
Journal of Information Technology Education: Volume 7, 2008 
Innovations in Practice 

Editor: Kam Vat 

Effectiveness of Program Visualization:  
A Case Study with the ViLLE Tool 

Teemu Rajala  ̧Mikko-Jussi Laakso, Erkki Kaila,  
and Tapio Salakoski 

University of Turku, Turku, Finland 

temira@utu.fi; milaak@utu.fi; ertaka@utu.fi; sala@utu.fi 

Executive Summary 
Program visualization is one of the various methods developed over the years to aid novices with 
their difficulties in learning to program. It  consists of different graphical – often animated – and 
textual objects, visualizing the execution of programs. The aim of program visualization is to en-
hance students’ understanding of different areas of program execution. Typical program visuali-
zation techniques include code highlighting, visualization of the call stack, and presenting infor-
mation on variables.  Despite the large number of studies performed on program visualization, 
litt le is known about the effects of such systems on learning. 

We have developed a program visualization tool called ViLLE, with the main objective of offer-
ing an environment for students to study the execution of example programs – whether written by 
students themselves or prepared by the teacher – and explore the changes in the program state 
data structures. A key feature of ViLLE is language independency, including parallel execution of 
a program in two different languages and the ability to define new languages.  ViLLE also pro-
vides role information of program variables and supports the design and use of interactive pop-up 
questions.  

In this paper, we report and discuss the results of a study on the effectiveness of ViLLE. The re-
search was conducted on university students in their first  programming course. Students partici-
pated in a two hour session in a computer class, where they were randomly divided into two 
groups. The control group used only traditional textual material during the session, whereas for 
the treatment group, the same material was extended with interactive examples using ViLLE. 
With this research setting, we tried to answer two research questions: “Does ViLLE help students 
in learning to program?”, and “Is there any difference in learning when previous programming 
experience is taken into account?” We found some support for a positive answer to the first ques-
tion, although we couldn’t fully reject the null hypothesis. For the second question, we obtained 
solid evidence that ViLLE enhances the learning of students with no prior programming experi-
ence substantially, so that the statistical differences between the novices and the more experi-

enced learners disappeared as a result  of 
a single training session. This indicates 
that program visualization indeed im-
proves novice students’ learning. 

Keywords: program visualization, nov-
ice programmers, effectiveness of visu-
alization, programming, programming 
learning, programming teaching. 

Material published as part of this publication, either on-line or 
in print, is copyrighted by the Informing Science Institute. 
Permission to make digital or paper copy of part or all of these 
works for personal or classroom use is granted without fee 
provided that the copies are not made or distributed for profit 
or commercial advantage AND that copies 1) bear this notice 
in full and 2) give the full citation on the first page. It is per-
missible to abstract these works so long as credit is given. To 
copy in all other cases or to republish or to post on a server or 
to redistribute to lists requires specific permission and payment 
of a fee. Contact Publisher@InformingScience.org  to request 
redistribution permission.  

mailto:temira@utu.fi�
mailto:milaak@utu.fi�
mailto:ertaka@utu.fi�
mailto:sala@utu.fi�
mailto:Publisher@InformingScience.org�


Effectiveness of Program Visualization 

IIP - 16 

Introduction 
Learning to program is not an easy task. According to multi-national studies published in recent 
years, students have problems in writing program code (McCracken et al., 2001), in reading and 
tracing skills (Lister et al., 2004), and in designing software (Tenenberg et al., 2005). Since con-
structing and even understanding computer programs have proven to be a highly non-trivial task 
for most learners, various techniques and means have been suggested to aid the learning process 
of beginner programmers. Visualization – generally defined as presenting the execution of pro-
gram or algorithm with graphical components – is one of these. According to Ben-Ari (2001) 
visualization includes everything even remotely graphical, from complex animations to indenta-
tion of program blocks, and for the effective use of visualizations, the textual and graphical de-
scriptions have to be synchronized. Hyrskykari (1993) states that visualizations can be useful in 
providing learning models that can be used in linking new information with old knowledge. 

Program visualization is a research area that studies ways of visually assisting learners in under-
standing behaviour of programs. The visualization of programs can be either dynamic or static. 
Dynamic program visualization tools visualize execution of programs. They usually show how 
the execution of programs progresses by highlighting parts of the code under execution and by 
visualizing changes in variable states. An example of a dynamic program visualization tool is 
Jeliot3 (Moreno, Myller, Sutinen, & Ben-Ari, 2004). Static visualization tools visualize program 
structures and relations between program objects. An example of a popular static program visu-
alization tool is BlueJ (Kölling, Quig, Patterson, & Rosenberg, 2003). 

We have recently developed a dynamic program visualization tool called ViLLE (Rajala, Laakso, 
Kaila, & Salakoski, 2007). ViLLE is a language-independent visualization tool aimed at provid-
ing a more abstract view of programming. The tool can be utilized both in lectures and for inde-
pendent learning. It  has a built-in syntax editor, with which the user can add new languages to the 
tool or modify the syntax of the built-in languages, currently including e.g. Java, C++, and a 
pseudo language. The visualizations can be viewed in any of the (user or pre-) defined languages. 
To emphasize the language independency, ViLLE has a parallel view in which the execution of a 
program and the program code itself can be viewed simultaneously in two languages. While the 
execution progresses, the user can observe program outputs and changes in variable values. In 
addition, to enhance the effectiveness and clarity of the visualization, there is an automatically 
generated textual description of each code line. The description also includes information about 
the roles of variables (Sajaniemi, 2002). However, according to Nikula, Sajaniemi, Tedre, and 
Wray (2007), to get the most benefit  from the roles of variables, they should be employed in all 
aspects of teaching. 

The goal of this paper is to find out what kind of effects ViLLE has on programming learning 
with following research questions: “Does ViLLE help students in learning to program?” and “Is 
there any difference in learning when previous programming experience is taken into account?”. 
To study these questions, we conducted a study in the first  programming course at the University 
of Turku, Finland, in fall 2007. 

This paper has the following structure. In the next section we consider previous work on program 
and algorithm visualization. In the third section, ViLLE and its key features are described. The 
research design and results are presented in the fourth and fifth sections, respectively. These are 
followed by a section in which the results are discussed and, finally, conclusions and future direc-
tions are presented. 



Rajala¸ Laakso, Kaila, & Salakoski 

IIP - 17 

Related Work 
Many visualization systems have been developed over the past few decades. These include 
JavaVis (Oechsle & Schmitt, 2002) which visualizes object and sequence diagrams, one based on 
WYSIWYC (What You See Is What You Code) model and direct manipulation of program struc-
tures called ALVIS LIVE! (Hundhausen & Brown, 2007), and Raptor (Carlisle, Wilson, 
Humphries, & Hadfield, 2005) a visualization tool that utilizes dataflow diagrams. The main part 
of the development in this field is focused on algorithm animation, which visualizes data struc-
tures and algorithms. Notable algorithm animation tools include JHAVE (Grissom, McNally, & 
Naps, 2003), BALSA-II (Brown, 1988), ZEUS (Brown, 1991), XTANGO (Stasko, 1992), and 
TRAKLA2 (Malmi et al., 2004). 
Boyle, Bradley, Chalk, Jones, and Pickard (2003) paid particular interest in a ‘visual approach’ – 
portraying the abstract programming concepts with graphical shapes – while defining the new 
curriculum for London Metropolitan University’s course of introductory programming. Over 600 
students took part on the course, and the results of the new ‘blended learning environment’ were 
quite promising; according to a questionnaire answered at the mid-semester stage more than 80 % 
of students described their motivation level as high or very high, and over 70 % were happy or 
very happy about their progress in studies. The increase in pass rates was between 12 and 23 % 
compared to previous year. Boyle et al. reported some major issues in handling the course transi-
tion, but on average they described the graphical approach ‘very successful with the students’ 
(Boyle et al., 2003, p. 177). 

Kannusmäki, Moreno, Myller, and Sutinen (2004) evaluated the use of the Jeliot 3 program visu-
alization system during the second course of programming in the Virtual Studies of Computer 
Science distance learning program at the University of Joensuu, Finland. The emphasis was on 
ways of using the tool and on features students would like to have included in the tool. The quali-
tative data was collected from the course’s discussion forum messages. Gathered data was di-
vided into three categories: usage patterns, usage problems, and opinions and suggestions. Mes-
sages in the first  category revealed that the students most successful in the course used Jeliot 
more than the other groups. However, most of the students in general still used other tools to code 
and test their programs. The usage problems reported were mostly technical or related to the us-
ability of the editor. The animation was criticized on being too slow and some students even 
found the whole system unnecessary and unsuitable for advanced courses. The positive aspects 
identified in the feedback included the ability to make conditional statements, loops, and objects 
more understandable. 
Hundhausen, Douglas, and Stasko (2002) conducted a comprehensive meta-study, analyzing 24 
experimental studies on effectiveness of algorithm visualization. They state that one of the main 
reasons visualizations are not widely used is because the teachers responsible for the courses re-
fuse to use new methods in teaching. They also found out that the main focus in articles about 
visualizations is normally on their graphical means of expression – in other words their visualiza-
tion capabilit ies - instead of their learning benefits. Of the 24 studies examined, 11 showed statis-
tically significant results of visualizations positive effects on learning, meaning that the group 
using a visualization system gained better learning results than the control group. Hundhausen et 
al. (2002) also discovered that the sole use of visualization systems doesn’t necessarily improve 
the learning results; it is more important to engage the learners in the subject using visualization 
system as an aid. 
Other studies concerning evaluation of visualization systems include, for example, studies (see 
Grissom et al., 2003, Laakso, Salakoski, Grandell, et  al., 2005; Laakso, Salakoski, Korhonen, 
2005) about adapting algorithm animation systems successfully in teaching, and a study about 
educational impacts of visualization (see Naps et al., 2003). Laakso, Myller, and Korhonen (in 



Effectiveness of Program Visualization 

IIP - 18 

press) studied the effectiveness of algorithm visualization system TRAKLA2 in different en-
gagement levels. With a similar research setup to ours (two hour controlled experiment), they 
were able to confirm some of the hypotheses presented in the taxonomy of learner engagement 
with visualization technology (Naps et al., 2002).  

ViLLE 
ViLLE is a program visualization tool for teaching programming to novice programmers. Teach-
ers can use the tool in lectures to demonstrate the dynamic behaviour of program execution, and 
students can use it  independently over the web. ViLLE contains a predefined set of programming 
examples grouped into different categories based on their topic. Teachers can easily add new ex-
amples to the tool or modify the existing ones. The tool contains also a question editor with which 
the teacher can attach multiple choice and array related pop-up questions to program events of a 
chosen programming example. The pop-up questions are then shown to the students as they go 
through the execution of a programming example, engaging them more deeply in learning proc-
ess. 

ViLLE supports all the programming concepts generally featured in introductory programming 
courses. The support for more advanced concepts is limited: for example objects – excluding ar-
rays, strings and records – are not supported. These limitations however make it  possible to de-
fine new syntaxes with corresponding features to existing languages in ViLLE. 

Key Features 
This section presents ViLLE’s key features divided into four categories: level of abstraction, user 
interaction, tracing execution, and customization. The categories reflect the main functions and 
features in this tool. 

Level of abstraction 
Language-independency. One of the most important aspects of ViLLE is the ability to view 
programming examples in several different programming languages. When observing program 
execution in different languages, a user can discover similarities in their basic functionalities. It  is 
far more important for the novice programmer to learn how different programming concepts ac-
tually work than to focus on the syntactical issues of a specific language. We call this the pro-
gramming language independency paradigm. 
Defining and adding new languages. As built-in, ViLLE supports Java, pseudo code, and C++. 
The pseudo code’s definition can be altered to suit  a teacher’s needs. It  is also possible to define 
and add new programming languages to further extend the language support. 
The parallel view. The program code execution can be viewed simultaneously in two different 
programming languages. This way the user can see how the execution progresses similarly re-
gardless of syntactical differences between the languages. 
Role information . The role information of variables is integrated into the code line explanation. 
According to Sajaniemi and Kuittinen (2003) the role information of variables helps learning and 
enhances understanding of programs. 

User interaction 
Code editing. Besides the example creation and editing view, the program code can also be ed-
ited in the visualization view, allowing users to trace the effects of changes in execution and visu-
alization. The user’s edits are not saved to the original program. 



Rajala¸ Laakso, Kaila, & Salakoski 

IIP - 19 

Pop-up questions. With the built-in editor the teacher can create multiple-choice questions and 
set them to be triggered at certain stages of the program execution. 
Flexible  control of the visualization both forwards and backwards. The user can move one 
step at a time, both forwards and backwards in the execution of a program. Examples can also be 
run automatically with adjustable speed. Moving backwards in the program execution isn’t usu-
ally possible in similar applications. Additionally, ViLLE has an execution slider with which the 
user can progress to any state of the program execution.  

Tracing execution 
Call stack . The progress of the program execution between different methods due to function 
calls and returns is visualized with a call stack. When a method is called, a new window is opened 
on the call stack. The window remains on the stack until the method is finished. When the execu-
tion returns to the caller, the return value is shown on top of the stack. The call stack can be espe-
cially useful in learning recursion. 

Code line explanation . Every code line has an automatically generated explanation, in which all 
the program events on the line are clearly explained. Furthermore, all possible outputs and vari-
able states are shown. Code line explanation is not a feature in most similar applications. 

Visualization row by row. Progress of the program execution is visualized by highlighting rows 
in the code. In addition to highlighting the program row under execution, ViLLE also highlights 
the previously executed row with a different colour. This makes the following of the program 
execution easier. 
Breakpoints. The user can set breakpoints in program code lines and move between them both 
forwards and backwards. This functionality enables debug-based control and observation of the 
program execution. Backward tracing between breakpoints is not a standard feature in visual de-
buggers. 

Customization 
Example collection . ViLLE contains a predefined set of programming examples grouped into 
categories based on their subject. A user can create new categories and examples or edit  the pre-
defined ones. By creating and editing examples, the teacher can illustrate topics essential in his 
programming courses.  
Publish examples. With the export feature ViLLE’s examples can be saved to an example collec-
tion. The example collection contains a version of ViLLE with example creation and modification 
functions disabled; runtime modification however is still enabled. The export feature can be used 
to publish course’s programming examples on the web for the students to use. 

Visualization View 
The visualization view of ViLLE (Figure 1) consists of three areas. The left side of the view con-
tains the program controls and the program code of the current example. The controls can be used 
to move both forwards and backwards in the visualization. The right side of the view displays the 
call stack. Each method call creates a new window on top of the call stack, and as the execution 
of the method is finished, the return value is shown on top of the stack. The fields at the bottom of 
the view display an explanation of the current program line, program outputs and variable states. 
The programming example can also be edited in the visualization view to directly see how the 
modifications affect the execution. Additionally, the call stack area can be replaced with a large 
variable state visualization area, which visualizes arrays and matrices with graphical presenta-
tions. 



Effectiveness of Program Visualization 

IIP - 20 

 
Figure 1: The visualization view in ViLLE 

 

The main idea of ViLLE is to provide a language-independent and, thus, a more abstract view on 
programming. As built-in, ViLLE supports three programming languages (Java, C++, and a 
pseudo language) that can be used in the visualization of programs. A user can define a new pro-
gramming language or modify the existing ones with the built-in syntax editor. This support for 
multiple languages enables simultaneous viewing of the program visualization in two different 
languages in parallel, which should help students in understanding the similarity between various 
programming concepts in imperative programming languages. Another abstraction of program-
ming used in ViLLE is the concept of roles of variables (Sajaniemi, 2002). The role is a descrip-
tion of variable’s behaviour in a program. In the visualization view of ViLLE, the program line 
explanation field also contains information about the roles of variables.  

With the above features we try to demonstrate the importance of understanding how the pro-
gramming concepts actually work in contrast to just learning some specific issues related to the 
syntax of programming languages. For more detailed information on ViLLE, see Rajala et al. 
(2007). 

Research Design  
We conducted an experiment in which we evaluated ViLLE’s effectiveness in learning basic pro-
gramming concepts. There were two main research questions in the study: 1) “Does ViLLE help 
students in learning to program?”, and 2) “Is there any difference in learning when previous pro-
gramming experience is taken into account?” The null hypotheses were that ViLLE doesn’t aid 



Rajala¸ Laakso, Kaila, & Salakoski 

IIP - 21 

the learning of basic programming concepts, and the effect is the same for novice and experi-
enced students, respectively. 
The experiment was conducted in the third week of the first programming course at the Univer-
sity of Turku. The objective of the course was to learn how computers function logically and to 
understand the essential concepts of programming. An additional goal was the development of 
good program reading skills. The course consisted of 28 lecture hours spread over seven weeks. 
During the first  two weeks, topics covered were related to information technology in general in-
stead of programming specifically. Additionally, students had to return four programming as-
signments at the end of the course. 

One two-hour lecture, in which e.g. the syntax of the programming language used was presented, 
was held before the experiment. A link to ViLLE and its examples was provided to students in the 
second week and the students were advised to use it  before the experimentation. The reason for 
this was that we wanted them to be familiar with the syntax and the system – including its look 
and feel. The usage of the tool was however not included in the course’s curriculum after the ex-
periment. 

The students were divided into two groups: the control group used a textual programming tutorial 
without access to ViLLE; the treatment group, however, could visualize the examples in the tuto-
rial with the ViLLE tool. The results were analyzed with a two-tailed and pair-wise t-test. In addi-
tion, Levene’s test was used to calculate the variance for every statistics to determine if the data 
holds equal or non-equal variances. Unequal variances are marked with ‘*’-character in presented 
tables. 

Method 
The experiment was a between subject design with a pre- and post-test (dependant variable). We 
had two between-subject factors (independent variables): previous programming experience and 
previous usage of ViLLE. Students acted alone during the experiment and answered individually 
to the pre- and post-test. Textual material (provided in a web page) was exactly the same for both 
conditions, and the only difference was that the treatment group was able to explore integrated 
examples with ViLLE. 

Participants 
The participants were university students who attended the first  programming course presented in 
the curriculum. Most of the students were either Computer Science or Mathematics majors. 

Students were randomly divided to computer lab sessions and the sessions were randomly as-
signed to the treatment or the control condition. The total number of participants was 72 (n = 72) 
students. There were 40 students in the control group and 32 students in the treatment group. 
More than half of the students didn’t have any previous knowledge of programming. Moreover, 
there were three students that participated in the lab session, but who didn’t give permission to 
use their results in this research. There were two lab sessions for each condition. Students who 
attended the lab session received two bonus points to their final exam results. 

Materials 
The pre-test consisted of three questions. In each question the students were presented a code 
fragment and asked to define the output or the state of the program. In the first  question the pro-
gram code presented contained three numeric variables and three consecutive conditional state-
ments. The students were supposed to track down the changes in variables and type their values 
in different points of execution. In the second question the students were presented a loop in 



Effectiveness of Program Visualization 

IIP - 22 

which the values of two variables were changed and printed out. The students were asked to give 
the complete output of the program. The third question included a recursive function which calcu-
lated the sum of the sequence from given parameter down to 1. The assumption was that the stu-
dents with some earlier programming experience would be able to solve at least some of the as-
signments. In addition, the students were asked some background information, including the 
amount of earlier programming experience on the scale of 0 to 4, programming languages they 
had used, and whether they had used ViLLE before taking the test. 

After completing the pre-test the students went through a programming tutorial that we had pre-
pared earlier. The tutorial consisted of few basic programming subjects – the same subjects the 
students were tested on with pre- and post-tests. The subjects covered (in this order) variable us-
age and manipulation, printing, conditional statements, loop statement (while-statement, to be 
exact), function calls, and finally recursive functions. There was a textual description on all topics 
with some examples on how to use them. The tutorial contained 14 programming examples, and 
the students were instructed to write down the output of each example on paper. This was to en-
sure that each student really went through the tutorial. The group using ViLLE could examine the 
execution of each example by selecting a link tit led ‘run this example’ next to it . 
The post-test included all the questions of the pre-test in exactly the same form. In addition, there 
were two extra questions. In the first  one the students were asked to complete the given program 
code so that it  would output all the even numbers from 2 to 24. The template given consisted of 
while and print-statements without parameters and some blank fields with proper indenta-
tions for the students to fill in. The second question was a follow-up to the question about the re-
cursive function: the students were asked to deduce the outcome of the same function with two 
different parameters.  

Procedure 
The study was performed in the third week of the seven week course at the computer lab sessions 
that lasted for two hours. The students were divided randomly into two groups. Both groups had 
the same programming tutorial, but the second group could additionally execute the examples in 
the tutorial with ViLLE. In the beginning of the session students took the pre-test independently. 
The time reserved for filling out the questions was 15 minutes.  

After the pre-test each of the students used the programming tutorial for 45 minutes. To monitor 
the involvement, the students were instructed to write down the output of each example (14 in 
total). Students went through the tutorial independently; they were allowed to ask for assistance 
only if they encountered technical difficulties. 

The session ended with answering the post-test. Since the post-test had two extra questions com-
pared to the pre-test (and since the extra questions were more demanding) the time reserved for 
answering the questions was 30 minutes. 

Each question in the pre- and post-tests was analyzed in the scale of 0 to 10. Zero points meant 
that the answer was totally wrong, and each point advanced meant the increase of 10 percent in 
the correctness of the answer. The total maximum in the pre-test was 30 points and in the post-
test 50 points. 

Results 

Effectiveness of ViLLE 
In this section we present results to research question related to the independent variable of using 
ViLLE. The treatment group used ViLLE in the lab session while the control group didn’t use it  



Rajala¸ Laakso, Kaila, & Salakoski 

IIP - 23 

at all. There were 32 students in the treatment group and 40 students in the control group. The 
groups were randomly formed.  

Previous knowledge 
Table 1 presents the results from pre-test for the treatment and the control group. The table in-
cludes averages, standard deviations (in parenthesis) and p-values obtained from two-tailed t-test. 

Table 1: Pre-test results  

Question Control (n = 40) Treatment (n = 32) p-value 
Question 1 (Q1) 5.20 (2.67) 6.19 (2.46) 0.111 

Question 2 (Q2) 2.70 (3.53) 2.13 (3.53) 0.494 

Question 3 (Q3) 2.68 (4.15) 2.09 (3.88) 0.546 

Total 10.58 (8.64) 10.41 (7.18) 0.930 

 
There were no statistically significant differences between groups in any pre-test questions. In 
absolute scale, the control group outperformed treatment group in Q2 and Q3, while the treatment 
group achieved more points in Q1. 
As stated earlier, students were advised to familiarize themselves with ViLLE’s interface before 
the test; 20 students in the control group and 19 students in the treatment group reported having 
done this. There were no statistically significant differences inside or between the groups in pre-
test results related to ViLLE’s previous usage. 

Previous programming experience 
We also asked about students’ previous programming experience and divided the treatment group 
and the control group based on this covariant (previous programming experience). The question’s 
scale was from 0 to 4. Based on this gathered data we computed a new discrete (boolean) 0,1-
variable for previous programming experience; 0 is equal to no previous programming experience 
(NPE) and all the other values were counted for some previous experience (SPE). Tables 2 and 3 
present the pre-test results between following groups: 1) treatment and NPE vs. control and NPE 
2) treatment and SPE vs. control and SPE, respectively. 

Table 2: Pre-test results of students with no previous programming experience (NPE) 

Question Control (n = 23) Treatment (n = 20) p-value 

Q1 4.17 (2.39) 5.60 (2.33) 0.041 

Q2 1.22 (1.78) 1.00 (2.22) 0.724 

Q3 1.00 (2.86) 1.65 (3.62) 0.514 

Total 6.39 (4.68) 8.25 (5.44) 0.235 

 



Effectiveness of Program Visualization 

IIP - 24 

Table 3: Pre-test results of students with some previous programming experience (SPE) 

Question Control (n = 17) Treatment (n = 12) p-value 
Q1 6.59 (2.53) 7.17 (2.76) 0.564 

Q2 4.71 (4.31) 4.00 (4.51) 0.673 

Q3 4.94 (4.62) 2.83 (4.36) 0.226 

Total 16.24 (9.63) 14.00 (8.48) 0.524 
 

There were no statistically significant differences between the treatment and control groups. No-
tice that in Q1 in Table 2, the seemingly significant p-value (0,041) does not indicate a statisti-
cally significant difference, because there were three questions in the pre-test and thus the p-value 
should be three times smaller (Bonferroni correction). Based on the data from the Tables 1, 2, and 
3, we conclude that there is no difference between the control and the treatment group while com-
paring the pre-test data with or without the previous experience of programming. 

Post-test results 
The post-test included all the questions presented in the pre-test, with two additional questions. 
Table 4 presents statistics for the control group and the treatment group. In the first column (ques-
tion) there is a correspondent pre-test question label. The table includes averages, standard devia-
tions (in parenthesis) and p-values obtained from two-tailed t-test for each question. In addition, 
there are total points of shared questions (pre- and post-test), total points (post-test), differences 
between each question in the pre- and post-test and total difference. 

We also calculated Cronbach’s alpha reliability values for pre- and post-test questions. The re-
sults (pre-test α = 0,667 and post-test α = 0,831) indicate high reliability. 

Table 4: Post-test results 

Question Control (n = 40) Treatment (n = 32) p-value 
PQ1 (Q1) 6.30 (2.81) 6.13 (2.69) 0.790 

PQ2 (Q2) 5.10 (4.35) 5.50 (4.50) 0.704 

PQ3  6.28 (3.75) 5.88 (3.75) 0.654 

PQ4 (Q3) 6.15 (4.56) 6.50 (4.42) 0.744 

PQ5 7.05 (3.78) 6.69 (4.08) 0.698 

Total (shared) 17.55 (9.08) 18.13 (8.81) 0.788 

Total (all) 30.88 (15.20) 30.69 (15.08) 0.959 

Diff PQ1  1.10 (2.60) -0.06 (2.81) 0.073 

Diff PQ2 2.40 (3.30) 3.38 (4.02) 0.262 

Diff PQ4 3.48 (4.81) 4.41 (4.53) 0.405 

Total diff 6.98 (6.81) 7.72 (6.76) 0.646 

 



Rajala¸ Laakso, Kaila, & Salakoski 

IIP - 25 

When comparing the shared questions in the pre- and post-test, we see that in absolute scale the 
control group outperformed the treatment group in PQ1 while the treatment group did better in 
PQ2 and PQ3. The better performance in PQ1 is related to the fact that achieved points were quite 
high in treatment group in pre-test. Still, the differences are too small to reject the null hypothesis. 
Similarly to the pre-test, the previous usage of ViLLE as a factor didn’t reveal any statistically 
significant differences, either inside or between the groups. 

The same statistics calculated with the previous programming experience taken into account are 
shown in Tables 5 and 6. (‘*’-character indicates non-equal variances) 

Table 5: Post-test results with NPE 

Question Control (n = 23) Treatment (n = 20) p-value 
PQ1 (Q1) 5.74 (2.78) 5.90 (2.86) 0.853 

PQ2 (Q2) 3.39 (3.97) 4.70 (4.58) 0.321 

PQ3  5.30 (4.06) 5.05 (3.65) 0.831 

PQ4 (Q3) 5.22 (4.83) 6.00 (4.71) 0.595 

PQ5 6.09 (4.09) 6.05 (4.20) 0.977 

Total (shared) 14.35 (8.27) 16.60 (9.29) 0.405 

Total (all) 25.74 (14.44) 27.70 (15.49) 0.670 

Diff PQ1  1.57 (2.48) 0.30 (2.62) 0.113* 

Diff PQ2 2.17 (3.07) 3.70 (4.38) 0.189 

Diff PQ4 4.22 (4.73) 4.35 (4.73) 0.927 

Total diff 7.96 (5.80) 8.35 (7.98) 0.853 

 

Table 6: Post-test results with SPE 

Question Control (n = 17) Treatment (n = 12) p-value 

PQ1 (Q1) 7.06 (2.75) 6.50 (2.43) 0.577 

PQ2 (Q2) 7.41 (3.81) 6.83 (4.22) 0.703 

PQ3  7.59 (2.90) 7.25 (3.65) 0.783 

PQ4 (Q3) 7.41 (3.94) 7.33 (3.94) 0.958* 

PQ5 8.35 (2.96) 7.75 (3.82) 0.635 

Total (shared) 21.88 (8.51) 20.67 (7.64) 0.696 

Total (all) 37.82 (13.68) 35.67 (13.53) 0.678 

Diff PQ1  0.47 (2.70) -0.67 (3.11) 0.303 

Diff PQ2 2.71 (3.65) 2.83 (3.46) 0.925 

Diff PQ4 2.47 (4.87) 4.50 (4.38) 0.252* 

Total diff 5.65 (7.98) 6.67 (4.14) 0.689 

 



Effectiveness of Program Visualization 

IIP - 26 

As seen in Tables 5 and 6, the previous programming experience had no statistically significant 
effect. The previous statistics are summarized in Table 7, including the averages from the pre-
test, post-test, differences and p-values for the treatment group, the control group, treatment with 
NPE (TNPE), treatment with SPE (TSPE), control with NPE (CNPE), and control with SPE 
(CSPE). The p-value is obtained by comparing total points from the pre- and post-test in shared 
questions with a pair-wise t-test.  

Table 7: Pre- and post-test results 

Points Control 
(C) 

Treat-
ment (T) 

CNPE CSPE TNPE TSPE 

Pre-test 10.58  10.41  6.39 16.24  8.25 14.00  

Post-test 17.55  18.13  14.35  21.88  16.60  20.67  

Total diff 6.98  7.72  7.96  5.65 8.35  6.67 

p-value  0.000 0.000 0.000 0.010 0.000 0.000 

 

Statistics in the table 7 confirm that learning occurred in both groups, and there was a statistically 
very significant difference between pre- and post-test results (p ≤ 0.01) in all groups. 

Based on the data presented, we can not fully reject our null hypothesis, which was that ViLLE 
does not aid the learning of basic programming concepts. The absolute values and the difference 
between CSPE and TSPE groups, however, indicate that there is a trend towards treatment group, 
suggesting that ViLLE might have a positive effect on students’ learning. 

Novices vs. Experienced 
The other research question was, whether the effect of ViLLE is the same for novices and experi-
enced students. The null hypothesis was that there is no difference between novices and experi-
enced students. The treatment and control groups were both divided into two groups based on the 
previous programming experience. In contrast to the first  research question, the students’ results 
were compared inside the group, rather than between the groups.  

Previous knowledge 
The results from the pre-test are compared between novices (NPE) and experienced (SPE) in the 
control group (Table 8) and the treatment group (Table 9). Tables include averages, standard de-
viations (in parenthesis) and p-values obtained from two-tailed t-test for each question separately 
and for total number of points acquired in the pre-test.  

Table 8: Pre-test scores for CNPE and CSPE 

Question Control and NPE  
(n = 20) 

Control and SPE  
(n = 12) 

p-value 

Q1 4.17 (2.33) 6.59 (2.53) 0.003 

Q2 1.22 (1.78) 4.71 (4.31) 0.005* 

Q3 1.00 (2.86) 4.94 (4.62) 0.005 

Total 6.39 (4.68) 16.24 (9.63) 0.001* 

 



Rajala¸ Laakso, Kaila, & Salakoski 

IIP - 27 

Table 9: Pre-test scores for TNPE and TSPE 

Question Treatment and 
NPE (n = 20) 

Treatment and 
SPE (n = 12) 

p-value 

Q1 5.60 (2.11) 7.17 (2.76) 0.107* 

Q2 1.00 (2.22) 4.00 (4.51) 0.049* 

Q3 1.65 (3.62) 2.83 (4.34) 0.414 

Total 8.25 (5.44) 14.00 (8.48) 0.051* 

 
We can see that there is a statistically very significant difference between CNPE and CSPE. The 
difference between TNPE and TSPE is also statistically significant (t  (30) = -2.11, p = 0.051). 
Thus, we conclude that there is statistically significant difference between NPE and SPE in both 
groups. 

Post-test results 
Table 10 presents statistics between CNPE and CSPE and Table 11 between TNPE and TSPE. In 
the first  column the correspondent pre-test question label is shown in parenthesis. The tables in-
clude averages, standard deviations (in parenthesis), and p-values obtained from two-tailed t-test 
for each question. In addition, the total points of shared questions (pre- and post-test), total points 
(post-test), differences between each question in the pre- and post-test, and the total difference in 
shared questions are displayed. 

Table 10: Post-test scores for CNPE and CSPE 

Question CNPE (n = 23) CSPE (n = 17) p-value 

PQ1 (Q1) 5.74 (2.78) 7.06 (2.75) 0.144 

PQ2 (Q2) 3.39 (3.97) 7.41 (3.81) 0.003 

PQ3  5.30 (4.06) 7.59 (2.90) 0.045* 

PQ4 (Q3) 5.22 (4.83) 7.41 (3.94) 0.122* 

PQ5 6.09 (4.09) 8.35 (2.96) 0.049* 

Total (shared) 14.35 (8.27) 21.88 (8.51) 0.008 

Total (all) 25.74 (14.44) 37.82 (13.68) 0.011 

Diff PQ1  1.57 (2.48) 0.47 (2.70) 0.198* 

Diff PQ2 2.17 (3.07) 2.71 (3.65) 0.620 

Diff PQ4 4.22 (4.73) 2.47 (4.87) 0.261 

Total diff 7.96 (5.80) 5.65 (7.98) 0.295 

 
Table 10 shows that there is a statistically very significant difference between CNPE and CSPE in 
the post-test scores. The same phenomenon was observed also in the pre-test. As shown in Table 
7, learning occurred both in CNPE (p < 0.01) and CSPE (p < 0.05). Yet, a very significant differ-
ence remains between CNPE and CSPE in shared questions (p = 0.008), and there also is a very 
significant difference (p = 0.011) in the total points in the post-test. 



Effectiveness of Program Visualization 

IIP - 28 

Table 11: Post-test scores for TNPE and TSPE 

Question TNPE (n = 20) TSPE (n = 12) p-value 
PQ1 (Q1) 5.90 (2.86) 6.50 (2.43) 0.533* 

PQ2 (Q2) 4.70 (4.58) 6.83 (4.22) 0.199 

PQ3  5.05 (3.65) 7.25 (3.65) 0.109 

PQ4 (Q3) 6.00 (4.71) 7.33 (3.94) 0.418 

PQ5 6.05 (4.20) 7.75 (3.82) 0.261 

Total (shared) 16.60 (9.29) 20.67 (7.64) 0.212 

Total (all) 27.70 (15.49) 35.67 (13.53) 0.151 

Diff PQ1  0.30 (2.62) -0.67 (3.11) 0.354 

Diff PQ2 3.70 (4.38) 2.83 (3.46) 0.564 

Diff PQ4 4.35 (4.73) 4.50 (4.38) 0.929 

Total diff 8.35 (7.98) 6.67 (4.14) 0.439* 

 

As seen in Table 9, the difference between TNPE and TSPE in the pre-test was statistically sig-
nificant (p = 0.051). In the post-test, however, there was no statistically significant difference in 
any of the questions, in total points, or in differences in the shared questions (see Table 11). 
Therefore, the null hypothesis can be rejected, and we can conclude that ViLLE is more benefi-
cial for the novice students than for the experienced ones. 

Discussion 
The evaluation of our research results was studied in two separate cases. In the first  case we com-
pared the learning results of the treatment and the control group. The control group used only a 
textual programming tutorial, while the treatment group using the same material could in addition 
execute the examples with ViLLE. 

In the first  research question we compared learning results between control and treatment groups. 
We found no statistically significant difference between the groups, and thus we can not reject the 
null hypothesis. Similarly we found no difference in results between genders, between students’ 
that had used ViLLE before the research, or students’ with no earlier experience with ViLLE. 
In absolute scale, the results favoured the treatment group, indicating that ViLLE might have a 
positive effect on students’ learning. However, the differences were too small in order to get sta-
tistically significant results. One reason for that might be that the treatment group’s students were 
coping with a heavier cognitive load (see Chandler & Sweller, 1996) due to the fact that they used 
ViLLE in addition to the textual material. This load was even heavier for those who hadn’t used 
ViLLE beforehand. We believe that the cognitive load combined with the short learning session 
was the primary reason for not achieving statistically significant results between treatment and 
control groups. Another reason might be the low count of participants (n=32 in treatment group; 
n=40 in control group) as well as the short duration of the experiment. However, there was a sig-
nificant (at 0.01 level) medium correlation (0.452) between the post-test and the final exam 
scores. Hence, the results of the two hour session seem to somewhat predict the outcome of the 
whole course.  



Rajala¸ Laakso, Kaila, & Salakoski 

IIP - 29 

In the second research question, we compared the students’ learning performance inside both 
groups when previous programming experience was taken into account. The treatment group was 
divided into two groups: one with no previous programming experience (TNPE) and the other 
with some previous programming experience (TSPE). In the pre-test, the difference between the 
groups was statistically significant (p = 0.051). In the post-test, on the other hand, there was no 
statistically significant difference at all. So, there is solid evidence that ViLLE is more beneficial 
to novices, and thus we can reject the null hypothesis. The control group was divided identically 
to CNPE and CSPE. There was a statistically very significant difference between these groups 
both in the pre- and post-test, which was opposite to TNPE vs. TSPE. Hence, it  seems that ViLLE 
has a substantial effect on narrowing the gap between novices and more experienced students. 
The learners’ short exposure to the tool makes the result  even more remarkable. 

With these findings combined, it  seems that ViLLE enhances students’ learning of basic pro-
gramming concepts. ViLLE proved to be particularly beneficial for novice students, effectively 
evening out the differences caused by previous programming experience. 

Conclusions 
We conducted an experiment focusing on program visualization’s effectiveness on learning basic 
programming concepts. We utilized the ViLLE tool in the first programming course at the Uni-
versity of Turku. We found evidence that program visualization, more specifically the ViLLE 
tool, enhances students’ learning regardless of previous programming experience. Moreover, it 
seems that the tool benefits novice learners more than learners with some previous experience. 
The differences between the novices and more experienced learners disappeared in the treatment 
group during a very short training period. In the future, we plan to carry out a study in which 
ViLLE is used throughout the course and evaluate its individual features separately. 

Acknowledgments 
This work was supported by the Academy of Finland under grant number 111396. 

References 
Ben-Ari, M. (2001). Program visualization in theory and practice. Informatik/Informatique, 2, 8-11. 

Boyle, T., Bradley, C., Chalk, P., Jones, R. & Pickard, P. (2003). Using blended learning to improve stu-
dent success rates in learning to program. Journal of Educational Media, special edition on Blended 
Learning, 28(2-3), 165-178. 

Brown, M. H. (1988). Exploring algorithms using Balsa II. IEEE Computer, 21(5), 14-36. 

Brown, M. H. (1991). Zeus: A system for algorithm animation and multi-view editing. Proceedings of 
IEEE Workshop on Visual Languages, 4-9. New York: IEEE Computer Society Press. 

Carlisle, M. C., Wilson, T. A., Humphries, J. W., & Hadfi eld, S. M. (2005). RAPTOR: A visual program-
ming environment for teaching algorithmic problem solving. Proceedings of the 36th SIGCSE Techni-
cal Symposium on Computer Science Education, St. Louis, Missouri, USA, 176-180. 

Chandler, P., & Sweller, J. (1996). Cognitive load while learning to use a computer program. Applied Cog-
nitive Psychol, 10, 151-170. 

Grissom, S., McNally, M., & Naps, T. (2003). Algorithm visualization in CS education: Comparing levels 
of student engagement. Proceedings of the ACM Symposium on Software Visualization, San Diego, 
Californi a, 87–94. 

Hundhausen, C. D., & Brown, J. L. (2007). What you see is what you code: A 'live' algorithm development 
and visualization environment for novice learners. Journal of Visual Languages and Computing, 18(1), 
22-47. 



Effectiveness of Program Visualization 

IIP - 30 

Hundhausen, C. D., Douglas, S. A. & Stasko, J. D. (2002). A meta-study of algorithm visualization effec-
tiveness. Journal of Visual Languages and Computing, 13, 259-290. 

Hyrskykari, A. (1993). Development of program visualization systems. Report, Department of Computer 
Science, University of Tampere, Finland. Presented at the 2nd Czech British Symposium of Visual As-
pects of Man-M6achine Systems, Praha, 1-21. 

Kannusmäki, O., Moreno, A., Myller, N., & Sutinen, E. (2004). What a novice wants: Students using pro-
gram visualization in distance programming course. Proceedings of the Third Program Visualization 
Workshop (PVW'04), Warwick, UK. 

Kölling, M., Quig, B., Patterson, A., & Rosenberg, J. (2003). The BlueJ system and its pedagogy. Journal 
of Computer Science Education, Special issue on Learning and Teaching Object Technology, 13(4). 

Laakso, M.-J., Myller, N,. & Korhonen, A. (in press). Comparing learning performance of students using 
algorithm visualizations collaboratively on different engagement levels. Journal of Educational Tech-
nology and Society. 

Laakso, M.-J., Salakoski, T., Grandell, L., Qiu, X., Korhonen, A., & Malmi, L. (2005). Multi-perspective 
study of novice learners adopting the visual algorithm simulation exercise system TRAKLA2. Infor-
matics in Education, 4(1), 49-68. 

Laakso, M.-J., Salakoski, T., & Korhonen, A. (2005). The feasibility of automatic assessment and feed-
back. Proceedings of Cognition and Exploratory Learning in Digital Age (CELDA 2005). IEEE Tech-
nical Committee on Learning Technology and Japanese Society of Information and Systems in Educa-
tion, Porto, Portugal, 113-122. 

Lister, R., Adams, S., Fitzgerald, S., Fone, W., Hamer, J., Lindholm, M., et al. (2004). A multi-national 
study of reading and tracing skills in novice programmers. SIGCSE Bulletin, 36(4), 119-150. 

Malmi, L., Karavirta, V., Korhonen, A., Nikander, J., Seppälä, O., & Silvasti, P. (2004). Visual algorithm 
simulation exercise system with automatic assessment: TRAKLA2. Informatics in Education, 3(2), 
267-288. 

McCracken, M., Almstrum, V., Diaz, D., Guzdial, M., Hagan, D., Kolikant, Y., et al. (2001). A multi-
national, multi-institutional study of assessment of programming skills of fi rst-year CS students. ACM 
SIGCSE Bulletin, 33(4), 125-140. 

Moreno, A., Myller, N., Sutinen, E., & Ben-Ari, M. (2004). Visualizing programs with Jeliot 3. Proceed-
ings of the Working Conference on Advanced Visual Interfaces, Gallipoli, Italy, 373-376. 

Naps, T., Cooper, S., Koldehofe, B., Leska, C., Rößling, G., Dann, W., et al. (2003). Evaluating the educa-
tional impact of visualization. Working group reports from ITiCSE on Innovation and Technology in 
Computer Science Education, ACM Press, 124-136. 

Naps, T. L., Rößling, G., Almstrum, V., Dann, W., Fleischer, R., Hundhausen, C., et al. (2002). Exploring 
the role of visualization and engagement in computer science education. In Working Group Reports 
from ITiCSE on Innovation and Technology in Computer Science Education, 35, 2, 131-152. 

Nikula, U., Sajaniemi, J., Tedre, M. & Wray, S. (2007). Python and Roles of Variabl es in Introductory Pro-
gramming: Experiences from Three Educational Institutions. The Journal of Information Technology 
Education, 6, 199-214. Retrieved from http://jite.org/documents/Vol6/JITEv6p199-214Nikula269.pdf  

Oechsle, R. & Schmitt, T. (2002). JAVAVIS: Automatic program visualization with object and sequence 
diagrams using the java debug interface (JDI). Lecture Notes in Computer Science, Vol. 2269: Soft-
ware Visualization, 176-190. 

Rajala, T., Laakso, M.-J., Kaila, E. & Salakoski, T. (2007). VILLE – A language-independent program 
visualization tool. Proceedings of the Seventh Baltic Sea Conference on Computing Education Re-
search (Koli Calling 2007), Koli National Park, Finland, November 15-18, 2007. Conferences in Re-
search and Practice in Information Technology, Vol. 88, Australian Computer Society. Raymond 
Lister and Simon, Eds. 

http://jite.org/documents/Vol6/JITEv6p199-214Nikula269.pdf�


Rajala¸ Laakso, Kaila, & Salakoski 

IIP - 31 

Sajaniemi, J. (2002). PlanAni – A system for visualizing roles of vari ables to novice programmers. Univer-
sity of Joensuu, Department of Computer Science, Technical Report, Series A, Report A-2002-4. 

Sajaniemi, J. & Kuittinen, M. (2003). Program animation based on the roles of variables. Proceedings of 
the 2003 ACM Symposium on Software Visualization, San Diego, California, 7-ff. 

Stasko, J. (1992). Animating algorithms with XTANGO. ACM SIGACT News, 23(2), 67-71. 

Tenenberg, J., Fincher, S., Blaha, K., Bouvier, D., Chen, T.-Y., Chinn, D., et al. (2005). Students designing 
software: A multi-national, multi-institutional study. Informatics in Education, 4(1), 143-162. 

 

Biographies 
Teemu Rajala is a PhD student at University of Turku. He received 
his master’s degree from the same university in 2007. His research fo-
cuses on visualization of programs and algorithmic problem solving. 
 

 

 
 

 

 
Mikko-Jussi Laakso is a PhD student working as a researcher in a 
joint project of University of Turku and Helsinki University of Tech-
nology. He received his M.Sc (Computer Science) in 2003. His re-
search interest covers program and algorithm visualization, learning 
enviroments, computer aided and automatic assessment in computer 
science education. 

 

 
 

 

Erkki Kaila has written his Master’s thesis on program visualization 
in programming learning in University of Turku. His research interests 
include program visualization systems and IT education. 

 
 

 

 
 

 



Effectiveness of Program Visualization 

IIP - 32 

Tapio Salakoski is a professor of Computer Science at University of 
Turku, where he received his Ph.D. in 1997. His main research focus 
has been in methodology development using machine learning and 
other intelligent techniques. He is leading a multidisciplinary research 
group studying various task domains, including problems related to 
human learning and computing education research. 

 

 
 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 300
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [305 305]
  /PageSize [432.000 648.000]
>> setpagedevice


