
Journal of Information Technology Education: Volume 9, 2010
Innovations in Practice

Editor: Anthony Scime

Database Security: What Students Need to Know
Meg Coffin Murray

Kennesaw State University, Kennesaw, GA, USA

mcmurray@kennesaw.edu

Executive Summary
Database security is a growing concern evidenced by an increase in the number of reported inci-
dents of loss of or unauthorized exposure to sensitive data. As the amount of data collected, re-
tained and shared electronically expands, so does the need to understand database security. The
Defense Information Systems Agency of the US Department of Defense (2004), in its Database
Security Technical Implementation Guide, states that database security should provide controlled,
protected access to the contents of a database as well as preserve the integrity, consistency, and
overall quality of the data. Students in the computing disciplines must develop an understanding
of the issues and challenges related to database security and must be able to identify possible so-
lutions.

At its core, database security strives to insure that only authenticated users perform authorized
activities at authorized times. While database security incorporates a wide array of security top-
ics, notwithstanding, physical security, network security, encryption and authentication, this pa-
per focuses on the concepts and mechanisms particular to securing data. Within that context, da-
tabase security encompasses three constructs: confidentiality or protection of data from unauthor-
ized disclosure, integrity or prevention from unauthorized data access, and availability or the
identification of and recovery from hardware and software errors or malicious activity resulting in
the denial of data availability.

In the computing discipline curricula, database security is often included as a topic in an introduc-
tory database or introductory computer security course. This paper presents a set of sub-topics
that might be included in a database security component of such a course. Mapping to the three
constructs of data security, these topics include access control, application access, vulnerability,
inference, and auditing mechanisms. Access control is the process by which rights and privileges
are assigned to users and database objects. Application access addresses the need to assign appro-
priate access rights to external applications requiring a database connection. Vulnerability refers
to weaknesses that allow malicious users to exploit resources. Inference refers to the use of le-
gitimate data to infer unknown information without having rights to directly retrieve that informa-
tion. Database auditing tracks database access and user activity providing a way to identify
breaches that have occurred so that corrective action might be taken.

As the knowledge base related to data-
base security continues to grow, so do
the challenges of effectively conveying
the material. This paper addresses those
challenges by incorporating a set of in-
teractive software modules into each
sub-topic. These modules are part of an
animated database courseware project
designed to support the teaching of da-
tabase concepts. The courseware covers

Material published as part of this publication, either on-line or
in print, is copyrighted by the Informing Science Institute.
Permission to make digital or paper copy of part or all of these
works for personal or classroom use is granted without fee
provided that the copies are not made or distributed for profit
or commercial advantage AND that copies 1) bear this notice
in full and 2) give the full citation on the first page. It is per-
missible to abstract these works so long as credit is given. To
copy in all other cases or to republish or to post on a server or
to redistribute to lists requires specific permission and payment
of a fee. Contact Publisher@InformingScience.org to request
redistribution permission.

mailto:mcmurray@kennesaw.edu�
mailto:Publisher@InformingScience.org�

Database Security: What Students Need to Know

IIP-62

the domains of Database Design, Structured Query Language, Database Transactions, and Data-
base Security. The Security Module, presented in this paper, allows students to explore such areas
as access control, SQL injections, database inference, database auditing, and security matrices.
The courseware was developed as part of a National Science Foundation grant and has been made
freely available at http://adbc.kennesaw.edu

Keywords: database security, data integrity, database courseware, database vulnerability, access
control.

Introduction
Database technologies are a core component of many computing systems. They allow data to be
retained and shared electronically and the amount of data contained in these systems continues to
grow at an exponential rate. So does the need to insure the integrity of the data and secure the
data from unintended access. The Privacy Rights Clearing House (2010) reports that more than
345 million customer records have been lost or stolen since 2005 when they began tracking data
breach incidents, and the Ponemon Institute reports the average cost of a data breach has risen to
$202 per customer record (Ponemon, 2009). In August 2009, criminal indictments were handed
down in the United States to three perpetrators accused of carrying out the single largest data se-
curity breach recorded to date. These hackers allegedly stole over 130 million credit and debit
card numbers by exploiting a well known database vulnerability, a SQL injection (Phifer, 2010).
The Verizon Business Risk Team, who have been reporting data breach statistics since 2004, ex-
amined 90 breaches during the 2008 calendar year. They reported that more than 285 million re-
cords had been compromised, a number exceeding the combined total from all prior years of
study (Baker et al., 2009). Their findings provide insight into who commits these acts and how
they occur. Consistently, they have found that most data breaches originate from external sources,
with 75% of the incidents coming from outside the organization as compared to 20% coming
from inside. They also report that 91% of the compromised records were linked to organized
criminal groups. Further, they cite that the majority of breaches result from hacking and malware
often facilitated by errors committed by the victim, i.e., the database owner. Unauthorized access
and SQL injection were found to be the two most common forms of hacking, an interesting find-
ing given that both of these exploits are well known and often preventable. Given the increasing
number of beaches to database systems, there is a corresponding need to increase awareness of
how to properly protect and monitor database systems.

At its core, database security strives to insure that only authenticated users perform authorized
activities at authorized times. It includes the system, processes, and procedures that protect a da-
tabase from unintended activity. The Defense Information Systems Agency of the US Department
of Defense (2004), in its Database Security Technical Implementation Guide, states that database
security should provide “controlled, protected access to the contents of your database and, in the
process, preserve the integrity, consistency, and overall quality of your data” (p. 9). The goal is
simple, the path to achieving the goal, a bit more complex. Traditionally database security fo-
cused on user authentication and managing user privileges to database objects (Guimaraes, 2006).
This has proven to be inadequate given the growing number of successful database hacking inci-
dents and the increase in the number of organizations reporting loss of sensitive data. A more
comprehensive view of database security is needed, and it is becoming imperative for students in
the computing disciplines to develop an understanding of the issues and challenges related to da-
tabase security and to identify possible solutions.

Database security is often included as a topic in an introductory database course or introductory
computer security course. However as the knowledge base related to database security continues
to grow, so do the challenges of effectively conveying the material. Further, many topics related
to database security are complex and require students to engage in active learning to fully com-

http://adbc.kennesaw.edu/�

 Murray

 IIP-63

prehend the fundamental nature of database security issues. This paper presents a set of sub-
topics for inclusion in a database security component of a course. These sub-topics are illustrated
using a set of interactive software modules.

As part of a National Science Foundation Course, Curriculum and Laboratory Improvement
Grant (#0717707), a set of interactive software modules, referred to as Animated Database
Courseware (ADbC) has been developed to support the teaching of database concepts. The
courseware has been made freely available and may be accessed at http://adbc.kennesaw.edu.
ADbC consists of over 100 animations and tutorials categorized into four main modules (Data-
base Design, Structured Query Language [SQL], Transactions and Security) and several sub-
modules. Interactive instructional materials such as animations can often be incorporated into the
instructional process to enhance and enrich the standard presentation of important concepts. An-
imations have been found to increase student motivation, and visualizations have been found to
help students develop understanding of abstract concepts which are otherwise considered to be
‘invisible’ (Steinke, Huk, & Floto, 2003). Further, software animations can be effective at rein-
forcing topics introduced in the classroom as they provide a venue for practice and feedback.
Specifically, the Security module and corresponding sub-modules will be covered in this paper.
These sub-modules cover six areas: access control, row level security, application security as por-
trayed in a security matrix, SQL injections, database inference, and database auditing.

Database Security Topics
The following presents an organizational structure for presenting database security concepts in a
course in which database security is one of many topics. As such the focus is limited and material
introductory. While database security incorporates a wide array of security topics, notwithstand-
ing, physical security, network security, encryption and authentication, this paper focuses on the
concepts and mechanisms particular to securing data. Database security is built upon a framework
encompassing three constructs: confidentiality, integrity and availability (Bertino & Sandhu,
2005). Confidentiality or secrecy refers to the protection of data against unauthorized disclosure,
integrity refers to the prevention of unauthorized and improper data modification, and availability
refers to the prevention and recovery from hardware and software errors as well as from mali-
cious data access resulting in the denial of data availability (Bertino, Byun & Kamra, 2007).
Mapping to these three constructs, a database security component in any course needs to cover
access control, application access, vulnerability, inference, and auditing mechanisms.

Access Control
The primary method used to protect data is limiting access to the data. This can be done through
authentication, authorization, and access control. These three mechanisms are distinctly different
but usually used in combination with a focus on access control for granularity in assigning rights
to specific objects and users. For instance, most database systems use some form of authentica-
tion, such as username and password, to restrict access to the system. Further, most users are au-
thorized or assigned defined privileges to specific resources. Access control further refines the
process by assigning rights and privileges to specific data objects and data sets. Within a data-
base, these objects usually include tables, views, rows, and columns. For instance, StudentA may
be given login rights to the University database with authorization privileges of a student user
which include read-only privileges for the Course_ Listing data table. Through this granular level
of access control, students may be given the ability to browse course offerings but not to peruse
grades assigned to their classmates. Many students, today, inherently understand the need for
granularity in granting access when framed in terms of granting ‘friends’ access to their Facebook
site. Limiting access to database objects can be demonstrated through the Grant/Revoke access
control mechanism.

http://adbc.kennesaw.edu/�

Database Security: What Students Need to Know

IIP-64

Access control – Grant/revoke
Access control is a core concept in security. Access control limits actions on objects to specific
users. In database security, objects pertain to data objects such as tables and columns as well as
SQL objects such as views and stored procedures. Data actions include read (select), insert, up-
date, and delete or execute for stored procedures. For instance a faculty member, Dr. Smith, may
be given read privileges to the Student table.

Generally, access control is defined in three ways: Mandatory Access Control (MAC), Discre-
tionary Access Control (DAC), and Role Based Access Control (RBAC). MAC and DAC provide
privileges to specified users or groups to which users are assigned. MAC rules are system applied
and considered static and more secure. An example MAC rule would be giving Dr. Smith read
access to the Student table. DAC rules are user supplied, considered dynamic and content fo-
cused. An example DAC rule would be giving Dr. Smith read access to the Student table but only
for students enrolled in a specific course such as ‘Introduction to Security.’ Dr. Smith would not
be able to select student data for students enrolled in other courses. MAC and DAC provide pow-
erful tools but Role Based Access Control proves to be especially effective for database systems.
Roles are analogous to job functions. With roles, the focus is on identifying operations and the
objects to which those operations need access. Users assigned to a role automatically receive its
associated privileges. For instance Dr. Smith may be assigned to the role of Faculty. Faculty
members are given rights to read the Students table, obtain course enrollment data, and update
grades for students assigned to their courses. By being assigned to the Faculty role, Dr. Smith is
implicitly given these privileges.

Identifying users and assessing their processing and data access needs is a major undertaking in
establishing good database security protocols. Identifying and defining roles and correctly grant-
ing access rights to actions and objects and then appropriately assigning users to those roles is the
crux of the process. Once a role has been created, the format for implementing RBAC follows the
pattern:

GRANT privilege_name
 ON object_name
 TO role_name;

Privilege_name identifies the rights to be granted. These include such rights as selecting data,
modifying data, or manipulating the database structure. ON identifies the database objects and
TO identifies the roles to which those privileges are applied. For instance, if Dr. Smith was as-
signed the role of Faculty and Faculty were given read rights to the Student table, the RBAC rule
would be:

 GRANT Select
 ON Student_Table
 TO Faculty;

The Access Control sub-module on the ADbC site introduces the concept of access control and
provides two examples for granting and revoking privileges. The introduction explains the proc-
ess and models its implementation through corresponding SQL statements. Example one uses a
student scenario and example two uses a faculty scenario. The grant sub-module steps through the
process of assigning users to roles and assigning privileges to those roles. For example, using the
faculty scenario, the steps for granting role authorization to individual users include having a da-
tabase administrator create the role of faculty, assigning faculty to this role, and then assigning
specific rights or privileges to database objects. After being assigned to the role of Faculty, the
user has all privileges assigned to that role. Figure 1 depicts the step in the process where indi-
viduals are assigned to the Faculty role.

 Murray

 IIP-65

Figure 1. ADbC Access Control Sub-module: Example Granting Role Authorization

The revoke sub-module steps through the process of revoking rights and removing users from
role authorization. For example, using the faculty scenario, the steps for revoking role authoriza-
tion to individual users include revoking privileges to specific database objects and removing in-
dividual users from pre-defined roles. In the case depicted in Figure 2, privileges to the Faculty

Figure 2. ADbC Access Control Sub-module: Example Revoking Role-based Privileges

Database Security: What Students Need to Know

IIP-66

table are removed from the Faculty role. Once the privileges are revoked, members of the Faculty
role will not be able to access data in the Faculty table. Figure 2 depicts the step in the process
where privileges to the Faculty table are revoked from the pre-defined role of Faculty.

Syntactically, creating roles and implementing RBAC is fairly straightforward. The challenge is
the management of users and their associated roles (Jaquith, 2007). Entitlement management in-
cludes not only identifying appropriate roles and their respective rights but continuous manage-
ment of granted entitlements. The general security rule is to assign the most restrictive set of
privileges required to complete authorized tasks. However, constructing the organizational struc-
ture for a RBAC system can quickly become complex, and the fact that users frequently change
roles means that RBAC requires constant monitoring. In his book, Security Metrics: Replacing
Fear, Uncertainty, and Doubt, Jaquith (2007) states, “Today's information security battleground
is all about entitlements – who’s got them, whether they were granted properly, and how to en-
force them” (p.117). Being able to assess access control techniques is critical to student under-
standing of database security.

Row level security
Controlling access to database tables or columns is frequently required and can be enacted by
simply granting privileges to one of these objects. Restricting access to data contained in individ-
ual records (rows) requires additional steps. For instance, a student should only be able to view or
modify the row or rows of data that correspond specifically to him or her. However, implementa-
tion of row level security cannot be done in the same manner as access control is applied to data-
base objects such as tables. This is because the selection of a row is based on the evaluation of
specific data values. Therefore, a common way to implement row level security is through the use
of SQL Views. A View can be constructed that executes a select statement which returns speci-
fied rows of data evaluated against a specific value, such as the current user. For instance, the
following SQL view would return only the row of data in which the value of the AttributeName
column matched the user’s id:

CREATE VIEW View_Name AS
 SELECT *
 FROM Table_name
 WHERE AttributeName = USER;

The ADbC site provides a sub-module, entitled Row Level Security, that demonstrates this con-
cept. A data window is presented showing table data and the SQL code for creating a View that
returns row level data restricted to the name of the user. The ‘Code’ button displays all associated
steps and SQL code needed for creating the table, users, and View and for assigning access rights
to that View. Students can experiment with the row level security mechanism by choosing a user-
name from the associated dropdown box. An output window displays the results of the execution
of the View given the selections made by the user. As the username is modified, a different row is
displayed in the output window. Figure 3 shows that when username ‘Jones’ is selected, only data
related to this user is displayed.

 Murray

 IIP-67

Figure 3: ADbC Row Level Security Sub-module: Example Implementation using a SQL View

Row level security, although difficult to implement, is an important database security concept. It
allows for the restriction of access to data in tables in which data related to many different users is
stored. It would be inefficient to store each student at a university in a separate database; it is also
inappropriate to give students access to all of the data in a centralized student table. Students
should be made aware of the trade-offs that have to be made to implement row level security. As
an advanced topic in this area, students can be directed to study Oracle’s Virtual Private Database
solution to applying security policies as a way to enact row level security (Knox, 2004).

Application Access Assessment
Most users do not access a database by directly logging into the database system. Instead they
access the database through an application program. A simple tool, known as a security (or
CRUD) matrix can be used to explicitly identify the required access rights needed by an applica-
tion program. Specifically, the security matrix provides a visual depiction of the correlation be-
tween the operations or authorizations needed for database objects and input/output sources such
as forms and reports. Operations depicted in a security matrix include Select, Create (insert), Up-
date, and Delete. The top row of the matrix lists database table objects. Application programs are
listed in the left-most column. The letters C, R, U, D are placed in intersecting cells to identify the
type of access required by a particular program. Any given cell may contain any combination of
these letters or none at all. An empty cell denotes that a program does not need access to the in-
tersecting table. Conversely, a cell with all four letters, CRUD, needs full access to the table.

A Security Matrix as shown in the ADbC Security Matrix sub-module is presented in Figure 4. A
customer-order scenario is depicted. Seven tables are listed across the top. Seven forms are listed
down the left-hand side. Scanning the matrix left to right shows that the Order Form requires ac-
cess to five tables including modification rights to three of them. Specifically the Order Form
needs only read access to the Customers and Employees tables, requires read, insert, update, and
delete rights to the Order_Details and Orders table, and requires read and update rights to the
Products table. Scanning top to bottom shows that three applications, Customer Labels, Customer
Information, and Order Form, access the Customers table. The Customer Labels and Orders Form
require read access to the Customers table while the Customer Information form requires read,
insert, update, and delete rights. The Security Matrix sub-module includes an accompanying set
of interactive questions that ask users to identify relationships between the tables and the applica-
tion programs.

Database Security: What Students Need to Know

IIP-68

Figure 4: ADbC Security Matrix Sub-module: Example Security Matrix

Another advantage to the security matrix is that it visually depicts rules of integrity. For instance,
the matrix makes it easy to identify all application programs potentially affected by any change
made to a database table. For example, a column deleted from the Products table will impact the
Orders form and Products form, possibly generating an error when these applications are exe-
cuted. Before such a change is made, its subsequent impact must be assessed to ascertain what
applications will need updates. In summary, the security matrix is a simple, yet effective, tool for
identifying needed security permissions to database objects.

Database Vulnerability
Security breaches are an increasing phenomenon. As more and more databases are made accessi-
ble via the Internet and web-based applications, their exposure to security threats will rise. The
objective is to reduce susceptibility to these threats. Perhaps the most publicized database applica-
tion vulnerability has been the SQL injection. SQL injections provide excellent examples for dis-
cussing security as they embody one of the most important database security issues, risks inherent
to non-validated user input. SQL injections can happen when SQL statements are dynamically
created using user input. The threat occurs when users enter malicious code that ‘tricks’ the data-
base into executing unintended commands. The vulnerability occurs primarily because of the fea-
tures of the SQL language that allow such things as embedding comments using double hyphens
(- -), concatenating SQL statements separated by semicolons, and the ability to query metadata
from database data dictionaries. The solution to stopping an SQL injection is input validation.

A common example depicts what might occur when a login process is employed on a web page
that validates a username and password against data retained in a relational database. The web
page provides input forms for user entry of text data. The user-supplied text is used to dynami-
cally create a SQL statement to search the database for matching records. The intention is that
valid username and password combinations would be authenticated and the user permitted access
to the system. Invalid username and passwords would not be authenticated. However, if a disin-
genuous user enters malicious text, they could, in essence, gain access to data to which they have
no privilege. For instance, the following string, ' OR 1=1 -- entered into the username textbox

 Murray

 IIP-69

gains access to the system without having to know either a valid username or password. This
hack works because the application generates a dynamic query that is formed by concatenating
fixed strings with the values entered by the user.

For example, the model SQL code might be:

 SELECT Count(*) FROM UsersTable
 WHERE UserName = ‘contents of username textbox’
 AND Password = ‘contents of password textbox’;

When a user enters a valid username, such as ‘Mary’ and a password of ‘qwerty’, the SQL query
becomes:

 SELECT Count(*) FROM UsersTable
 WHERE UserName=‘Mary’
 AND Password=‘qwerty’;

However, if a user enters the following as a username: ‘OR 1=1 -- the SQL query becomes:

 SELECT Count(*) FROM UsersTable
 WHERE UserName=‘‘ OR 1=1 - -’
 AND Password=‘‘;

The expression 1 = 1 is true for every row in the table causing the OR clause to return a value of
true. The double hyphens comment out the rest of the SQL query string. This query will return a
count greater than zero, assuming there is at least one row in the users table, resulting in what
appears to be a successful login. In fact, it is not. Access to the system was successful without a
user having to know either a username or password.

Another SQL injection is made possible when a database system allows for the processing of
stacked queries. Stacked queries are the execution of more than one SQL query in a single func-
tion call from an application program. In this case, one string is passed to the database system
with multiple queries, each separated by a semicolon. The following example demonstrates a
stacked query. The original intent is to allow the user to select attributes of products retained in a
Products table. The user injects a stacked query incorporating an additional SQL query that also
deletes the Customers table.

 SELECT * FROM PRODUCTS; DROP CUSTOMERS;

This string when passed as an SQL query will result in the execution of two queries. A listing of
all information for all products will be returned. In addition the Customers table will be removed
from the database. The table structure will be deleted and all customer data will be lost. In data-
base systems that do not allow stacked queries, or invalidate SQL strings containing a semicolon,
this query would not be executed.

The ADbC courseware sub-module for SQL injections demonstrates the insertion of malicious
code during the login process. The sub-module steps through the process by first showing the en-
try of valid data and then demonstrating entry of malicious code, how it is injected into a dynami-
cally created SQL statement and then executed. Figure 5 shows the step where malicious code is
entered. Figure 6 shows the dynamically created SQL command and the resulting display of all
the data in the user table. Additional steps present code resulting in the modification or deletion
of data.

Database Security: What Students Need to Know

IIP-70

Figure 5: ADbC SQL Injection Sub-Module: Entering Malicious Code in a SQL Injection

Figure 6: ADbC SQL Injection Sub-Module: Result of SQL Injection using Malicious Code

 Murray

 IIP-71

SQL injection vulnerabilities result from the dynamic creation of SQL queries in application pro-
grams that access a database system. The SQL queries are built incorporating user input and
passed to the database system as a string variable. SQL injections can be prevented by validating
user input. Three approaches are commonly used to address query string validation: using a black
list, using a white list, or implementing parameterized queries. The black list parses the input
string comparing each character to a predefined list of non-allowed characters. The disadvantage
to using a black list is that many special characters can be legitimate but will be rejected using
this approach. The common example is the use of the apostrophe in a last name such as O’Hare.
The white list approach is similar except that each character is compared to a list of allowable
characters. The approach is preferred but special considerations have to be made when validating
the single quote. Parameterized queries use internally defined parameters to fill in a previously
prepared SQL statement. The importance of input validation cannot be overstated. It is one of the
primary defense mechanisms for preventing database vulnerabilities including SQL injections.

Database Inference
A subtle vulnerability found within database technologies is inference, or the ability to derive un-
known information based on retrieved information. The problem with inference is that there are
no ideal solutions to the problem. The only recommended solutions include controls related to
queries (suppression) or controls related to individual items in a database (concealing). In other
words, sensitive data requested in a query are either not provided or answers given are close but
not exact, preventing the user from obtaining enough information to make inferences. Neither of
these represents ideal solutions as they are restrictive in nature. However, it is important for stu-
dents to understand the risks of inference and how it might occur. Examples are the best way to
demonstrate inference. The ADbC inference sub-module includes three animations that demon-
strate how users might be able to put together (infer) information when data is available to those
with a higher security access level or when they are only given access to aggregate data.

Inference often happens in cases where the actual intent is for users to generate or view aggregate
values when they have not been given access to individual data items. However, because they are
exposed to information about the data, they are sometimes able to infer individual data values.
Take for example a scenario where a worker desires to find out their co-worker Goldberg’s sal-
ary. In this organization, salary data is confidential. The worker has rights to generate aggregate
data such as summarizing organizational salary data averaged across specific criteria (i.e., salary
averaged by gender). Although the worker does not have access to individual data items, he or
she does possess particular and unique details about Goldberg; specifically that Goldberg is a fe-
male and has 11 dependents. Based on this information, the worker can derive an aggregate func-
tion such as SELECT AVG (Salary) FROM EMPLOYEES WHERE Gender = “F” and Depend-
ents = 11. This will return Goldberg’s salary because the average is taken from an aggregated
data set of one. The ADbC inference sub-module animation for this scenario is illustrated in Fig-
ure 7. The SQL-command window depicts the construction of the requested query to ascertain
salary averages. Employees Table data is shown in the upper left and underneath is the result of
the query.

Database Security: What Students Need to Know

IIP-72

Figure 7. ADbC Inference Sub-module: Using Aggregate Data to Infer Information

Inference can also occur when users are able to ascertain information from data accessible to
them at their security level even though that specific information is protected at a higher security
access level. It is difficult to explain this without the aid of a demonstration. The second example
in the ADbC Inference sub-module provides a scenario where specific data, in this case company
product prototype data, is not made accessible to junior employees. However, junior employees
are given access to update the Storage table that tracks the contents in company storage areas.
When perusing this table, the junior employee is not able to read any rows containing prototype
products. The problem occurs if the employee tries to update a protected row. This triggers an
error message. Based on the error message, the junior employee could surmise that information
was being hidden and might infer that something of a secretive nature was being stored in the
storage compartment referenced in the update request. Figure 8 depicts an error being generated
when a junior employee issues a query against a protected row of data. The table on the top right
shows all of the data contained in the Storage table. The table on the bottom shows the data ac-
cessible to junior employees. Notice that Compartment B containing ProductX is not displayed in
the lower table. A possible solution to this inference problem is polyinstantiation. Polyinstantia-
tion allows a database to retain multiple records having the same primary key; they are uniquely
distinguished by a security level identifier. If polyinstantiation were enacted in the proceeding
scenario, the insert would be successful. However, this does not prevent the ‘double booking’ of
the storage compartment area.

 Murray

 IIP-73

Figure 8. ADbC Inference Sub-module: Security Level Access Error Leading to Inference

Developing technological solutions to detecting database inference is complex. Much of the work
done in this area involves revoking access to specific database objects based on a user’s past que-
rying history (Staddon, 2003). The problem with inference detection, especially when done at
query processing time, is that it results in a significant delay between the time the query is exe-
cuted and the results are presented. As with other approaches to mitigating database security vul-
nerabilities, trade-offs must be made. The protection of highly sensitive data requires an examina-
tion of what situations could lead to exposure to unauthorized users and what monitoring policies
should be implemented to insure appropriate responses are enacted.

Auditing
Database auditing is used to track database access and user activity. Auditing can be used to iden-
tify who accessed database objects, what actions were performed, and what data was changed.
Database auditing does not prevent security breaches, but it does provide a way to identify if
breaches have occurred. Common categories of database auditing include monitoring database
access attempts, Data Control Language (DCL) activities, Data Definition Language (DDL) ac-
tivities, and Data Manipulation Language (DML) activities (Yang, 2009). Monitoring access at-
tempts includes retaining information on successful and unsuccessful logon and logoff attempts.
DCL audits record changes to user and role privileges, user additions, and user deletions. DDL
audits record changes to the database schema such as changes to table structure or attribute data-
types. DML audits record changes to data. In addition, database errors should be monitored
(Yang, 2009). Database auditing is implemented via log files and audit tables.

Database Security: What Students Need to Know

IIP-74

The real challenge of database auditing is deciding what and how much data to retain and how
long to keep it. Several options exist. A basic audit trail usually captures user access, system re-
sources used, and changes made to the structure of a database. More complete auditing captures
data reads as well as data modifications. The ADbC auditing sub-module provides step-by-step
examples for creating audits of user sessions, changes to database structure, and modifications to
data. Figure 9 shows an example of code required to implement and trigger an audit of a user
login. Data recorded includes the username and the date and time of the user login and logoff.

Figure 9. ADbC Database Audit Sub-module: Monitoring User Logins

An audit trail provides a more complete trace recording of not only user access but also user ac-
tions. This type of facility is included with many database management systems. The most com-
mon items that are audited include login attempts, data read and data modifications operations,
unsuccessful attempts to access database tables, and attempts to insert data that violates specific
constraints. Figure 10 shows an example audit trail of user access and user actions as demon-
strated in the Audit Command animation in the ADbC Database Audit sub-module. The SQL
Commands window displays the SQL statement used to retrieve data from the audit table.

 Murray

 IIP-75

Figure 10. ADbC Database Audit Sub-module: Example Database Audit Trail

Auditing plays a central role in a comprehensive database security plan. The primary weakness of
the audit process is the time delay between when data is recorded and when analysis is per-
formed. Consequently, breaches and other unauthorized activities are identified after the fact,
making it difficult to mitigate adverse effects in a timely manner. However, solutions are being
introduced that allow for real-time monitoring of database activity looking for patterned events
indicative of potential breaches and enacting real-time notification to database administrators
when such actions occur. Whatever the case, database auditing is a necessary process, and stu-
dents must be made aware of the need for continuous monitoring of database log files.

ADbC Courseware Use and Evaluation
The ADbC courseware was developed to provide supplemental instructional support in the class-
room. The software is not tailored to any specific product or textbook nor is it intended to substi-
tute for these resources. Instead it provides another venue for student interaction and engagement
with course material. The ADbC components support both in-class instruction and out-of-class
practice and reinforcement. They were not designed to be the sole source for learning a new con-
cept. In the classroom, faculty may use the courseware for demonstration when explaining a top-
ic. The sub-modules can also be assigned as out-of-class activities to reinforce concepts presented
in class. Most of the sub-modules include more than one animation allowing for one example to
be demonstrated in class and another example to be assigned for out of class practice. Students
may also be referred to the courseware for assistance when completing homework assignments or
studying for exams.

Database Security: What Students Need to Know

IIP-76

An evaluation of student perceptions of the teaching effectiveness of the Security Module was
undertaken in the spring of 2009. Sixty students were asked to complete an online questionnaire.
Thirty-eight students responded. In addition, interviews were conducted with three faculty mem-
bers using the courseware in their classes. Students responding to the survey were asked to assess
if a particular sub-module (access control, SQL injections, security matrix, row level security,
database inference, and database auditing) helped them to learn the material. The majority of stu-
dents indicated that they agreed or strongly agreed that the sub-modules did enhance their learn-
ing. Sub-modules with the highest rating included SQL injections and row level security. Data-
base inference and database auditing received the highest number of students reporting a rating of
‘neutral.’ When asked when they were motivated to use the software, 41% indicated they only
used it when specifically requested to do so by their instructor. However, 51% reported they also
used it on their own. Eight percent indicated they used the software often. The most common rea-
son given for using the software was to complete homework assignments or study for exams.

Faculty reported that their teaching was enhanced by the courseware, citing that the courseware
mapped well to the concepts taught in class, that it provided a means of reinforcement for student
learning, and that it was a much better process for presenting the concepts than the traditional
way of drawing pictures on a whiteboard. This evaluation was limited in scope to a relatively
small number of students and faculty. However, the results are encouraging. Both students and
faculty reported positive benefits to using the courseware.

Conclusion
The need to secure computer systems is well understood and securing data must be part of an
overall computer security plan. Growing amounts of sensitive data are being retained in databases
and more of these databases are being made accessible via the Internet. As more data is made
available electronically, it can be assumed that threats and vulnerabilities to the integrity of that
data will increase as well. Database security is becoming an increasingly important topic and stu-
dents need to develop core understandings in this area. The primary objectives of database secu-
rity are to prevent unauthorized access to data, prevent unauthorized tampering or modification of
data, and to insure that data remains available when needed.

The concepts related to database security are multifaceted. This makes it challenging to teach the
material when database security is included as just one component of a larger course. However,
this is how most students are exposed to the topic. This paper suggested a set of sub-topics in a
database security course component and introduced a set of interactive software modules mapped
to each sub-topic presented. Engaging students in interactive learning activities enhances the
learning experience and provides the opportunity for students to further explore database security
issues and identify practical implementation methods to database security mechanisms and strate-
gies.

References
Baker,W. H., Hutton, A., Hylender, C. D., Novak, C., Porter, C., Sartin, B., Tippett, P., & Valentine, J. A.

(2009). The 2009 data breach investigations report. Verizon Business. Retrieved January 31, 2010,
from http://www.verizonbusiness.com/resources/security/reports/2009_databreach_rp.pdf

Bertino, E., Byun, J., & Kamra, A. (2007). Database security. In M. Petkovic & W. Jonker (Eds.), security,
privacy, and trust in modern data management (Data-centric systems and applications) (pp. 87-102).
New York: Springer-Verlag.

Bertino, E., & Sandhu, R. (2005). Database security—concepts, approaches, and challenges. IEEE Trans-
actions on Dependable and Secure Computing, 2(1), 2-18.

http://www.verizonbusiness.com/resources/security/reports/2009_databreach_rp.pdf�

 Murray

 IIP-77

Defense Information Systems Agency. (2004). Database security technical implementation guide, 7(1).
Department of Defense. Retrieved January 31, 2010, from
http://www.databasesecurity.com/dbsec/database-stig-v7r1.pdf

Guimaraes, M. (2006). New challenges in teaching database security. Proceedings of the 3rd Annual Con-
ference on Information Security Curriculum Development, Kennesaw, GA, USA, 64-67.

Jaquith, A. (2007). Security metrics: Replacing fear, uncertainty, and doubt. Redwood City, CA: Addison-
Wesley Professional.

Knox, D. C. (2004). Effective Oracle database 10g security by design. New York: McGraw-Hill/Osborne.

Phifer, L. (2010). Top ten data breaches and blunders of 2009. eSecurity Planet, February 10. Retrieved
from http://www.esecurityplanet.com/features/article.php/3863556/Top-Ten-Data-Breaches-and-
Blunders-of-2009.htm

Ponemon, L. (2009). Fourth annual US cost of data breach study. Poneomon Institute sponsored by PGP
Corporation. Retrieved January 31, 2010, from
http://www.ponemon.org/local/upload/fckjail/generalcontent/18/file/2008-
2009%20US%20Cost%20of%20Data%20Breach%20Report%20Final.pdf

Privacy Rights Clearing House. (2010). Chronology of data breaches. Retrieved January 31, 2010, from
http://www.privacyrights.org/

Staddon, J. (2003). Dynamic inference control. Proceedings of the 8th ACM SIGMOD Workshop on Re-
search Issues in Data Mining and Knowledge Discovery, San Diego, CA, USA, 94-100.

Steinke, M., Huk, T., & Floto, C. (2003). Helping teachers developing computer animations for improving
learning in science education. Proceedings of the Society for Information Technology and Teacher
Education International Conference, Chesapeake, VA, 3022-3025.

Yang, L. 2009. Teaching database security and auditing. Proceedings of the 40th ACM Technical Sympo-
sium on Computer Science Education, Chattanooga, TN, USA.

Biography
Meg Coffin Murray is an Associate Professor in the Department of
Computer Science and Information Systems at Kennesaw State
University. She holds a Ph.D. in Information Systems and has over
thirty years of experience in both academe and industry. Dr. Murray
specializes in the development and implementation of emerging
technologies to meet business and organizational needs. Her current
work has focused on web services and using XML as a medium for
data exchange. She is also involved in devising strategies to assess
and remediate skills needed to leverage IT in innovation, a primary
driver of economic growth.

http://www.databasesecurity.com/dbsec/database-stig-v7r1.pdf�
http://www.esecurityplanet.com/features/article.php/3863556/Top-Ten-Data-Breaches-and-Blunders-of-2009.htm�
http://www.esecurityplanet.com/features/article.php/3863556/Top-Ten-Data-Breaches-and-Blunders-of-2009.htm�
http://www.ponemon.org/local/upload/fckjail/generalcontent/18/file/2008-2009 US Cost of Data Breach Report Final.pdf�
http://www.ponemon.org/local/upload/fckjail/generalcontent/18/file/2008-2009 US Cost of Data Breach Report Final.pdf�
http://www.privacyrights.org/�

	Database Security: What Students Need to Know
	Meg Coffin MurrayKennesaw State University, Kennesaw, GA, USA
	mcmurray@kennesaw.edu

	Executive Summary
	Introduction
	Database Security Topics
	Access Control
	Access control – Grant/revoke
	Row level security

	Application Access Assessment
	Database Vulnerability
	Database Inference
	Auditing

	ADbC Courseware Use and Evaluation
	Conclusion
	References
	Biography

