
Journal of Information Technology Education: Volume 7, 2008
Innovations in Practice

Editor: Linda Knight
Note: An earlier version of this paper appeared in the Conference Proceedings of the Computer Science &
Information Technology Conference 2007 (CSITEd2007), University of Technology, Mauritius.

From Requirements to Code: Issues and Learning
in IS Students’ Systems Development Projects

Elsje Scott
University of Cape Town, Cape Town, South Africa

elsje.scott@uct.ac.za

Executive Summary
The Computing Curricula (2005) place Information Systems (IS) at the intersection of exact sci-
ences (e.g. General Systems Theory), technology (e.g. Computer Science), and behavioral sci-
ences (e.g. Sociology). This presents particular challenges for teaching and learning, as future IS
professionals need to be equipped with a wide range of analytical and critical thinking skills that
will enable them to solve business problems. In addition, they require technical, strong interper-
sonal communication, and team skills to contribute to the successful delivery of software prod-
ucts.
At the University of Cape Town (UCT) the capstone course of the IS undergraduate curriculum is
structured around three main areas: Project Management; People Management; and Implementa-
tion. The theoretical parts of this course introduce the student to important aspects of managing
projects and people in the Information Communication and Technology (ICT) Project environ-
ment. The practical part comprises a group systems development project, which forms a core part
of the course and requires students to apply theoretical skills in a real-world context. Although
the impact of the issues relating to soft skills on student learning is neither underestimated nor
ignored in the course, this paper mainly focuses on the technical issues that are experienced dur-
ing the life of the projects.
Students generally experience difficulty in the areas of problem-solving, coding and testing, all of
which are required for successful systems development. IS students are often less technically
oriented than their counterparts in the other computing disciplines and their courses involve less
technical content. As a result , they may be inadequately prepared for the technical demands of
the project. IS professionals must be able to interact with business experts and apply problem-
solving skills in developing possible solutions. It is thus reasonable to argue that the completion
of a full life cycle of a project provide IS students with invaluable experience in testing the effec-
tiveness of their proposed solution.

A reflective approach has been applied to the course design, resulting in the development of a
framework to sufficiently address the issues of problem-solving, coding, and testing through an

action learning cycle. This approach has
proved to lead to improved solutions
and to encourage deep learning. It also
shows how teaching practices are
shaped by looking back reflexively of
student learning and the facilitating en-
vironments.
This paper describes how the course has
evolved through four phases, culminat-
ing in an approach that guides students

Material published as part of this publication, either on-line or
in print, is copyrighted by the Informing Science Institute.
Permission to make digital or paper copy of part or all of these
works for personal or classroom use is granted without fee
provided that the copies are not made or distributed for profit
or commercial advantage AND that copies 1) bear this notice
in full and 2) give the full citation on the first page. It is per-
missible to abstract these works so long as credit is given. To
copy in all other cases or to republish or to post on a server or
to redistribute to lists requires specific permission and payment
of a fee. Contact Publisher@InformingScience.org to request
redistribution permission.

mailto:elsje.scott@uct.ac.za�
mailto:Publisher@InformingScience.org�

From Requirements to Code

IIP - 2

in transcending from the basic level of following, through detachment towards fluency. In this
fourth and current phase two pilot projects have been included to develop a framework or pattern
that will provide students with a sound basis for developing their own software system in the sec-
ond part of the course. This framework uses a methodology to structure large software-intensive
systems into modular components that can be developed and maintained independently. It fol-
lows a recursive process where students first develop an independent component, and then add a
dependent component to form a larger but again independent component. The repetitive imple-
menting of the framework through three iterations (two pilot projects and final group project)
promotes the transfer of skills and problem–solving techniques to similar situations and problems
and aids students to overcome their fears and anxieties when faced with problem situations.
Several relevant studies have been undertaken over the years to encourage and support the critical
reflective approach, deep learning, and improved solutions. A longitudinal study was conducted
in 2007 to determine the readiness of project teams to start the building phase by the end of the
first semester of the group project. This study will be extended to evaluate the impact of the im-
provements made during the fourth phase of the project, with specific reference to the issues iden-
tified in this paper.
Keywords: Information Systems, Systems development group project, Action learning, Deep
learning, Problem solving, Object-Oriented paradigm/environment.

Introduction
Information Systems (IS) is one of five computing disciplines identified by Computing Curricula
(2005), the others being Computer Engineering, Computer Science, Information Technology, and
Software Engineering. However, because IS lies at the intersection of exact sciences (e.g. Gen-
eral Systems Theory), technology (e.g. Computer Science) and behavioral sciences (e.g. Sociol-
ogy), it presents particular challenges for teaching and learning. According to IS2002, An Update
of the Information Systems Model Curriculum (Gorgone et al., 2002), the IS discipline depends
on three key attributes:

• A broad business and real world perspective.

• Strong analytical and critical thinking skills.

• Strong interpersonal communication and team skills.

A key role of the IS professional is to determine the requirements for an organization’s informa-
tion systems and to play an active role in the specification, design and implementation thereof
(Computing Curricula, 2005). In doing so, IS professionals are faced with the challenge of trans-
lating a variety of business processes into information technology solutions that will meet the
needs of the organization both efficiently and effectively.
For decades, the IS industry has experienced problems of software that is not delivered on time or
which is outdated before it can be implemented, and systems where requirements have not been
met or which are completely unusable (Parnas, 2006). It is thus essential for IS education to pro-
vide a ‘base foundation’ of skills and knowledge that will equip future IS professionals for the
effective delivery of information systems (Phukan, 2001). Requirements that are misinterpreted
or not fully understood will lead to flawed design resulting in an unsuccessful product. It is thus
crucial that IS students are given the opportunity during their undergraduate degree program to
test their understanding of requirements and their design skills by implementing them though the
development of a software product. In addition, the rapidly changing field of computing places
stringent demands on IT/IS educators to continually revise and change programs and curricula in
an attempt to better equip students for the marketplace (Dawson & Newman, 2002; Kussmaul
2000; Noll & Wilkens, 2002; Tuttle, 2000).

 Scott

 IIP - 3

The Computing Curricula (2004, 2005) depict IS as an applied discipline, primarily concerned
with the relationship between information systems and organizations. The IS professional is,
amongst other roles, concerned with the tailoring of database applications, the development, de-
ployment and configuration of systems to suit the needs of organizations, and the training of us-
ers. To successfully prepare students for these roles they have to understand the full systems de-
velopment lifecycle, irrespective of the specific methodology that may be used to develop a soft-
ware system. This involves the inception phase of the project, the analysis and design phases, the
building and the implementation phases. The process can follow the traditional model or involve
the iterative building of consecutive subsystems. Whichever method is followed, testing must be
included in the different phases to ensure the quality of the final product.
A systems development group project is the main deliverable of the capstone course Project Man-
agement: Theory and Implementation, offered to Information Systems majors at the University of
CapeTown (UCT), South Africa. This third year course, and more specifically the project as the
main deliverable of the course, has been subjected to an ongoing refinement process over the past
eight years. It has been shaped according to guidelines provided by computing curricula (Com-
puting Curricula, 2004, 2005; Gorgone et al., 2002;) and influenced by various teaching and as-
sessment theories including that of Cockburn (2002), which suggests a framework based on the
evolutionary path that developers tend to follow.

In its current state the course is structured around three main areas: Project Management, People
Management, and Implementation. The theoretical parts of this course introduce the student to
important aspects of managing projects and people in the Information Communication and Tech-
nology (ICT) Project environment. The practical part of the course involves the application and
implementation of these concepts while following the full life cycle of a project using a team-
based IS project in a real-life setting. This paper mainly focuses on the technical issues that are
experienced during the life of the projects and not those relating to soft skills. The impact of the
issues relating to soft skills on student learning however is neither underestimated nor ignored in
the course. The Project Management section includes a comprehensive overview of the nine core
components of the Project Management Body of Knowledge (PMBOK), while innovative ways
are used to design and guide project teams through the lifecycle of the group project.

Several problems are commonly encountered during the systems development project lifecycle,
although the degree of severity may vary depending on the specific methodology being used.

• Students struggle with abstraction and problem solving. Because of their own lack of
business experience, students often have difficulty in understanding business require-
ments, and the abstraction involved when translating requirements into code presents a
considerable challenge.

• Students experience difficulties with fundamental coding principles. IS students are often
less technically oriented than their counterparts in the other computing disciplines and
their courses involve less technical content. As a result they may be inadequately pre-
pared for the technical demands of the project.

• Students fail to test the systems they develop efficiently. The validation and verification
of the implemented processes during the development cycle is ineffective, insufficient,
and is not thoroughly executed.

This paper examines student learning within the context of the systems development group pro-
ject, with particular focus on the issues identified above. The paper further explores the literature
to obtain a better understanding of the elements of different kinds of learning and the role of a
teacher in facilitating learners’ development. It then reports on the transition phases of the project

From Requirements to Code

IIP - 4

course as it has developed over the past eight years, and describes the attempts made to effec-
tively address these issues and deliver competent students for professional practice.

Issues in the Programming Environment
The competence of an IS professional is reflected in the effectiveness with which analysis and
design specifications can be translated into code. “Modern software practices call for the active
involvement of business people in the software process” (Roussev, 2003, p. 349). This means
that IS professionals must be able to interact with business experts and apply problem-solving
skills in developing possible solutions. It is thus equally important that programming form a core
component of an IS course to ensure that students acquire the necessary programming skills to be
able to design a system that can be translated into a rigorous software solution.

Problem Solving
Students ranked logical thinking and problem-solving skills as the most important ability for
learning programming in a multi-national, multi-institutional survey done by Simon et al. (2006).
In a similar industry survey, problem-solving ranked sixth in the list of knowledge, skills and ab-
ilit ies needed by an entry-level computer programmer (Simon et al., 2006).

Keller and Concannon (1998) define problem-solving as a vital but basic life skill that entails the
solving of new problems in terms of analogies of previously learned procedures. Pedagogical
(teacher-centered) or methodological (learner-centered) strategies can be implemented to over-
come barriers that might prevent students from solving problems effectively. The UCT group
project implements a methodological strategy using a step by step method to assist students in
solving their business problem. Table 1 below portrays the analogy of the IDEAL heuristic me-
thod of Bransford and Stein as listed by Keller and Concannan (1998) and the phases in the group
project. This method represents the five steps usually contained in many solution strategies.

Table 1: Analogy of the IDEAL heuristic and the phases of the group project

Steps of IDEAL heuristic Phases of the group project

Identi fy the problem Finding and understanding the business problem

Define and represent the problem Analysis phase of defining the user requirements

Explore possible solution strategies Systems design and technical speci fications

Act on the strategies Building phase

Look back and evaluate Final testing, validation and presentations, lessons
learned

General Coding Problems
It is well known that students experience significant difficulties in learning to program and in
mastering fundamental coding concepts (Bergen & Reilly, 2005; Simon et al., 2006). These is-
sues are often more prominent in the IS discipline, since in-depth coding courses, exposure to low
level programming languages and rigorous algorithmic approaches do not normally form part of
the typical undergraduate IS program. This means that IS students frequently lack the knowledge
of basic principles that could provide a foundation for better understanding of coding in general.
In addition they struggle to understand the abstractions that are required in the Object-Oriented
(OO) environment. For example, they have difficulty in defining a class of objects that includes
the attributes and behaviors of objects of this kind on the one hand, and using an object of this
kind on the other hand. Students struggle to comprehend that:

 Scott

 IIP - 5

• an object must first be instantiated (created) before it can be used.

• its state can change over time as it receives different values for its attributes, and

• it can perform different actions, depending on the messages it receives from its environ-
ment.

Previous experience on this project has shown that student find it difficult to write OO code for
these different perspectives.

Testing
Extensive testing is a necessary and crucial step in the systems development process. Testing,
complemented by formal inspections in the early stages of a project are essential activities to-
wards ensuring that a system is working correctly. It can also aid to demonstrate that the devel-
opers have understood and met customers’ requirements (Tayntor, 1998). An empirical research
study done at UCT in 2004 indicated that the standard of software testing is lower in South Afri-
can (SA) companies than in non-SA companies. The study, however, concluded that SA software
developers, who have adopted the OO development methodology, have also implemented the
formal testing practices associated with it (Scott, Katovsky, Burdzik, & Elley, 2004). Students
who are exposed to testing practices during their undergraduate studies will develop a better un-
derstanding of professional practice and gain corresponding analytical and critical thinking skills.

Teaching and Learning
Teaching practices have evolved from the approach where a teacher is in total control of the con-
tent being transferred (transfer theory), or is responsible for shaping the students’ viewpoints
(shaping theories), to more developed theories where the driving force for learning and growth is
internal to the student (growing theories) (Fox, 1983). Experiential learning and projects are seen
as teaching strategies derived from developed theories. Here the emphasis is on the activities of
the student and the influence of these activities on his or her learning (Fox, 1983).

These activities encourage students to assume increased responsibility for their own learning.
When this happens it is essential for the instructor to study the students’ learning process so as to
gain an insight into their understanding and application of the concepts and methods encountered
in the field of study (Ramsden, 2003). Such insight will enable the correction of deficiencies or
misconceptions and improve students’ abilit ies to solve real world problems.
Students have to be supported through what Dreyfus and Dreyfus (1986/1988) called the five
stages of adult learning as being: Novice, Advanced Beginner, Competence, Proficiency, and
Expertise. This transcendence defines an evolving education that moves from unconscious in-
competence to conscious incompetence through conscious competence until unconscious compe-
tency is finally reached. A fundamental task of teachers is thus to encourage the engagement of
students in learning activities as this will heighten students’ enjoyment and achievement levels,
resulting in deep learning (Biggs, 1993).

In many subject areas projects are used as vehicles to engage students in an Action Learning Cy-
cle, a cycle that promotes continuous planning, reflection, observation, and action amongst par-
ticipants (Bunning, 1997, as cited by Machanick, 2005). Often these projects form an integral
part of a capstone course, designed to assess the command, analysis, and synthesis of knowledge
and skills in a student-centered manner (Moore, 2005). Moore (2005) reports that a capstone
course serves as “an instrument of evaluation in all three modalities of learning”: cognitive, affec-
tive and psychomotor.

From Requirements to Code

IIP - 6

The Systems Development Group Project
The third year systems development group project (subsequently referred to as the group project)
at the Department of Information Systems, UCT, has evolved to its current state through four
clearly identifiable phases. Mitigation strategies and a reflective approach have been adopted on
an ongoing basis to identify and address issues as they manifested over time in the group projects.

Several important elements have, however, always been present throughout the existence of the
group project. The group project has a life span of approximately 7 months, from mid February
to mid September of each year. A real world perspective and a broad business background have
always formed a core focus of the project. Student teams of four or five members each are re-
quired to find a sponsor (client) in industry to provide them with a suitable business problem.
The sponsors are available for meetings and queries so as to provide guidance to the teams re-
garding user requirements and business processes, but no monetary assistance is provided.

Although teams manage their own work, faculty members, acting as project managers, monitor
their progress and help to ensure that the scope of the project is in accordance with the project
specifications.
Faculty members are also involved in the final assessment of the projects, which takes the form of
a live presentation by student teams of each of the individual projects. This is a formal occasion
requiring the participation of all the team members.
At the completion of the group project, many students are of the opinion that the group project
has exposed them to many of the challenges that they would experience in their employment.
They feel that it provided them with good “practice runs” before they had to work on actual pro-
jects for their respective employers. The following quote from an alumnus reflects this view-
point: “The structure of the project that I have been working on was very similar to that of the
university projects and I felt far more confident doing this project knowing that I had already
done two similar projects and encountered and overcome many of the issues associated with IT
projects.”

The following sections tell a story of the evolution of teaching in the group project. It is an ac-
count of several iterations of reflexive learning of student learning, influenced by the education
process. The account relates how ongoing transcendence occurred from being unconsciously in-
competent to being consciously competent.

Phase 1 (2000)
In 2000 the group project constituted a major component of a full year project management
course. Support was provided to students in the form of regular lectures and tutorials, as well as
project-specific functionality guidelines. Although teams used some Unified Modeling Language
(UML) artifacts during the analysis and design phases, few other structures existed to guide stu-
dents in developing problem solving abilit ies and testing techniques. In addition, students were
only exposed to coding in the introductory coding course in their first year and then again in the
project in their third year. As a result , many team members lacked technical and coding skills.

The projects were assessed at the end of the life cycle, using standardized mark sheets for the fi-
nal evaluation. Although the functionality of the systems was evaluated and tested thoroughly
during this assessment, the systems were taken at “face value” and only the executable versions
of the systems were examined. Since the coding was not evaluated, it was possible that student
teams could obtain good marks without adhering to good programming principles or rigid stan-
dards. Frequently the students’ inability to solve business problems effectively meant that the
design models they developed were not sufficiently rigorous to form the basis for successful cod-
ing. In these cases student teams would reverse engineer the design model from the working sys-

 Scott

 IIP - 7

tem to correlate with the code. In other cases, projects did not exhibit multi-tier architectures; and
often the documentation that was submitted was not in line with the actual software product.
The general lack of crucial technical competencies caused severe imbalances between project
teams, with many students failing to experience the true meaning of action learning. This is in
line with the observation by Machanick (2005) that students often apply possible solutions to
programming and team problems randomly instead of reflecting on the outcomes of previous so-
lutions before the cycle of planning, action, and reflection is repeated. On the whole it became
apparent that students often performed activities without a clear appreciation and understanding
of the processes involved. They were clearly in need of careful guidance to help them reach the
required level of maturity in their understanding, problem solving, and other skills. Because of
these concerns, the faculty felt it necessary to re-think the project course and increase the scaf-
folding provided within the learning environment.

Phase 2 (2001-2002)
In an attempt to address the limitations of the previous phase more effectively, the group project
was instituted as a new and completely separate course offered over three terms, excluding the
theoretical project management sections. A generic theme was identified for each year’s projects,
with a distinct deliverable structure. Within this framework, students were expected to identify a
business problem and develop an appropriate solution. The project was broken down into clear
interim phases: project definition, system analysis, design, building, and testing, each of which
incorporated systems development deliverables, project management deliverables, and quality
control procedures. These deliverables guided students in the application of previous knowledge
(theoretical and practical) and in the acquisition of new specialized skills needed to elicit user
requirements, solve their specific business problem, understand scope, and complete the analysis,
design, and building phases. These were evaluated by the project manager, and the feedback was
used to improve the interim deliverables, culminating in a milestone deliverable for each phase of
the project. The use of UML artifacts were extended and used more effectively during the analy-
sis and the design phases in order to avoid the reverse engineering of the models at the end of the
project. These processes reflect the notion that critical thinking, critical being, and transformation
underpin the discourse of higher education (Doyle, n.d.). The project culminated in a final deliv-
erable, being the complete shrink wrapped product consisting of all the documentation and the
software system. In addition, an Expo event that showcased all projects to industry, learners from
nearby schools, and the wider public was initiated in 2002.
Additional support was provided through seminars on relevant technical topics. In an attempt to
address the deficiency in technical skills apparent in the previous phase, specific technical topics
were identified. Student teams comprising representatives from different project teams were each
given a topic to research, prepare, and then present to other members of the class during a semi-
nar session. Technical concepts had to be explained and demonstrated by accompanying docu-
ments and software programs; each team had sessions with the course convener prior to their
presentation to ensure that the material presented was of the required standard. An additional
benefit of these seminars was that the students who presented a particular technical topic would
subsequently take their new skills back to their own project teams.

In keeping with the view that assessment is necessary for teaching to enhance and support the
learning process (Shepard, 2000), a more comprehensive assessment strategy was also introduced
during this phase and is described in more detail in Scott and Van der Merwe (2003). This strat-
egy was developed around the principles of comprehensiveness, coherence, and continuity advo-
cated by Pellegrino, Chudowsky, and Glaser (2001), and included elements of dynamic assess-
ment, assessment of prior knowledge, the use of feedback, teaching for transfer, student self-
assessment, and the evaluation of teaching, as proposed by Shepard (2000).

From Requirements to Code

IIP - 8

A variety of instruments, such as checklists, questionnaires, tests and examinations, mark sheets,
and scoring rubrics, were designed in support of this assessment strategy. These were specifically
intended to provide students with significant feedback and to encourage what Entwistle (2001)
describes as a deep approach to learning. Scoring rubrics formed the backbone of the assessment
instruments used in this phase and were found to be very effective mechanisms in eliminating
bias and conveying to students the standards against which they would be measured. (Rubrics
can be defined as rating and scoring guides with predetermined criteria; Metler (2001) provides
useful detail on this topic.) Ongoing formative assessment provided rich feedback on the interim
deliverables, allowing students to continuously and dynamically improve these deliverables to-
wards the milestone deliverable.
The introduction of this comprehensive assessment strategy was very successful in providing
structure and guidance to students that saw them become part of the learning process, and tran-
scend and improve their problem solving skills. Similar success however was not achieved
through the implementation of the technical topics. Not all students benefitted equally from the
material presented and the seminars did not produce the student commitment and deep learning
that would usually be expected from a more hands-on approach. Although the topics provided
students with material and directions for tackling certain tasks when developing their software
systems, they did not sufficiently address the fundamental coding issues and deficiencies in cod-
ing skills that existed. Further enhancements to the project course were clearly needed to im-
prove the development of problem solving skills and coding abilit ies.

Phase 3 (2003-2006)
During this phase the group project was recombined with the project management and people
management modules to form a full year course. This was done in order to establish a discourse
that would encompass the full range of characteristics of the IS discipline rather than emphasizing
a single dimension. Within the course, the group project itself was characterized by a strong
technical focus.
A generic theme was still identified for the group project in this phase, but the solution had to be
a comprehensive management system, incorporating a back-end system and a web component.
More emphasis was placed on the efficient interpretation and capturing of the business problem.
Package and activity diagrams were added to the suite of UML artifacts to respectively assist stu-
dents to obtain an overview of the system and to enhance their understanding of the main busi-
ness processes. The solution had to be credible and convincing, developed using sound business
rules and processes. The assessment approach was therefore further refined to evaluate how well
the solution reflected the essence and identity of the business. The recognition of individual con-
tributions to group performance in these projects could not be ignored, and it also became neces-
sary to include peer assessment as part of the assessment strategy. A rubric was further devel-
oped for the marking of the code of the final product and included as part of the summative as-
sessment.

The designated technology platforms used during this phase were Visual Studio.NET 2003 and
the SQL Server 2003 database engine. (This platform has since changed to the 2005 versions of
these products.) The current technologies implemented in the group project are listed in Table 2
in the Appendix.

Students were expected to implement object-oriented design and programming principles within
an n-tier distributed environment. Unfortunately novice developers struggle with even simple 2-
tier applications and are likely to be completely out of their depth in n-tier environments (Lhotka,
2006). Because of this, it is crucial to establish a well thought through framework and pattern

 Scott

 IIP - 9

that can be applied repeatedly when developing highly scalable and maintainable object-oriented
business applications.
The technical topics implemented in the previous phase had not prepared students adequately for
the complex task of translating requirements into code. An alternative approach introduced in
phase three was to walk students through a similar “pilot” system, using a step by step approach
that was developed over a number of workshops. This provided students with coding skeletons
and a framework for developing integrated object-oriented n-tiered systems that they could utilize
again and again for subsequent software development. “In the software world, the easiest way to
reduce overhead is to increase reuse, and the best way to get reuse out of an architecture (both
design and coding) is to codify it into a framework” (Lhotka, 2006, p. 33).
While working through this pilot system, students were constantly confronted with aspects of
problem solving and had to practice innovative ways of translating requirements into code. They
conquered many basic coding issues that were previously problematic, and became more com-
fortable with the advanced concepts of the OO paradigm such as encapsulation, inheritance, and
polymorphism. They also learnt how to identify objects, to create integrated environments that
would handle interdependencies between objects, and to deal with events.
By providing teams with a framework to guide their own system development efforts, the pilot
system definitely improved the quality of the final products. Although students did not initially
realize the value of the framework as provided in the workshops, overwhelmingly positive feed-
back was received in the form of comments accompanying the student course evaluations after
the completion of the project. This series of workshops was clearly successful in guiding students
through at least the first four (Novice, Advanced Beginning, Competence, and Proficiency) of the
seven stages of skills development identified by Dreyfus (2001). However, the “hand holding”
provided by the step by step approach of the pilot system may well have stifled innovation and
creativity among students, so that few transcended to the subsequent stages of expertise, mastery,
and practical wisdom (Dreyfus, 2001).

According to Biggs (1993) the strategy of the “deep approach” is to maximize understanding by
ensuring that the student’s learning is based on his or her interest in the subject matter or the tasks
involved. Despite attending the workshops, some students did not come to a full understanding
of the concepts that were being demonstrated and did not achieve a sense of mastery. This issue
initiated the fourth and current phase in the evolvement of the capstone course.

Phase 4 (2007)
In the current phase, the aim is to develop and reinforce students’ understanding of the advanced
OO concepts, coding patterns, and framework provided through the pilot system, by requiring
that they simultaneously develop a system based on a second case study with the same generic
theme as the current project. This provides a context within which students learn new skills
through the pilot project, apply these skills in the second case study, and should thus be equipped
to use them more effectively in their independent group project. A workshop focusing on the
second case study is held after every second workshop of the pilot system, with the primary ob-
jective of mastering the concepts learned in the previous two workshops of the pilot system. Al-
most no scaffolding and hand holding is provided during the workshops for the second case
study, and students are challenged to demonstrate their own understanding and expertise. This
approach follows Cockburn’s (2002) three stages of development: namely, following, detaching,
and fluency. Class tests based on mini case studies are used to further accelerate students’ under-
standing of core coding concepts.

A secondary objective of this phase is to achieve a greater degree of deep learning amongst stu-
dents and by their own reflexive approach enhance their parsing patterns, improving their ability

From Requirements to Code

IIP - 10

to think and reason more formally about their programs. The parsing pattern is what Cockburn
(2002) identifies as the interpretation filter. The hope is that this additional step in the learning
cycle will enhance the preparedness of the student teams and provide them with sufficient enthu-
siasm and inner drive to embark on the building phase of their individual projects.

Another aspect of systems development that is receiving attention in the current phase is the issue
of quality. In addition to formal inspections early in the development cycle, testing constitutes an
important mechanism to verify the effectiveness of the solution (Tayntor, 1998). A comprehen-
sive testing plan forms part of the requirements for the group project; dedicated workshops and
lectures on testing are conducted during the course, and student teams are encouraged to do com-
prehensive testing of their systems. Nevertheless, many group projects are not of a high enough
standard to be implemented immediately in a business environment as is, at the hand-in date.
This suggests that testing is not being performed to sufficiently rigorous standards and does not
cover the wide spectrum of tests usually performed by industry. To address this problem, the
evaluation of the group project has recently been extended by adding a mock implementation of
the system to the code walkthrough and formal presentation that were previously included in the
final summative assessment.

Conclusion
Teachers face a challenge in adopting the practice of critical reflection: a conscious awareness of
the “what”, “why” and “when” of student learning where “Practice is informed by theory that has
been shaped by practice” (Walkington, Christensen, & Kock, 2001, p 344). However, the devel-
opment of this competency will facilitate the continuous enhancement of teaching and student
learning. The study shows how teaching practices are shaped by looking back reflexively of stu-
dent learning and the facilitating environments.

The group project deliverable at UCT contains numerous ongoing processes and activities to en-
sure that teaching is t ightly correlated with learning and assessment which go beyond just know-
ing and facilitates deep learning. The underlying premise of the two pilot projects included in
phase 4 is to develop a framework or pattern that will provide students with a sound basis for de-
veloping their own software system in the second part of the course. This framework uses a me-
thodology to structure large software-intensive systems into modular components that can be de-
veloped and maintained independently. It follows a recursive process where students first de-
velop an independent component, and then add a dependent component to form a larger but again
independent component.

The repetitive implementing of the framework through three iterations promotes the transfer of
skills and problem–solving techniques to similar situations and problems and aids students to
overcome their fears and anxieties when faced with problem situations. During the first iteration
(following phase) students mainly follow a step by step process to cope with the design and de-
velopment of dependent and independent components. In the second iteration (detachment
phase) they implement the methodology without the assistance of scaffolding, while the third it-
eration (fluency phase) calls for innovation and creativity in building a working system and cus-
tomizing it to meet industry requirements. These cycles encourage an action learning process in
which students transcend from the following stage through the detaching stage towards becoming
fluent IS practitioners.

Previous research by Brown and Pearce (2006) on factors affecting the success of UCT group
projects was based on interviews with fourth year IS students and may have included an element
of bias as their learning experiences had already been influenced by six months of participation in
their fourth year level course. A longitudinal study is currently underway at UCT to determine
the readiness of project teams to start the building phase by the end of the first semester of the

 Scott

 IIP - 11

group project. This study will be extended into the second semester of 2007 in order to evaluate
the impact of the improvements made during the fourth phase of the project, with specific refer-
ence to the issues identified in this paper.

Acknowledgement
I am grateful to Jane Nash for editing the first version of this paper. Her useful comments and
advice were invaluable in enhancing this paper.

References
Bergen, S., & Reilly, R. (2005). Programming: Factors that influence success. Proceeding of the Thirty

Fifth SIGCSE Technical Symposium on Computer Science Education, 411-415. St. Louis: ACM.

Biggs, J. (1993). What do inventories of students’ learning processes really measure? A theoretic review
and clari fication. British Journal for Educational Psychology, 63, 3-19.

Brown, R., & Pearce, J. (2006). Does the use of software development standards have an impact on soft-
ware development projects: An investigation of software success and quality factors? An empirical re-
search paper presented to the Department of Information System at the University of Cape Town,
South Africa.

Cockburn, A. (2002). Agile software development. Boston: Addison-Wesley.

Computing Curricula. (2004). Computing curricula: Overview report including a guide to undergraduate
degree programs in computing [November, 22 Draft]. Retrieved April, 7, 2007 from
http://www.acm.org/education/Overview_Draft_11-22-04.pdf

Computing Curricula. (2005). Computing curricula. The overview report including the guide to under-
graduate degree programs in computing [April, 11 Draft]. Retrieved April, 7, 2007 from
http://www.acm.org/education/Draft_5-23-051.pdf

Dawson, R. J., & Newman, I. A. (2002). Empowerment in IT education. Journal of Information Technol-
ogy Education, 1(2), 125 – 142. Retrieved from http://jite.org/documents/Vol1/v1n2p125-142.pdf

Doyle, M. (n.d.). A reflexive critique of learner managed learning. Retrieved April 13, 2007, from
http://www.leeds.ac.uk/educol/documents/00002420.htm

Dreyfus, H. (2001). On the Internet. London: Routledge.

Dreyfus, H., & Dreyfus, S. (1986/1988). Mind over machine: The power of human intuition and expertise
in the era of the computer. New York: Free Press.

Entwistle, N. (2001). Promoting deep learning through teaching and assessment. In L. Suskie (Ed.), As-
sessment to promote deep learning: Insights from AAHE's 2000 and 1999 assessment conferences, 9 –
20. Washington, D.C.: American Association for Higher Education.

Fox, D. (1983). Personal theories of teaching. Studies in Higher Education, 8(2), 151-163.

Gorgone, J., Davis, G., Valacich, J., Topi, H., Feinstein, D., & Longenecker, H. (2002). IS 2002: Model
curriculum and guidelines for undergraduate programs in information systems. Retrieved December
3, 2003, from http://www.acm.org/education/is2002.pdf

Keller, R., & Concannon, T. (1998). Teaching problem-solving skills. Presented at a Workshop for the
Centre of Teaching and Learning. Retrieved April 10, 2007 from http://ctl.unc.edu/fcy20.html

Kussmaul, C. (2000). A team project course emphasizing software entrepreneurship, Proceedings of the
Fifth Annual CCSC Northeastern Conference on the Journal of Computing in Small Colleges, 313 –
321.

Lhotka, R. (2006). Expert VB business objects. Berkeley, California: Apress.

http://www.acm.org/education/Overview_Draft_11-22-04.pdf�
http://www.acm.org/education/Draft_5-23-051.pdf�
http://jite.org/documents/Vol1/v1n2p125-142.pdf�
http://www.leeds.ac.uk/educol/documents/00002420.htm�
http://www.acm.org/education/is2002.pdf�
http://ctl.unc.edu/fcy20.html�

From Requirements to Code

IIP - 12

Machanick, P. (2005). Peer assessment for action learning of data structures and algorithms. Conferences in
Research and Practice in Information Technology, 43, 73-82, Newcastle: Australian Computer Soci-
ety.

Metler, C.A. (2001). Designing scoring rubrics for your classroom. Practical Assessment, Research &
Evaluation, 7(25). Retrieved April 20, 2003 from http://edresearch.org/pare/getvn.asp?v=7&n=25

Moore, R. C. (2006). Direct measures: The capstone course. In W. G. Christ (Ed.), Assessing media educa-
tion: A resource for educators and administrators (Chapter 21, 439-459). Hillsdale, NJ: Erlbaum.

Noll, L. C., & Wilkens, M. (2002). Critical skills for IS professionals: A model for curri culum develop-
ment. Journal of Information Technology (JITE), 1(3), 143-154. Retrieved from
http://jite.org/documents/Vol1/v1n3p143-154.pdf

Parnas, D. (2006). Agile methods and GSD: The wrong solution to an old but real problem. Communica-
tions of the ACM, 49(10), 29.

Pellegrino, J. W., Chudowsky, N., & Glaser, R. (Eds). (2001). Knowing what students know: The Science
and Design of Educational Assessment. Washington, DC: The National Academic Press.

Phukan, S. (2001). Changing education to meet the needs of future informing science clients: Suggestions
for new curri culum frameworks. Proceeding of the Informing Science & IT Education Conference
(IS2001), Krakow, Poland, pp. 409 -414. Retrieved from
http://proceedings.informingscience.org/IS2001Proceedings/pdf/PhukanEBKchang.pdf

Ramsden, P. (2003). Learning to teach in higher education. London; New York: RoutledgeFalmer.

Roussev, B. (2003). Teaching introduction to programming as part of the IS component of the business
curriculum. Journal of Information Technology Education, 2, 349-356. Retrieved March 12, 2007 from
http://www.jite.org/documents/Vol2/v2p349-356-43.pdf

Scott, E. C., Katovsky, B. Burdzik, J., & Elley, T. (2004). The impact of the adoption of object-ori ented
testing practices – A South African perspective. Proceedings of the Joint International Conference on
Informatics and Research on Women in ICT (RWICT) 2004, Kuala Lumpur, Malaysia, 423-442.

Scott, E. C. & Van Der Merwe, N. (2003). Using multiple assessment approaches to enhance objectivity
and student learning. A special conference edition of the Electronic Journal of Information Systems
Evaluation (EJISE), 6(2), 182 – 186.

Shepard, L. A. (2000). The role of assessment in a learning culture. Educational Researcher, 29(7), 4-14.

Simon, Fincher, S. A., Robins, A., Baker, B., Box, I., Cutts, Q., et al. (2006). Predictors of success in a first
programming course. Proceeding of the Eighth Australasian Computing Education Conference
(ACE2006).

Tayntor, C. B. (1998). Software testing basics and guidelines. Information Management: Strategy, Systems,
and Technologies. Auerbach Publications.

Tuttle, S. M. (2000). A capstone course for a computer systems major. Proceeding of the Thirty First SIG-
CSE Technical Symposium on Computer Science Education, 265-269.

Walkington, J., Christensen, H. P., & Kock, H. (2001). Developing critical refl ection as a part of teaching
training and teaching practice. European Journal of Engineering Education, 26(4), 344-350.

http://edresearch.org/pare/getvn.asp?v=7&n=25�
http://jite.org/documents/Vol1/v1n3p143-154.pdf�
http://proceedings.informingscience.org/IS2001Proceedings/pdf/PhukanEBKchang.pdf�
http://www.jite.org/documents/Vol2/v2p349-356-43.pdf�

 Scott

 IIP - 13

Appendix
Table 2: A summary of the common technologies used in the group project

TECHNOLOGY IMPLEMENTATION

Microsoft Project Server (Enterprise Edition) 2007 The technology platform for workgroup envi-
ronments

SharePoint Team Services/Time Sheets Enable team collaboration

Microsoft Project 2007 The Gantt Chart is utilized to establish and main-
tain the project planning

Microsoft Office Visio 2007 Used as a tool to produce Unified Modeling
Language (UML) arti facts in the analysis & de-
sign phases of the project

Microsoft Office Word 2007 Utilized to enable interoperability with Visual
Studio in the group projects and to produce the
documentation

Microsoft Office Excel 2007 Utilized to enable interoperability with Visual
Studio in the group projects

Visual Basic.NET 2005 Used as the main programming platform

ASP.NET 2.0 Implemented to create the Web development
sections of the projects

Microsoft SQL Server 2005 / Microsoft SQL Express Most databases used in the group projects are
created in SQL or SQL Express
(In some cases students may also use Microsoft
Access 2007 or MySQL)

Crystal Reports Used for effi cient reporting capabilities in the
applications

Visual Source Safe Used to enable versioning of the software

Biography
Elsje Scott is a Senior Lecturer at the Department of Information Sys-
tems, University of Cape Town. Her main research interest is systems
development group projects which include knowledge areas like pro-
ject management, people management and software engineering. Spe-
cific focus areas are software testing, object-oriented programming
concepts, general issues concerning the development of efficient com-
puter systems in Information Systems, assessment strategies and soft-
ware standards.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 300
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [305 305]
 /PageSize [432.000 648.000]
>> setpagedevice

