
Journal of Information Technology Education Volume 7, 2008

Editor: Grandon Gill

A Computer Science Educational Program for
Establishing an Entry Point into the Computing

 Community of Practice

Bruria Haberman
Holon Institute of Technology,
and The Davison Institute of

Science Education,
The Weizmann Institute of
Science, Rehovot, Israel

1il.ac.weizmann@haberman.bruria

Cecile Yehezkel
The Davison Institute of

Science Education,
The Weizmann Institute of
Science, Rehovot, Israel

cecile.yehezkel@weizmann.ac.il

Executive Summary
The rapid evolvement of the computing domain has posed challenges in attempting to bridge the
gap between school and the contemporary world of computing, which is related to content, learn-
ing culture, and professional norms. We believe that the interaction of high-school students who
major in computer science or software engineering with leading representatives of the computing
community of practice may motivate them to pursue their studies further or pursue a career in the
field. Accordingly, our program aims at exposing talented high-school students "directly by lead-
ing experts" to state-of-the-art computing research, advanced technologies, software engineering
methodologies, and professional norms. The interaction between the students and the experts,
who actually become role models for the students, occurs at two levels: (a) during enrichment
plenary meetings, and (b) through one-to-one interaction in which students develop software pro-
jects under the apprenticeship-based supervision of professionals from the computing community
of practice. In the last four years, six hundred students participated in enrichment activities; 86 of
these students accomplished high-level software projects under the supervision of experts.
A long-term formative evaluation of the program has been conducted regarding: (1) students' atti-
tudes towards the "different-from-school" style of learning that characterizes the program, and (2)
students' performance in developing projects. In this paper, we specifically discuss the contribu-
tion of resources that students used for various phases of the project development activity. We
found that the following categories of resources were employed by the students: self-learning,
mentors, bibliographic resources (the Web, professional articles, professional books), school re-
sources (a school teacher, school learning, and materials), and other human resources (i.e., a

classmate the student 's age, a family
member, a grown-up acquaintance).
Importantly, the findings indicated that
during the entire development process
the students exhibited self-efficacy,
since they relied more on themselves
than on other resources. Interestingly,
during the entire development process,
the web was perceived as the most sig-
nificant bibliographic resource. Spe-
cifically, regarding the need to achieve

Material published as part of this publication, either on-line or
in print, is copyrighted by the Informing Science Institute.
Permission to make digital or paper copy of part or all of these
works for personal or classroom use is granted without fee
provided that the copies are not made or distributed for profit
or commercial advantage AND that copies 1) bear this notice
in full and 2) give the full citation on the first page. It is per-
missible to abstract these works so long as credit is given. To
copy in all other cases or to republish or to post on a server or
to redistribute to lists requires specific permission and payment
of a fee. Contact 0HPublisher@InformingScience.org to re-
quest redistribution permission.

mailto:cecile.yehezkel@weizmann.ac.il�

Computer Science Educational Program

82

adequate acquaintance with the theoretical knowledge that was required, self-studying and the
web were perceived as the most significant resources, which may imply that the mentors' guid-
ance inspired the students' self-inquiry and self-study. However, during the problem-solving ac-
tivities, students relied more on the mentors than on bibliographic resources.

Based on the study findings, we concluded that professional experts who supervise students in
project development may motivate them to acquire in-depth knowledge in computing, promote
creativity, as well as enhance self-learning and inquiry ability. In addition, the interaction with
role models may contribute to establishing professional norms.
We hope that further implementation of the program, along with recruitment of more representa-
tive experts from academia and hi-tech industry, will promote a culture of learning and work be-
fitt ing the dynamic world of industrial computing, thus providing the students with an entry point
into the computing community of practice.

Keywords: self-learning, out-of-school learning, project-based learning, mentoring, role models.

Introduction
During the last two decades, a program in computer science (CS) (Gal-Ezer, Beeri, Harel, & Ye-
hudai, 1995) and a program in software engineering (SE) (The Ministry of Education, 2004) es-
pecially designed for the high-school level have been in operation in Israel. The aim of the com-
puter science program is to expose the students to a fundamental scientific domain whose princi-
ples are characteristic of algorithmic thinking. The software engineering program consists of the
following components: (a) an elective topic in natural sciences, (b) computer science, and (c) an
elective advanced specialized topic. Its aim is to expose the students to computational thinking
(Wing, 2006) as well as to system-level perception (Gal-Ezer & Zeldes, 2000). Both programs
have evolved over the years in accordance with changes in the discipline of computing; however,
a gap still exists between the school programs and the “real world” of computing related to: con-
tent, learning culture, and the professional norms governing software development processes. We
believe that in order to motivate students to seek expertise in the field, it is important to expose
them to up-to-date computing research and development (R&D) processes both in academia and
in high-tech industries, and to raise awareness of actual common professional issues that mem-
bers of the CS/SE community of practice cope with. These considerations motivated us to initiate
the Computer Science, Academia and Industry, an extra-curricular enrichment program at the
Davidson Institute of Science Education. Similar approaches, which consider the importance of
enrichment programs in motivating students to learn computer science, are presented in Sherrell
and Shiva (2005) and Sims-Knight and Upchurch (1993).
In a previous paper we described how our program was designed to bridge the gap between
school and the “real world” of computing (Yehezkel & Haberman, 2006). In this paper we focus
particularly on the benefits of students developing projects under the apprenticeship-based super-
vision of professional instructors.

The Enrichment Program

Background and Motivation
The gap between school education and the "real world" of computing is especially related to con-
tent, learning culture, and professional norms.

The fundamentals and the core technologies that are introduced in school form the basis for un-
derstanding the field of computing; however, they rarely resemble the state-of-the-art computing
research and development as well as the new, evolving directions in the field. Regarding bridging

 Haberman & Yehezkel

 83

the gap between learning in school and real-world situations, Ben-Ari concluded that, most likely,
decontextualized schooling will continue to be a fundamental method of computer science educa-
tion (Ben-Ari, 2004), since, in particular, in this high-technology world, "a newcomer must have
a significant amount of basic and background knowledge before entering into meaningful partici-
pation in technological communities of practice" (Ben-Ari, 2003). Based on these considerations,
we believe that students should learn fundamentals along with getting acquainted with enrich-
ment advanced topics.

The traditional style of teaching/learning in school is usually designed so that students can ac-
quire explicit knowledge based on a thorough understanding of the topic learned. However, this
approach alone might fail to educate the students to become self-learners who are capable of
navigating in the rapidly growing world of knowledge (Computing Research Association, 2005;
Long & Ehrmann, 2005; Passig, 2001). Hence, we suggest that students be taught to employ a
breadth-oriented, "tasting"-based learning style.
The Software Engineering 2004 Curriculum states that incorporating real-world elements into the
curriculum is necessary to enable effective learning of software engineering skills and concepts
(ACM/IEEE Joint Task Force on Computing Curricula [ACM/IEEE], 2004). Educators should
"devote time to analyzing what actually happens in real communities of practice, and then to cre-
ate learning activities that simulate such tasks as well as possible within the constraints of a
school." However, according to Ben-Ari (2003), learning activities should be "influenced by the
nature of the activities that occur in the community of practice that students will encounter in the
future" rather than by its actual detailed practices. Students should be given tasks that could
deepen their sense of meaningful participation in the community, such as working with given
complex programs instead of just writing "toy programs" (Ben-Ari, 2004). For example, students
should receive experience in examining, finding, and correcting flaws early, as well as in filling
in missing parts of given large artifacts "with the intent of showing them the complexity of the
field they are about to study" (Bergin, 2005). Accordingly, we believe that students should be
activated by representatives of the computing community of practice in small-scale activities that
simulate "real-world" situations.
Educators have long noted the importance of teaching software design skills to high-school com-
puter science students (Gal-Ezer et al., 1995; Gal-Ezer & Zeldes, 2000; Sims-Knight &
Upchurch, 1993). According to the Situating Constructionism learning theory (suggested by Pa-
pert & Harel, 1991) meaningful learning-by-making occurs "in a context where the learner is con-
sciously engaged in constructing a public entity". For example, project-based learning and soft-
ware development assignments, performed by students in meaningful contexts while applying
Systematic Inventive Thinking methods (Helfman & Eylon, 2003), may facilitate meaningful
learning as well as contribute to making computing more appealing. The academic CS commu-
nity believes that the role of projects in the curriculum is of major importance, since it is a means
of effective learning, and it also is a way of demonstrating the student’s mastery of skills appro-
priate to professional practice (Fincher, Petre, & Clark, 2001; Holcombe, Stratton, Fincher, &
Griffiths, 1998). Project development enables students to construct knowledge and to enhance
cognitive and reflective skills; it also encourages students to become creative, innovative
(Denning & McGetrtrick, 2005), and independent learners. It addition, it enables students to en-
counter real-life experience as a project developer (ACM/IEEE, 2004; Bracken, 2003). School
projects enable students to experience software design and development processes and to acquire
a system-based perception. However, the school educational milieu is not capable of demonstrat-
ing to the students the "real world" professional norms of software development, since the devel-
opment settings and processes in school do not resemble actual research and development indus-
trial processes. Although the teachers occasionally participate in workshops to develop their
knowledge and professional skills, they still do not belong to and do not represent the computing

Computer Science Educational Program

84

community of practice. Hence, the students' products are rarely applicable to real-world situa-
tions. Accordingly, we believe that students should develop projects under the supervision of pro-
fessionals who represent the computing community of practice.

The Underlying Model
Our enrichment program aims at bridging the gap between the fundamentals learned in school
and the “real computing world”. Its mains goals are as follows: (a) to expose young students to an
up-to-date field of computing research and development; and (b) to establish a learning culture
that will provide the students with an entry point into the computing community of practice; and
(c) to motivate novices to seek expertise in the field. The model underlying our program is based
on the following guiding principles:

Blending formal (in-school) and informal (out-of-school) learning
“It is increasingly apparent that informal and lifelong learning is the key solution to equipping
people with the evolving knowledge and skills that will be needed to adapt to the continuously
changing nature of society” (Long & Ehrmann, 2005). Computing is a dynamic, rapidly evolving
discipline. Hence, students should be taught to employ a breadth-oriented "tasting"-based learn-
ing style, according to which their initial exposure to an unfamiliar topic will be accomplished by
exposing them only to its essence (i.e., with the main high-level-abstract-related ideas). In other
words, a complete understanding, including knowing the concrete details and mastering proce-
dural aspects, should not be considered as the immediate aim of an initial exposure to a new
topic. We believe that a program based on blending traditional (in-school) learning of CS funda-
mentals and enrichment (out-of-school) program related to state-of-the-art computing will pro-
vide the students with a suitable entry point into the computing community of practice.

Role models
Role models across the science spectrum have a doubly important role to play – both to commu-
nicate information and to inspire others to understand and appreciate the work of the scientist and
engineer today (National Academy of Sciences, National Academy of Engineering & Institute of
Medicine, 1997). We believe that the encounter between novices and representatives of the com-
puting community of practice is very important.
One specific example that motivated us to use role models (National Academy of Sciences, Na-
tional Academy of Engineering & Institute of Medicine, 1997) in our program was the story of
Prof. Ehud Shapiro, a distinguished computer science scientist, who found it important to indicate
in his short bio that: "The guiding light for [his] scientific endeavors was the philosophy of sci-
ence of Karl Popper, with which he became acquainted through a high-school project supervised
by Moshe Kroy from…Tel Aviv University" (Shapiro, n.d.).

Diversity
We believe that diversity should be a central motive in encouraging self-learning education,
meaning that students should be guided to combine initial breadth-first exposure to new topics
with in-depth knowledge of chosen topics in various contexts (e.g., developing a project in a spe-
cific domain).

The Setting
Our program interweaves enrichment meetings and the development of software projects in a set-
ting that simulates a "real world" environment. The program is planned to be conducted in two
stages.

 Haberman & Yehezkel

 85

Stage A
The first stage consists of a 6-month enrichment workshop. Each monthly (after school) meeting
consists of 2 lectures by leading representatives of the CS/SE academia and industry, as well as
related class activities. (See Table 2 in next section for details.) Advanced topics are introduced,
industry’s professional norms are discussed, and advanced technologies and methodologies are
demonstrated. In addition, "visiting the industry" tours are conducted. The program's activities are
supported by a dedicated site that provides an opportunity to communicate with students between
meetings. Toward the end of this stage, a small group of students are selected to continue to the
second stage of the program.

Stage B
The second stage is totally devoted to the development of software projects under the apprentice-
ship-based supervision of professional instructors-scientists from academia and practitioners from
hi-tech industry. Some of the students actually participate in “real” industry projects, thus solving
“real-world” problems for a real client; others utilize advanced industrial development tools. The
projects are developed by individuals or by pairs. The school teachers are actively involved in
guiding and supporting the students throughout the entire development process. The challenge is
to create productive cooperation among all four players: (a) the student, (b) the mentor, (c) the
academic management team of the enrichment program, and (d) the school teacher. This chal-
lenge has motivated the research described in the present paper.

The duration of the project development process is 8-9 months. During that period the students
are requested to submit sub-products (e.g., specification documents and a mid-term report) ac-
cording to a given time table. Basically, the students (individuals/pairs) develop the project sepa-
rately; however, several meetings for the whole Stage-B group are conducted. The meetings are
dedicated to software development issues that are presented and discussed by experts. In addition,
the students report to the group about their progress.

Diversity of population
Selection of attendees is performed toward each stage, and a regional after-school class is com-
posed including excellent students from different schools throughout the country. The first stage
of the program is designed for 11th grade excellent students who major in CS/SE. We believe that
students who demonstrate excellence relative to their classmates should be appreciated and in-
vited to attend our program; hence, we do not interfere with the students' selection process in the
first stage of the program. Toward the beginning of an academic year, we suggest to high-school
principals and CS teachers that they select a group of up to 10 excellent students (meaning that
they are highly motivated and high achievers) that would like to attend the first stage of our pro-
gram. As a result , the student population attending the first stage may be very diverse with respect
to the students' socioeconomic, cultural, religious, and curricular background, a situation that
must be carefully dealt with when planning the agenda of the enrichment workshop and its set-
ting.

The second stage of the program is designed for a small group of graduates of the first stage who
are interested in developing "real" software projects under the supervision of experts from aca-
demia or the high-tech industry. In our opinion, this stage is suitable only for the "cream of the
crop" students who exhibit the following characteristics: high motivation, creativity, self-learning
and inquiry ability, persistence, consistency, and the ability to follow a time table. Accordingly,
the selection of students for the second stage is more rigorous than the first stage, and it is based
on the following criteria: (a) the teachers' recommendation, based on their acquaintance with the
students and according to students' achievements and the above characteristics; (b) the applicant 's
resume, which should provide information about his CS knowledge, programming experience,

Computer Science Educational Program

86

knowledge of programming languages, participation in other relevant enrichment programs, and
experience in developing software projects; and (c) the applicant 's ability to persuade us that he is
seriously interested in developing the project, and that he is capable of successfully accomplish-
ing the development and can submit a working product (according to the specifications). The
mentors are representatives of the following streams of the computing community of practice: (a)
faculty members in CS/SE academic departments, (b) M.Sc and Ph.D students, and (c) practitio-
ners in hi-tech industry.

Student-mentor matching
Student-mentor matching is the key for successful development of a project. To establish optimal
matching, we developed a model (schematically illustrated in Figure 1). An Employment Fair
meeting is conducted, where, in a plenum session, the mentors present to the students a variety of
project subjects for which they can serve as advisors. After the presentation, a face-to-face men-
tor-student interaction takes place where students are asked to present to mentors their "CV-like"
applicant 's resume. The process ends when all possible interactions take place. During the interac-
tion, the students ask the mentors questions about the suggested projects and examine whether the
topics seem attractive and can be dealt with and whether they want the mentor to guide them. At
the same time, the mentors implicitly investigate whether the students are qualified enough to
develop the project that they suggested. Next, the students are required to submit a list of projects
in order of their preference, and the mentors are asked to choose students according to their as-
sessment. Finally, the managers of the program perform the mentor-student pair matching.

Figure 1: The Employment Fair Simulation

Three Years of Experience
Three full cycles of the program were conducted so far (illustrated in Table 1). The fourth cycle
started at November 2007 with an audience of 210 students.

The Enrichment Meetings
The pilot implementation of the program began in November 2004. A group of 71 high-school
students, accompanied by their teachers from 9 schools located in the area of the Davidson Insti-
tute of Science Education, attended the program. The second cycle began toward the end of 2005
with 140 students from 20 schools, some of which are located in distant areas. The geographical
spread, as well as the growth of a number of attendees continued in the third round. The third
group of attendees consisted of 180 students from 30 schools. Students from distinct localities
throughout the country came after a full day of school-studies to participate in monthly afternoon
(17:00-20:30) enrichment meetings. Each group of students is accompanied by their CS school-
teacher. Thus, both the students and the teachers are given an opportunity to enrich their knowl-
edge by participating in the program. For many attendees it took about two hours of transporta-

Mutual

interview

Personal Pref er-
ences

List of students they
are willing to mentor

Students Mentors
List of

projects
"CV"

 Haberman & Yehezkel

 87

t ion in each direction, ending in returning home late at night. Interestingly, the student population
presents an amazing socioeconomic, ethnic, and religious diversity. Students from secular and
orthodox schools belonging to Jewish and Arabic communities attended plenary sessions acting
as a common interest study group while (literally) sitt ing in a conference hall in mixed positions,
and collaborated in small mixed groups in enrichment activities. Table 1 summarizes the evolu-
tion of the program in terms of participation in the first three cycles.

Table 1: The participation to the program – Three years of experience

Years 2004-2006 2005-2007 2006-2008
Students 71 140 180 Stage A
Schools 9 20 30

Candidates 25 50 80 Stage B
Graduates* 13 28 unknown**

* Students who succeeded to successfully finish their project.
** Stage B of the cycle that began in 2006 and will end in June 2008.

Aimed at exposing talented high-school students to state-of-the-art computing research, advanced
technologies, software engineering methodologies, and professional norms, the program offers a
wide-spectrum of topics and activities, as illustrated in Table 2.

Table 2: Sample of topics and activities

Topics
• Advanced programming paradigms - scenario-based programming, aspect-based pro-

gramming;
• Development of complex systems - model-based development, advanced software de-

velopment tools, computing in space;
• Artificial intelligence - machine learning; neural networks, the control of motion in

biological and robotic systems;
• The synergy between computer sciences and biology – biological computers; modeling

of biologic evolution; using computational models to comprehend behavior of biologi-
cal systems; transmission of odor by a computer.

• Professional norms - standards, the importance of testing and controlled reuse of code;
• Computer science educational research - misconceptions and their implication regard-

ing the quality of software.
Activities

• Construction and programming ro-
bots;

• Challenging algorithmic problems;
• Role-playing simulation games;

• Creative thinking in computer science;
• Model-based development;
• Competition in testing software;

The Project Development Activity
Two cycles of project development (Stage B) were completed and the third cycle began. Table 1
illustrates the distribution of stage B participants. So far, 41 students (13 from the first cycle; 28
from the second cycle) succeeded in submitting a final product - a working software system (ac-
cording to specifications) and a report that describes the system and its development, along with

Computer Science Educational Program

88

reflective self-assessment and recommendations for further development. The low percentage of
students who successfully completed their project is the result of time-consuming investment in
the development process. Obviously the students must carefully plan and manage the implemen-
tation of their projects in order to successfully accomplish the project development task and avoid
a negative impact in learning other school subjects. The third group of 80 students recently began
Stage B; it is planned that they submit their projects around June 2008. We hope that the percent-
age of students who successfully complete the task will increase as a result of better mentoring
them how to plan and to manage their t imetables. At the beginning, the students developed their
projects under the supervision of 12 mentors (5 talented CS graduate students, 3 lecturers who are
active researchers in the department of computer science, and 4 professionals from the high-tech
industry). Since then, the group of mentors increased to some extent (N=18), and there has been a
slight personnel turnover.

External examiners, appointed by the Ministry of Education, evaluated the projects, which re-
ceived very high grades. The grade that students receive in their project is recorded in their stan-
dard matriculation diploma. In addition, students receive a certificate from the Davidson Institute
of Science Education confirming their participation in the project.
The subjects of the students' projects (Table 3) are usually related to topics of the enrichment
meetings and actually reflect the mentors' background. Most of the projects mentored by industry
representatives have practical characteristics; for example, computerized homes, programming a
robot, and managing a multimedia-shop. On the other hand, the projects sponsored by CS faculty
and graduate students focus on theoretical or research-based subjects such as computerized graph-
ics, image processing, automatic text categorization, modeling-based development of a control
system, simulation of the theory of natural selection, and games based on learning machine the-
ory.

Table 3: Sample of subjects of student projects

Topics of the enrichment program Projects' subjects

Advanced programming paradigms

Development of complex systems System development based on modeling

Artificial intelligence Sentence completion with learning algorithms
Web-Content Management

Professional norms Antivirus Anti-worm

CS educational research Management of online educational material

Cryptography RSA Encrypted Messenger

Robotics Sun-heated water tank
Home-device control
Programming a robot

Computer Sciences and Biology Disassembling and reassembling DNA.

Computer Graphics and
Mathematics

3D drawing with mathematical functions
3D geographical mapping

 Haberman & Yehezkel

 89

Image processing and computerized
vision

Processing hand movements for remote control

Neural networks Recognition of characters in a picture

Signal processing Voice signal recognition for remote control
Voice identification

Game Theory Game management shell
Reversi Game
Chess Game

Assessment of the Project Development Activity
Since our aim is to improve the program, we decided to accompany its implementation with an
ongoing evaluation. In Yehezkel and Haberman (2006) we described a preliminary assessment of
students' attitudes toward the enrichment meetings (Stage A of the program) and the "different
from school" style of learning characteristics of the program. In this paper we focused on the as-
sessment of the project development activity (Stage B).

Procedure
The students from the second cycle were asked to answer a reflective questionnaire just after
submitting their final projects (N=28; N represents the number of stage B participants). The ques-
tionnaire referred to: (a) resources used during the development of the project; (b) challenges and
management of the development process; and (c) benefits gained from the project development
activity (and the enrichment program as a whole).
In addition, a preliminary qualitative assessment was performed to follow up the project devel-
opment processes. The students were instructed to organize a portfolio that includes progress re-
ports and intermediate products. We asked the mentors to document the mentoring process and to
record interesting events. So far, we also conducted a few open interviews with teachers, students,
and mentors.
In this paper we focus on students' assessment of the resources they used for developing a project.
In addition we present the experience of one specific pair of student-mentors.

Students' Assessment of Resources Used
One main goal of our study was to assess the contribution of resources that students used for
various phases of the project development activity (see Table 4).

Questions from the following template were posed to the students: When performing Phase # X,
to what extent (high=5, low=1) did you use the following resources? (see Appendix).

Computer Science Educational Program

90

Table 4: Phases and resources used for the project development activity

 Phase # Description

Phase I Studying the theoretical background needed for developing the
project development

Phase II Identifying the main algorithmic ideas

Phase III Acquiring the needed technical knowledge - studying a suitable
programming language and a development environment

Phase IV Implementing the project (writing and testing the code)

Resources
Self-studying, the mentor, the Web, professional books, professional articles, the
school teacher, school learning (materials and methods), a classmate of the student 's
age, a family member, a grown-up acquaintance

In addition to the contribution of the distinct resources on project development, we were inter-
ested in determining the influence of groups of resources with common characteristics. Accord-
ingly, we grouped the resources into the following classification groups:

• Bibliographic Resources (B) – the Web, professional articles, professional books.
• School (Sc) – The school teacher, school learning (materials and methods).
• (Informal) Human Resources (A) - A classmate of the student 's age, a family member, a

grown-up acquaintance.
• Mentoring (M) - The mentor.
• Self-Studying (St) - The student.

Figure 2 presents (graphically and numerically) students' assessment of the resources used for
project development (Likert Scale 1 (low) -5 (high)). The resources were presented on the per-
pendicular axis of the graph according to the group classification. Interestingly, the graph has a U
shape, illustrating (even without further statistical analysis) that Self-Studying, Mentoring, and
Bibliographic Resources were evaluated highly by the students compared with the other re-
sources.

 Haberman & Yehezkel

 91

1 1.5 2 2.5 3 3.5 4 4.5

Student

Mentor

A classmate

Family Member

Acquaintanc e (grown-up)

 School Learning

Teacher

Book s

A rticles

WEB

Mean

Phases

W
eb

A
rti

cl
es

B
oo

ks

T
ea

ch
er

Sc
ho

ol

L
ea

rn
in

g

A
cq

.
G

ro
w

nu
p

Fa
m

il
y

M
em

be
r

A
 C

la
ss

-
m

at
e

M
en

to
r

St
ud

en
t

 #1 #2 #3 #4 #5 #6 #7 #8 #9 #10

I Theoretical
 background

4.4

(1.0)

2.9

(1.4)

3.3

(1.3)

2.1

(1.2)

2.3

(1.3)

1.5

(0.9)

1.7

(1.1)

2.5

(1.6)

3.8

(1.5)

4.6

(0.6)

II Identi fication
 of main ideas

3.9

(1.3)

2.6

(1.6)

2.8

(1.6)

1.7

(1.1)

2.0

(1.4)

1.3

(0.8)

1.6

(1.1)

1.9

(1.5)

3.8

(1.5)

4.3

(0.7)

III Technical
 Knowledge

3.8

(1.3)

2.8

(1.5)

3.0

(1.6)

2.0

(1.3)

2.1

(1.4)

1.4

(0.8)

1.6

(1.1)

2.1

(1.4)

3.5

(1.5)

4.6

(0.8)

IV Project
 Implementation

3.4

(1.5)

2.3

(1.6)

2.6

(1.7)

1.7

(1.1)

1.9

(1.3)

- 1.7

(1.2)

2.1

(1.5)

3.5

(1.8)

4.7

(0.8)

Figure 2: Students' assessment of resources used for project development

Two-way ANOVA with Repeated Measures on two factors, (a) phase of project development and
(b) classification group, was performed in order to identify significant differences between stu-
dents' assessment of the resources used for project development. Specifically, we were interested
to perform the following investigation: (a) Comparison within each phase – between groups, be-
tween distinct resources; and (b) Comparison between phases: for each group and for each dis-
tinct resource (For a discussion of two-way ANOVA see Jones, n.d.).

Table 5 illustrates the results of the ANOVA test. Each group was presented by the mean of its
elements' grades. Since no interaction was found, we concluded that a systematic behavior of fac-
tors exists. The ANOVA results indicated that the groups: Bibliographic Resources and (Infor-

Computer Science Educational Program

92

mal) Human Resources demonstrated significant differences (due to resources and phases). In
contrast, no such significant differences were found for School, Mentoring, and Self-Studying.

Table 5: Differences due to resources and phases

Classification
group

Due to
resources

Due to phases Interaction

Bibliographic
Resources (B):

• Web (#1)
• Articles (#2)
• Books (#3)

F 2, 48 = 17.3
p < 0.0001
Differences between
resources during the
entire process and
within each phase as
well

F 3, 72 = 6.42
p = 0.0007
Differences between
phases for the group
and for its compo-
nents as well

F 6, 144 =
1.04

p = 0.4044

School (Sc):

• A school teacher
(#4)

• School learning
(#5)

F 1, 24 = 0.58
p < 0.4540
No differences be-
tween resources dur-
ing the entire process
and within each phase
as well

F 3, 72 = 2.65
p = 0.0554
No differences be-
tween phases for the
group and for its com-
ponents as well

F 3, 71 =
0.05

p = 0.9838

(Informal) Hu-
man Resources
(A):

• A grown-up ac-
quaintance (#6)

• A family member
(#7)

• A mate of stu-
dent 's age (#8)

F 2, 48 = 3.94
p < 0.0261

Differences between
resources during the
entire process and
within each phase as
well

F 3, 71 = 3.85
p = 0.0129

Differences between
phases for the group
and for its compo-
nents as well

F 5, 117 =
1.44

p = 0.2148

Mentoring (M):

• The mentor (#9)

-

F 3, 72 = 1.0
p = 0.3979
No differences be-
tween phases

Self-Studying
(St):

• The student
(#10)

-

F 3, 71 = 0.37

p = 0.7750
No differences be-
tween phases

The results of the two-way ANOVA with Repeated Measures (Table 5) justified further investi-
gation of the following dimensions: (a) Comparison within each phase – between groups, be-
tween all distinct resources, and between each group's elements; and (b) Comparison between
phases: for each group and for each distinct resource.

Comparison within a phase
We grouped the results of one-way ANOVA tests with Repeated Measures relating to compari-
sons within a phase in Table 6.

 Haberman & Yehezkel

 93

Table 6: Comparison within each phase

Ph
as

e

Groups All distinct re-
sources

Bibliographic
resources (B)

(Informal)
Human
resources (A)

I

F 4,96 = 28.56

p< 0.0001
(St)>(M,B)>(Sc,A)

F 9,239 = 23.86

p< 0.0001
(10, 1)> ...>(4,7,6)

F 2,48 = 20.53

p< 0.0001
(1)>(3,2)

F 2,47 = 6.03

p= 0.0047
(8)> (7,6)

II

F 4,94 = 27.6

p< 0.0001
(St)>(M)>(B)

>(Sc,A)

F 9,234 = 23.86

p< 0.0001
(10,1,9)>...>(5,8,4,7)

F 2,48 = 14.85

p< 0.0001
(1)>(3,2)

F 2, 46 = 1.85

N.S.

III

F 4,96 = 28.17

p< 0.0001
(St)>(M,B)

>(Sc,A)

F 9,240 = 21.44

p< 0.0001
(10)>(1,9)>…>(7,6)

F 2,48 = 9.92

p= 0.0002
(1)>(3,2)

F 2,48 = 3.33

p= 0.0042
(8,7)>(7,6)

IV

F 4,96 = 28.1

p< 0.0001
(St)>(M)>(B)

>(A,Sc)

F 8,216 = 18.47

p< 0.0001
(10)>(9,1)>...>(5,7,4)

F 2,48 = 6.43

p= 0.0033
(1)>(3,2)

F 1, 24 = 1.45

N.S.

Differences between groups within a phase: The findings indicated a resemblance between
phases that concern learning and acquaintance with new material (Phase I- Studying the theoreti-
cal background needed for developing the project, and Phase III- Acquiring the needed technical
programming knowledge). Regarding both phases, Self-Studying was significantly more appreci-
ated than Mentoring and Bibliographical Resources (with a higher, though not significantly, ap-
preciation of the mentor), which in turn were more appreciated than the School environment and
the (informal) Human Resources (with higher, though not significantly, appreciation of the
school).

There is also a resemblance between the phases that concern problem-solving aspects (Phase II-
Identifying the main algorithmic ideas, and Phase IV- Implementation). Regarding both phases,
Self-Studying was significantly more appreciated than other groups of resources. Mentoring was
significantly more appreciated than the Bibliographical Resources, which in turn were more ap-
preciated than the School environment and (informal) Human Resources. Interestingly, in Phase
II the School was more appreciated (though not significantly) than the (informal) Human Re-
sources, in contrast to Phase IV, where the order is reversed, meaning that in the implementation
phase the students (on average) relied less on the school setting.
Differences between all distinct resources within a phase: The findings indicated that during the
entire development process the students exhibited self-efficacy since (on average) they relied
more on themselves (self-studying: resource #10) than on other resources. This was significantly
demonstrated in phases III and IV that lead toward the complete implementation of the project,
which obviously requires acquaintance with the needed technical programming knowledge. How-
ever, in phases I and II there was no significant difference between self-studying (resource #10)
and using the Web (resource #1) – these two resources seemed to be dominant compared with

Computer Science Educational Program

94

others. Apparently the school teachers (resource #4) were low-appreciated, though in phases I
and II (which are usually considered as the beginning of the project development process) they
were better assessed (though not significantly) than a family member (resource #7) and a grown-
up acquaintance (resource #6). Interestingly enough, the students exhibited (on average) low reli-
ance on classmates of their age (resource #8) when identifying the main algorithmic ideas (Phase
II); moreover, they "even" appreciated more (though not significantly) the school learning (re-
source #5) when performing in that phase. In other phases the classmate resource was not ex-
tremely assessed (i.e., neither high nor low).
Differences between a group's elements within a phase: No significant differences were found
between the elements of the School setting. The behavior of the distinct bibliographic resources is
consistent within all phases (Table 6). The Web seems to be the dominant bibliographic resource
in each phase and the books were more appreciated than articles (though not significantly). As for
the group of (informal) Human Resources, differences were observed only in the phases that con-
cern learning and acquaintance with new material (phases I and III). Specifically, a classmate of a
student 's age was indicated as most dominant in both phases, though in phase III it was not sig-
nificantly different from a family member.

Comparison between phases
One-way ANOVA with Repeated Measures was performed, aimed at identifying differences be-
tween phases: (a) for each group, and (b) for each distinct resource.

The findings indicated significant differences between phases for the same groups (A and B) that
exhibited differences between their elements within distinct phases. Specifically, the students
used more Bibliographic Resources (group B) in phases that concern learning and acquaintance
with new material (F3, 72 = 6.42, p=0.0007, (I, III)>(III, II)>(IV)). The (informal) Human Re-
sources (group A) were mostly used when learning the theoretical background and for identifica-
tion of the main algorithmic ideas (F3, 72 = 4.05, p=0.0102, (I, II)>(III, IV)).

Significant differences between phases were observed for only 4 distinct resources (3 of which
are the elements of the Bibliographic Resources group). Interestingly, apparently the students
consulted with classmates of their age mostly in the phase of learning the theoretical background,
and then in the following (though not significantly different) descending order: when implement-
ing the project, acquiring the technical programming knowledge, and finally, when identifying
the main algorithmic ideas (F3, 70 = 3.03, p = 0.035, (I)>(IV, III, II)).

A concise view of the findings
Figure 3 illustrates the differences between groups of resources with respect to phases of project
development. We classified the phases according to common characteristics into the following
super-phases: (a) learning new material, and (b) doing problem solving. Three levels of the
groups' contribution were identified. On the higher level is Self-Studying, which in all phases was
significantly more appreciated compared with other groups. Regarding the second level, the
groups Mentoring and Bibliographical Resources are located with differences in the Problem-
Solving super-phase (benefiting the mentor) and similar appreciation in the Learning New Mate-
rial super-phase. Finally, School environment and (informal) Human Resources are located at the
third level. Interestingly, in Phases I, II, and III the students relied more on School whereas in
Phase IV they relied more on (informal) Human Resources.

 Haberman & Yehezkel

 95

Super
Phase

Learning new material Doing problem solving

 Phase

Level

Phase I
(Theoretical)

Phase III.
(Technical)

Phase II (Al-
gorithmic)

Phase IV
 (Implementa-

tion)

High Self Studying

Intermediate Mentoring ~ Bibliographic Mentoring > Bibliographic

Low School > (inf.) Human (inf.) Human
>School

Figure 3: Levels of groups' contribution

The story of one pair of student-mentors
Here we relate "the story" of the joint work of one pair - a high-school student and his young
mentor, demonstrating the educational benefits of the program. The 12th grade student studied in a
high-school located in an underprivileged Israeli town that specializes in students majoring in the
sciences. We matched the student with a computer science graduate student who specialized in
statistical machine learning. Being aware of the educational benefits of our program and of the
project development activity in particular, the mentor was determined to succeed in his mission
and therefore accompanied the mentoring process with ongoing reflection that was much deeper
than just routine documentation.

The high-school student chose to develop a project (offered to him by the mentor) for automated
completion of human sentences, motivated by knowing that the product of such a project may
have useful applications for new communication technological devices such as SMS, palm com-
puter devices, and internet messenger. The mentor exposed the student to a relevant theoretical
background - Markovian and Bayesian algorithms - which are known as powerful tools of vast
use in computer vision, voice recognition, and computational biology (Korb & Nicholson,
2003).This could not be achieved by the mentoring of a school teacher, often lacking high aca-
demic background and acquaintance with up-to-date technologies. The student lacked, of course,
the necessary formal knowledge in advanced computing, but since he was highly talented, he
quickly grasped the intuitive understanding of the advanced algorithms. Moreover, his own crea-
tivity, coupled with the proper mentor's guidance, led to a novel idea – a statistical tree structure
that can handle Markov chains of variable length.

According to the mentor, a challenging part during the project development process was to
achieve a proper working relationship between the mentor and student based on confidence and
independence. Although the relatively small gap of age may have contributed to the building of a
fruitful relationship, the out-of-school mentor's lack of official authority and expertise in disci-
plining high-school students was evident. The project development requires a great deal of matur-
ity and self-discipline from the student and at the first stages of development, the student was re-
luctant to contact his mentor and follow time tables. At this point, cooperation between the men-
tor, teacher, and project management team synergized to solve these problems, which could oth-
erwise have emerged as a major obstacle for the success of the program.

The student eventually created a project of significant scientific value, bringing about his own
creativity and talent within the limited time framework of the project, as illustrated in Figure 4.

Computer Science Educational Program

96

 Actual Flow of the Work

I

Initial Idea by Mentor: developing a tool for analyzing texts by computer using
a statistical Markovian model.

II Student responded with his own ideas: suggests developing a tool for automatic
completion of texts upon typing.

III Algorithmic guidance from mentor: the mentor introduced to the student essen-
tial background on Markovian statistical models for representing text.

IV Initial implementation = student hands-on experience: the student wrote down
a very simple implementation of known algorithms in order to get hands-on ex-
perience and intuition for understanding Markovian statistical models.

V Analysis of the initial model: the initial algorithm's performance was analyzed
by the mentor and the student.

VI Learning from experience: the mentor asked the student to suggest his own
ideas for developing the initial algorithm.

VII Novel algorithm by the student: despite the lack of formal background, the stu-
dent's own creativity, coupled with proper guidance, led to a novel idea – a statis-
tical tree structure that can handle Markov chains of variable length.

Figure 4: Project Design & Implementation
A feedback loop between mentor and student

The final project won him a prize in a national contest of young scientists in Israel, and he later
represented the country in a European contest.
The mentor indicated the benefits of the process to the community - strengthening the efforts to
attract young people to careers in computing and his satisfaction to lead an interactive process in
which he learned from teaching in his own field of interest.

Concluding Remarks
In this paper we describe a novel enrichment program designed to bridge the gap between school
education and the "real world" of computing that is especially related to content, learning culture,
and professional norms. We believe that the interaction of high-school students who major in
computer science or software engineering with leading representatives of the computing commu-
nity of practice may motivate them to pursue their studies further or pursue a career in the field.
Accordingly, our program aims at exposing talented high-school students "directly by leading

Mentor prov ides student an initial framework
for project

Student comes up with his own
ideas

Mentor prov ides algorithmic knowledge
and guidance for the students' ideas

 Haberman & Yehezkel

 97

experts" to state-of-the-art computing research, advanced technologies, software engineering
methodologies, and professional norms. The interaction between the students and the experts,
who actually become role models for the students, occurs at two levels: (a) during enrichment
plenary meetings, and (b) one-to-one interaction in which students develop software projects un-
der the apprenticeship-based supervision of professionals from academia and the hi-tech industry.
Implementation of the program for the last three years was accompanied by an ongoing evalua-
tion. In Yehezkel and Haberman (2006) we described a preliminary assessment of students' atti-
tudes toward the enrichment meetings and the "different-from-school" style of learning that char-
acterized the program. The findings indicated that the students fully appreciated the experience of
meeting researchers and professionals in the field, and they were very interested in the program.
Specifically, they highly appreciated the wide exposure to a variety of subjects (more than focus-
ing in-depth on one subject). In addition, the students indicated that the enrichment meetings in-
creased their motivation to pursue further studies and professional careers in computer science
and software engineering.

The study presented here focuses on assessing the project development activity under the appren-
ticeship-based supervision of professionals. Specifically, we discuss the contribution of resources
that students used for various phases of the project development activity. The findings indicated
that during the entire development process the students exhibited self-efficacy since (on average)
they relied more on themselves than on other resources. This was clearly demonstrated in phases
that lead toward the complete implementation of the project. Interestingly enough, the students
exhibited low reliance on classmates their own age and usually appreciated more (though not sig-
nificantly) the school learning that took place. Apparently, the school teachers were low-
appreciated, though at the beginning of the project development process they were better appreci-
ated (though not significantly) than a family member and a grown-up acquaintance. In the phases
that concern acquaintance with theoretical technical knowledge, the mentoring and bibliographic
resources were viewed by the students as having similar value. In the phases that concern prob-
lem-solving activities, students relied more on the mentors than on bibliographic resources; how-
ever, in these phases they used bibliographic resources more than they consulted the (informal)
human resources. Interestingly, during the entire development process, the web was perceived as
the most significant bibliographic resource. Specifically, to achieve acquaintance with the needed
theoretical knowledge, self-studying and the web were perceived as the most significant re-
sources, which may imply that the mentors' guidance inspired the students' self-inquiry and self-
study. However, in other phases, no significant differences were indicated between consulting the
mentor and using the web.

Based on the study findings, we concluded that project development experience under the super-
vision of professional experts may motivate students to acquire in-depth knowledge in comput-
ing, promote creativity, as well as enhance self-learning and inquiry ability. In addition, the inter-
action with role models may contribute to establishing professional norms.

We hope that further implementation of the program, along with recruitment of more representa-
tive experts from academia and hi-tech industry, will promote a culture of learning and work be-
fitt ing the dynamic world of industrial computing, thus providing the students with an entry point
into the computing community of practice.

Computer Science Educational Program

98

References
ACM/IEEE Joint Task Force on Computing Curricula. (2004). Software engineering 2004: Curriculum

guidelines for undergraduate degree programs in software engineering. A volume of the computing
curricula series. Retrieved June 25, 2007, from http://sites.computer.org/ccse/SE2004Volume.pdf

Bracken, B. (2003). Progressing from student to professional: The importance and challenges of teaching
software engineering, JCSC, 19(2), 358-368.

Ben-Ari, M. (2003). Situated learning in this high-technology world. The 7th International History, Phi-
losophy and Science Teaching Conference, Winnipeg, Canada. Journal edition published in Science &
Education, 14(3-4), 2005, 367-376.

Ben-Ari, M. (2004). situated learning in computer science education. Computer Science Education, 14(2),
85-100.

Bergin, J. (2005). Fourteen pedagogical patterns for teaching computer science. Retrieved March 25,
2006, from http://csis.pace.edu/~bergin/PedPat1.3.html

Computing Research Association. (2005) Cyberinfrastructure for education and learning for the future: A
vision and research agenda [Report]. Retrieved June 25, 2007, from
http://www.cra.org/reports/cyberinfrastructure.pdf

Denning, P. J., & McGettrick, A. (2005). Recentering computer science. Communications of the ACM,
48(11), 15-19.

Fincher, S., Petre, M., & Clark, M. (Eds.). (2001). Computer science project work principles and pragmat-
ics. London: Springer-Verlag.

Gal-Ezer, J., Beeri, C., Harel, D., & Yehudai, A. (1995). A high-school program in computer science.
Computer, 28(10), 73-80.

Gal-Ezer, J., & Zeldes, A. (2000). Teaching software designing skills. Computer Science Education, 10(1),
25-38.

Hel fman, J., & Eylon, B. (2003). Systematic inventive thinking [in Hebrew]. Rehovot, Israel: Department of
Science Teaching, Weizmann Institute of Science.

Holcombe, M., Stratton, A., Fincher, S., & Griffiths, G. (Eds.). (1998). Projects in the computing curricu-
lum. Proceedings of the Project 98 Workshop. London: Springer-Verlag.

Jones, J. (n.d.). Stats: Two-way ANOVA. Retrieved May 20, 2008 from
http://people.richland.edu/james/lecture/m170/ch13-2wy.html

Korb, K. B., & Nicholson, A. E. (2003). Bayesian artificial intelligence. Chapman & Hall / CRC.

Long, P. D., & Ehrmann, S. C. (2005). Future of the learning space: Breaking out of the box, Educause, 42-
58.

The Ministry of Education, Israel. (2004). A high-school software engineering program [in Hebrew]. Re-
trieved June 25, 2007 from http://csit.org.il

National Academy of Sciences, National Academy of Engineering, Institute of Medicine. (1997). Adviser,
teacher, role model, friend: On being a mentor to students in science and engineering. Washington,
DC: National Academy Press. Retrieved June 25, 2007, from
http://www.nap.edu/readingroom/books/mentor

Papert, S., & Harel, I. (1991). Costructionism. Ablex Publishing Corporation.

Passig, D. (2001).Taxonomy of IT future thinking skills In H. Tailor & P. Hogenbirk, Information and
communication technologies in education: The school of the future (pp. 152-166). Boston: Kluwer
Academic Publishers.

Shapiro, E. (n.d.). Prof. Ehud Shapiro [Biographical notes]. Retrieved June 20, 2008 from
http://www.wisdom.weizmann.ac.il/~udi/bio.html

http://sites.computer.org/ccse/SE2004Volume.pdf�
http://stwww.weizmann.ac.il/G-CS/BENARI/articles/sit-cs.pdf�
http://csis.pace.edu/~bergin/PedPat1.3.html�
http://www.cra.org/reports/cyberinfrastructure.pdf�
http://people.richland.edu/james/lecture/m170/ch13-2wy.html�
http://csit.org.il/�
http://www.nap.edu/readingroom/books/mentor�
http://www.wisdom.weizmann.ac.il/~udi/bio.html�

 Haberman & Yehezkel

 99

Sherrell, L. B., & Shiva, S. G. (2005). Will earlier projects plus a disciplined process enforce SE principles
throughout the CS curriculum? ICSE, St. Louis, Missouri, USA, 619-620.

Sims-Knight, J. E., & Upchurch, R. L. (1993). Teaching software design: A new approach to high school
computer science. Annual Meeting of the American Education Research Association, Atlanta, GA,
April 1993.

Wing, J. M. (2006). Computational thinking. Communications of the ACM, 49(3), 33-35.

Yehezkel, C., & Haberman, B. (2006). Bridging the gap between school computing and the "real world",
LNCS, 4226, 38-47.

Appendix
The following four questions were posed to the students, who were asked to evaluate the

resources for each question in the following table format:
1) When studying the theoretical background needed for developing the project, to what ex-

tent (high=5, low=1) did you use the following resources?[Phase I]

2) When identifying the main algorithmic ideas, to what extent (high=5, low=1) did you use
the following resources?[Phase II]

3) When acquiring the needed technical knowledge, to what extent (high=5, low=1) did you
use the following resources?[Phase III]

4) When implementing the project (writing and testing the code), to what extent (high=5,
low=1) did you use the following resources?[Phase IV]

High

(5)

4

3

2

Low

(1)

 Level

Resources

 The mentor

 The school teacher

 Self-studying

 School learning (materials and methods)

 Professional books

 Professional articles

 The Web

 A classmate of your age

 A family member

 A grown-up acquaintance

Computer Science Educational Program

100

Biographies
Bruria Haberman received her Ph.D. degree in Science Teaching
from the Weizmann Institute of Science. She is currently a faculty
member in the Department of Computer Science in the Holon Institute
of Technology, teaching Logic Programming, Data Base Systems and
Expert Systems. She is also a member of the computer science team in
the Davidson Institute of Science Education in the Weizmann Institute
of Science, where she leads the Computer Science, Academia &
Industry educational program for talented high school students and
their teachers. She is also a leading member of Machshava, the Israeli
National Center for computer science teachers. She has developed

learning materials for high school level in the areas of logic programming and artificial
intelligence, and algorithmic patterns. She has developed academic programs for undergraduate
level in computer science. Her primary research interests are computer science educational
research, students' conceptualization of computer science, as well as in-service teacher education
and distance learning.

Cecile Yehezkel received her Ph.D. degree in Science Teaching from
the Weizmann Institute of Science. She holds a M.Sc. in Bio-Medical
Engineering from Tel Aviv University and a B.Sc. in Electrical Engi-
neering from the Technion, Haifa. She is currently teaching courses
related to microcomputers and low level language at the School of En-
gineering at Bar-Ilan University. She leads the Computer Science,
Academia & Industry educational program for talented high school
students and their teachers in the Davidson Institute of Science
Education in the Weizmann Institute of Science where she is member
of the computer science team. She has developed learning materials
and a software environment to teach Computer Architecture at intro-

ductory level. Her research interests focus on human-computer interaction, modeling and simula-
tion design and evaluation, computer architecture and engineering education.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 300
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [305 305]
 /PageSize [432.000 648.000]
>> setpagedevice

