis, P. (2006). Database systems: An application-oriented approach. Read-
ing, MA: Addison-Wesley.

Kroenke, D.M. (2006). Database processing: Fundamentals, design, and implementation. Upper Saddle
River, NJ: Prentice Hall.

Mannino, M.V. (2007). Database: Design, application development, and administration. New York:
McGraw-Hill.

Philip, G. (2002). Normalizing relations with nulls in candidate keys. The Journal of Database Manage-
ment, 13(3), 35-45.

Post, G. V. (2005). Database management systems. New York: McGraw-Hill.

Pratt, P., & Adamski, J. (2008).Concepts of database management. Boston: Course Technology.

Riccardi, G. (2003). Database management with web site development applications. Reading, MA: Addi-
son Wesley.

Rob, P., & Coronel, C. (2006). Database systems: Design, implementation, & management. Boston: Course
Technology.

Rob, P., & Semaan, E. (2004). Database: Design, development & deployment. New York: McGraw-Hill.

Ullman, J., & Widom, J. (2008). A first course in database systems. Upper Saddle River, NJ: Prentice Hall.

Umanath, N. & Scamell, R. (2007). Data modeling and database design, Boston: Course Technology.

Watson, R. T. (2005). Data management: Databases and organizations. Danvers, MA: Wiley.

 Philip

 497

Biography
Dr. George C. Philip is a professor in Information Systems in the Col-
lege of Business, University of Wisconsin – Oshkosh. He obtained his
Ph. D. from the University of Iowa. His work experience includes
seven years as Director of M.S. in Information Systems program and
Team Leader of MIS program. His areas of publication and teaching
include Business Intelligence, software design and development, and
database design. He teaches seminars and provides consulting services
in these areas.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 300
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [305 305]
 /PageSize [432.000 648.000]
>> setpagedevice

