
Journal of Information Technology Education: Volume 12, 2013
Innovations in Practice

A Template-Based Short Course Concept on
Android Application Development

David Akopian, Arsen Melkonyan, Santosh C. Golgani,
Timothy T. Yuen, and Can Saygin

University of Texas at San Antonio, San Antonio, Texas, USA

david.akopian@utsa.edu; arsen.melkonyan@utsa.edu;
bottachandana@gmail.com; timothy.yuen@utsa.edu;

can.saygin@utsa.edu

Executive Summary
Smartphones are a common accessory to provide rich user experience due to superior memory,
advanced software-hardware support, fast processing, and multimedia capabilities. Responding to
this trend, advanced engineering systems tend to integrate mobile devices with their solutions to
facilitate usability. With many young students showing interest in learning mobile application
development, conventional electrical engineering undergraduate education cannot meet the needs
of this workforce due to fast changes in mobile technology and limited curricula hours. Template-
based learning (TBL) methods may overcome these limitations by shortening the learning cycle
through fast hands-on introduction to development tools, basic programming, and application de-
velopment and integration process. Students manipulate code fragments in provided templates,
and compile, embed, and run applications. They also implement new applications reusing frag-
ments from other similar templates. TBL modules can be integrated in pre-existing conventional
courses to provide basic and fast exposure to the subject. This paper provides an example of a
TBL template library for Android phones, which has been used in a classroom setting to collect
student attitude data and assess efficiency of the TBL approach.

Keywords: Learning, Mobile Applications, Mobile Education

Introduction
Mobile phones are technologically advanced devices that provide more and more communication
and other services. Numerous applications exploit superior memories and cameras, various wire-
less channels for voice and data, inertial and satellite positioning systems, advanced signal and
graphics processors and accelerators, etc. Acquisition, processing, and visualization of various
media also are common due to advanced software platforms and applications.

Educators are inspired to use cell phones
to communicate learning content in new
formats as Millennials (ages 18-34) are
by far the most technologically ad-
vanced user group, with a 95% cell
phone ownership (Caverly, Ward, &
Cavarly, 2009; Zickuhr, 2012). Mobile
learning, or m-learning, is defined as the
acquisition of any knowledge or skill
through using mobile technology (Ged-
des, 2004). This concept extends to

Material published as part of this publication, either on-line or
in print, is copyrighted by the Informing Science Institute.
Permission to make digital or paper copy of part or all of these
works for personal or classroom use is granted without fee
provided that the copies are not made or distributed for profit
or commercial advantage AND that copies 1) bear this notice
in full and 2) give the full citation on the first page. It is per-
missible to abstract these works so long as credit is given. To
copy in all other cases or to republish or to post on a server or
to redistribute to lists requires specific permission and payment
of a fee. Contact Publisher@InformingScience.org to request
redistribution permission.

Editor: Jane Nash

mailto:david.akopian@utsa.edu
mailto:arsen.melkonyan@utsa.edu
mailto:bottachandana@gmail.com
mailto:timothy.yuen@utsa.edu
mailto:can.saygin@utsa.edu
mailto:Publisher@InformingScience.org

A Template-Based Short Course Concept on Android Application Development

ubiquitous learning (Sakamura & Koshizuka, 2005), the concept of learning “anything at anytime
and anywhere,” as people spend more than 50% of their time outside their office or classroom
(Hayes, Joyce, & Pathak, 2004) and essential learning subject exists in our daily environment
(Laine, Sedano, Joy, & Sutinen, 2010). Mobile learning also is related to e-learning, which en-
hances education through access to learning materials over the Internet (Rosberg, 2001). All of
these concepts belong to a broader framework of technology enhanced learning (TEL) (Lytras,
Gasevic, & Ordonez De Pablos, 2008), which exploits technological innovations to improve the
efficiency and cost effectiveness of traditional teaching methods.

In Japan, a survey of 333 Japanese university students concerning m-learning (Thomton &
Houser, 2004) revealed that 100% of them own a mobile phone, 99% send email on their phones,
exchanging some 200 email messages each week. 66% email peers about classes; 44% email for
studying. In contrast, only 43% email on PCs, exchanging an average of only two messages per
week. Most of the subjects preferred receiving educational materials on mobile phones rather than
PCs and liked using phones for teaching. Recent examples of m-learning efforts can be found in
Tribal’s Digital Learning Studio (www.mlearning.org) for example.

M-learning likely will enhance education by closing digital gaps as the largest growth in mobile
phone ownership is predicted to come from people from low socio-economic status (Portio Re-
search, 2012). It also essentially will affect education in developing countries, where mobile
phones have a much higher penetration rate than laptop and desktop computers (Ullrich, Shen,
Tong, & Tan, 2010).

Even though there are psychological, pedagogical, and technical limitations for m-learning (Shu-
dong & Higgins, 2006) (small screens, typing inconvenience, etc.), it can be claimed that, in gen-
eral, students are willing to use their mobile devices for educational purposes.

Most m-learning applications are designed for content delivery and learning facilitation. For ex-
ample, mobile apps such as myHomework (https://myhomeworkapp.com/) allow students to track
their course material on their smartphones. In addition to being a platform for content delivery
and user experience enrichment, the mobile phone can also serve as a “technology kit,” which can
be used to learn computing aspects and application development itself.

With almost four billion wireless connections in 2008 worldwide, the cell phone industry gener-
ated vast services and large job markets. Undergraduate education should address this demand by
properly training the workforce for the future. Unlike computer and information sciences (Tam &
Chen, 2006), electrical engineering (EE) students have very limited exposure to mobile pro-
gramming but must work in multidisciplinary fields where mobile devices are incorporated in
control chains of various systems.

The diversity of mobile platforms, dramatic changes in industry, and limited curricula hours make
it challenging to integrate mobile computing courses in conventional undergraduate EE programs.
Figure 1 schematically illustrates significant market share redistributions of mobile phone plat-
forms in evolution using data from the Gartner Smartphone Marketshare Reports
(www.gartner.com). Android OS platform (http://developer.android.com/index.html) recently
gained popularity as an open source platform that relies on Java language for mobile application
development. Even though platform penetration dramatically changes over time and other plat-
forms may prevail in the future, Android is attractive for education needs as it provides free de-
velopment resources, which will help to scale up successful efforts for broader dissemination and
student adoption. Additionally, many student-owners of Android phones can work within a plat-
form that they are familiar with and use on an everyday basis.

14

http://www.mlearning.org/
https://myhomeworkapp.com/
http://www.gartner.com/
http://developer.android.com/index.html

 Akopian, Melkonyan, Golgani, Yuen, & Saygin

This paper investigates template-
based learning (TBL) for Android
mobile application development
to help overcome EE program
constraints as described above.
The idea is to develop learning
modules that can be integrated in
electrical engineering courses
(e.g., signal processing or com-
munications courses). Due to
short cycles, students learn by
exploring already available tem-
plates, which can be manipulated
to a limited extent to gain initial
application development experi-
ence. While the idea of using
template designs in programming
was exploited previously (Al-
Imamy, Alizadeh, & Nour, 2006;
Schank, Linn, & Clancy, 1993),

this paper extends a similar approach to mobile programming. As cognitive aspects of learning in
mobile programming are not addressed fully yet, we rely on our own learning experiences to hy-
pothesize concerning efficient learning strategies. Particularly, two learning alternatives can be
considered: (1) initial fast-track exposure to the subject to see the big picture, and (2) conven-
tional routine acquisition of knowledge and experience.

Figure 1: A schematic illustration of worldwide mobile
smart-phone OS platform market share evolution, from

2007 to 2011 using data from (www.gartner.com).

The focus of the paper is on the first stage of mobile programming, which introduces students to
the subject. The sample codes are available in a predesigned library of application templates that
can be used or manipulated. In this approach, students can quickly develop functional apps with-
out having to go into depth with mobile programming or spend a great deal of time coding from
the ground up. The library can be distributed or placed on a server for remote development as
well. Topics about signal and image processing and wireless communications can be studied in
relation with the hands-on labs on mobile devices. Camera images and video, audio and voice
signals, wireless connectivity standards, signals from accelerometers, and many more built-in
phone features can be used in designing such labs.

Thus, the research question is the following. How efficient can template-based short learning
modules be as fast introductions to challenging areas of mobile programming typically covered
by a dedicated course or sequence of courses? Here, “efficiency” is understood as a transforma-
tive factor: (a) change of conventional attitudes; (b) gaining confidence; and (c) ability to success-
fully complete assignments in the focus area and to develop their first apps independently.

The rest of the article has been organized further in the following way. A brief description of the
proposed template-based education philosophy is presented. Development tools are described in
the following section. Then, examples of template mobile applications are reviewed and one of
them is presented in detail. The next section describes the image processing toolbox to demon-
strate how templates can be collected in libraries. A quiz application developed by the authors is
briefly described as a relevant supportive self-assessment tool. The next section describes a case
study using TBL in a classroom setting and provides evaluation results by analyzing survey re-
sults concerning student attitudes and assignment grades. Finally, the research effort is summa-
rized in the conclusion.

 15

A Template-Based Short Course Concept on Android Application Development

Philosophy of the Approach
This section addresses the rationale of a template-based approach and its relation to the state-of-
the-art. It is necessitated by the fact that formulating structured solutions, understanding program
execution, and learning a rigid syntax and commands can be challenging for beginners of all ages.
Multiple programming languages have been created and environments have been built to make
programming more accessible to beginners, particularly young programmers. Several program-
ming languages and development environments were designed for the purposes of making some
of the abstract concepts more concrete, alleviating some of the cognitive load associated with
problem solving and computation, and motivating students to learn programming. For instance,
BlueJ, the interactive Java environment, (www.bluej.org) is an integrated Java environment spe-
cifically designed for introductory teaching about object-oriented programming through code vis-
ualization. Another example is Scratch (http://scratch.mit.edu/) from MIT Media Lab, which was
designed to help young children to program through a drag-and-drop interface. After being ex-
posed to an easier learning experience, students start programming using general-purpose lan-
guages and professional development tools.

Educational programming environments have many advantages for beginners compared to pro-
fessional text-based and visual programming tools. Many of the abstract concepts have been hid-
den from the user as well as the advanced tools that are typically associated with industry-grade
development environments. At the same time, transition to professional tools might be challeng-
ing. In some of these programming systems, students might focus on the fun part of the system
more and forget about the main goal, which is programming. Similarly, design tools such as MIT
App Inventor (http://appinventor.mit.edu/) facilitate application development, but do not expose
students to the “real development” world. Rather, it provides an easy-to-understand interface to
app development.

TBL’s goal is different. It is to provide real experiences with professional tools in a short time.
Exposure to the big picture has its own educational value; it will alleviate technology fears and
may motivate further in-depth studies. Using a metaphor, kids can use toys to pretend to help
their parent fishing, but helping the parent with small tasks during “real fishing” with real tools is
a completely different experience.

Unlike conventional application development learning approaches (Lutes, 2012) the TBL process
will provide students with ready-to-run programs, giving them the ability to modify those and
immediately experience the programming process and see the results. The goal is to educate using
a compiling and integration process, familiarize them with software development kits/IDE, and
provide them “real” exposure to the professional world. For more advanced students, the tem-
plates will help to shorten the coding cycle by reusing samples from templates. A well-designed
template could be used to support the learning process as well as the software development proc-
ess.

Templates have been used to facilitate conceptual understanding of programming concepts (Al-
Imamy et al., 2006; Schank et al., 1993; Yuen & Liu, 2011). Yuen and Liu (2011) studied how a
video game template supported and guided conceptual understanding of object-oriented pro-
gramming (OOP) as students used it to create their own interactive multimedia games. In using
templates, Yuen and Liu found three levels of interaction that result in better conceptual under-
standing. First, visual feedback from the games, specifically unexpected behaviors, brought atten-
tion to flaws in the software design. When students encounter these errors, they begin another
level of interaction with the template, which is to explore the template resources. This exploration
can lead to the discovery of important information, discovery of relationships between resources,
and model code that can later be used. As they explore, students begin to refine their code as well
as their understanding of the code. At the cognitive level, the template scaffolds conceptual un-

16

http://www.bluej.org/
http://scratch.mit.edu/
http://appinventor.mit.edu/

 Akopian, Melkonyan, Golgani, Yuen, & Saygin

derstanding as it provides the foundation or incomplete code base from which students can build
their programs. If designed correctly, the template code can be used as models or exemplars that
guide students’ thinking and coding.

In the case of the course described in this paper and in Yuen and Liu (2011), templates are used
as cognitive tools. Cognitive tools are computer-based tools that assist learners in the reorganiza-
tion of cognitive structures to support higher order cognitive activities (Jonassen, 2006). The pur-
pose is to engage learners in problem-solving tasks that are within their zone of proximal devel-
opment; that is, the cognitive tools help learners go beyond what they can do on their own by
providing necessary scaffolding (Vygotsky, 1978). Scaffolds generally include cues and prompts,
models, and guidance, which are tailored to individual students. Eventually, assistance is slowly
retracted, known as fading, which results in the learner being able to accomplish those tasks
alone.

As the learning modules are offered in lab formats, including step-by-step procedures, experience
with tools will be educative and not be stressful. The beginners will learn progressively, from ba-
sic to more advanced modules. Templates use graphics and animation for more appealing experi-
ence.

Learning using templates abstracts many of the development steps by pre-populating design and
code modules. They automate the packaging and deployment processes to make the entire soft-
ware development lifecycle less intimidating and more obvious for students. These simplifica-
tions allow students and their instructors to focus their attention on the broader picture before
concentrating on coding details. The differences between template-based programming and regu-
lar programming are illustrated in Figure 2. There are seven steps in the creation of an Android
application. These steps include
designing, coding, compiling, pre-
verification, packaging, testing, and
deployment. The steps are illus-
trated in Figure 2 in blue. The color
red shows a shortened cycle of
TBL, where designing and coding
stages are simplified to code ma-
nipulation, and the testing stage is a
primitive visual validation of re-
sults. The other four stages (in
Eclipse IDE box) are the same in
both approaches.

Figure 2: Template-based system vs. conventional
programming process.

Development Tools
The templates are implemented in the Java programming language (“JAVA tutorial,” 2012) using the An-
droid Software Development Kit (SDK) (http://developer.android.com/index.html) in the Eclipse
Integrated Development Environment (IDE) (www.eclipse.org). Eclipse is a convenient devel-
opment environment, which provides an extensible plug-in system. Executable ‘apk’ files are de-
ployed onto Android compatible mobile devices. Students who are familiar with Java program-
ming can easily work with Android SDK. The Android Developer Tool (ADT) is an Eclipse plug-
in, which provides different versions of emulators replicating Android phones. Sample image
processing templates are available in a JJIL open source image processing library, developed in
Java (http://code.google.com/p/jjil).

 17

http://developer.android.com/index.html
http://www.eclipse.org/
http://code.google.com/p/jjil

A Template-Based Short Course Concept on Android Application Development

Template Apps Used
The following section describes the template applications used for the projects. It includes a con-
ventional “Hello World” application, which is used to learn the development environment and
perform basic modifications. Then, progressively, other template apps are described along with
related learning aspects. The application “Simple Animation” is chosen for detailed explanation
while others are just summarized.

Learning Modules

(a) (b)

(c) (d)

Figure 3: (a) ‘Hello World’ Application, (b) ‘On-
Click Example ‘ Application, (c) ‘Image Gallery’

Application, (d) ‘Slideshow’ Application

 “Hello World” Application (Figure
3a): The “Hello World” program is typi-
cally the first program that students learn
when introduced to a programming lan-
guage. This application is designed to
introduce the first timer to fundamentals
of syntax and building a user interface,
which in this case displays “Hello
World” on the screen. The objectives for
this unit were to have students be able to
do the following:

 launch the Eclipse IDE and An-
droid SDK on a computer,

 become familiar with the Java
language,

 understand how different objects
in Java interact,

 change the message text in the
template code,

 test applications in Android SDK
emulator, and

 install and run applications on
the mobile devices.

“OnClick Example” Application (Fig-
ure 3b): The “OnClick Example” application demonstrates the addition of buttons and handling
events that activate upon clicking. It uses texts and other visual effects to manifest the changes
that happen on the screen in response to user interaction. From studying this example, students
are expected to learn:
 the significance of methods used in Java,
 how to create new objects in Java,
 how methods work,
 handling events in Java, and
 to customize and assign events or tasks to buttons.

“Image Gallery” Application (Figure 3c): This example helps build an image gallery applica-
tion with the scrolling effect applied when scrolling up and down from one set of images to an-
other. This application introduces the following topics:
 the digital representation of an image,
 creating an array and managing its content,

18

 Akopian, Melkonyan, Golgani, Yuen, & Saygin

 resizing digital pictures, and
 giving functionality to the up-down scroll panel.

“Slideshow” Application (Figure 3d): In this example, students use the template to build an im-
age slideshow application by using images from both project resources and the Internet. The ap-
plication contains buttons that handle all user actions to move from one image to another or back.
This application introduces the following:
 working with URL resources,
 giving functionality to the right-left scroll buttons, and
 manipulating in-project/out-project images.

“Simple Animation” Application
Objectives: This application introduces a
basic animation application and building
a user interface, which in this case dis-
plays a black screen with the touch pad
functionality. Students are expected to
learn the following from this unit:

 digital color concepts,
 visualizing geometric shapes and

their representation in program
logic,

 understanding and manipulating
the position of elements on the
screen using co-ordinates along
“x” and “y” axes, and

 animating static geometric shapes
to create patterns.

Code Walk Through: There are two crit-
ical methods in the SimpleAnimation.java
class. In the DrawView method the figure
shape and color is set by paint.setStyle and
paint.setColor methods. In the OnDraw
method, the background color is set to
white using the canvas.drewColor meth-
od. The second method also defines the
drawing figure shape and size. The shape
can be changed from a circle to a rectan-
gle or other shape. Some code fragments
from the “Simple Animation” application
are shown in Sample Code 1.

public DrawView(Context context) {
 super(context);
 setFocusable(true);
 setFocusableInTouchMode(true);
 this.setOnTouchListener(this);
 paint.setStyle(Style.FILL);

// Change the 'Style.FILL' to 'Style.STROKE' to change
the figure style.

 paint.setColor(Color.rgb(255, 0, 0));
// Change the '255, 0, 0' to any integer numbers within
the range 0-255 to change the figure color.

 paint.setAntiAlias(true);
 }
 @Override
 public void onDraw(Canvas canvas) {
 canvas.drawColor(Color.WHITE);

 // Change the background color "Color.WHITE" to
"Color.GRAY" or any other color from the given list.

 int size=6;
// Change the '6' to any integer number to change the
figure size.

 for (Point point : points) {
// Change the figure shape by uncommenting one of the
lines above. Note: Once you uncomment any line with
"canvas" comment the active line.

// canvas.drawPoint(point.x, point.y, paint);

canvas.drawCircle(point.x, point.y, size, paint);

//canvas.drawRect(point.x, point.y, point.x+size,
point.y+size, paint);

 }
 }

Sample Code 1: Code Fragments from
‘Simple Animation’ Application

Code Manipulations: The code presented as a template in the Eclipse IDE contains highlighted
sections of code that can be changed in succession to observe and grasp the overall structure of the
mathematical logic and the program syntax that work to create shapes, colors, and effects that
change position and direction based on user interaction (See Table 1).

Testing: Before deploying the application, it must be tested using a base common emulator de-
vice that mimics the functionality of an actual device on a user’s computer. This emulator is part
of the Android SDK and provides functionalities that are sure to be present in the majority of de-
vices running the OS and/or platform for which the application is targeted.

 19

A Template-Based Short Course Concept on Android Application Development

Figure 4: ‘Simple Animation’
Application shown in emulator.

Table 1: Code Manipulations Applied to

‘Simple Animation’ Application
Manipulations Code

Change the animation figure
style from ‘FILL’ to any other
style

paint.setStyle(Style.FILL);

Change the figure col-
or.(Change‘255’,‘0’, and ‘0’ in
prentices with the new integer
numbers within the range ‘0-
255’)

paint.setColor(Color.rgb(255, 0, 0));

Change the screen background
color from ‘WHITE’ to any
other color.

canvas.drawColor(Color.WHITE);

Change the figure size from
’6’ to any other size.

int size=0;

Change the animation figure
shape to the new one such as
rectangle, line, circle, or tri-
angle shape. (Comment and
uncomment the lines)

//canvas.drawPoint(point.x, point.y,
paint);
canvas.drawCircle(point.x, point.y,
size, paint);

After completing the desired customiza-
tion as shown in Table 1 in the applica-
tion template, it is ready to run on the
emulator. We have the option to change
the emulator device by selecting a new
device from the project properties option.
This enables us to observe the applica-
tion’s compliance with basic as well as
advanced handsets. Figure 4 shows us
the result of running the “Simple Anima-
tion” on a standard Android SDK capa-
ble emulator.

Menu
Gallery
• Select image from gallery

Figure 5: (Left) Menu structure of used library
on Android phone; (Right). Sample demonstra-
tion of FFT domain processing with two images

Camera
• Launch camera
• Select image from SD card
Manipulations
• Crop image
• Skew image
• Transpose
• Rotate
• Scaling
• Add images
• Subtract images
• Clone image to image2

Transformations
• FFT
• FFT domain processing
• DCT
Digital Retouching
• Adjust brightness
• Invert image
• Histogram
• Salt and pepper noise
Gaussian noise
• Average filter
• Median filter
• Min-Max filter
• Laplace filter
• Sobel filter
• Gaussian smoothing
• Hough transform

Deployment: There are two ways to de-
ploy the executables on a mobile device.
The first is via an ad-hoc connection be-
tween user computer and handset. This
can be done via either a USB cable or a
Bluetooth wireless connection, based on
user device capabilities. Most Android
devices allow a user to install applica-
tions via these connections. The second
way is via the Internet by publishing the
developed application in Web stores.
This project, we accessed via the USB
cable deployment option.

Image Processing
Template Apps

The learning flow starts with a simplified
“design” (template manipulations) fol-

20

 Akopian, Melkonyan, Golgani, Yuen, & Saygin

lowed by “coding,” “pre-verification,” “deployment” and “testing.” The toolkit abstracts many of
these steps to make it easier for students to handle the process.

This section demonstrates how template apps can be clustered in libraries to address specific ap-
plication areas. The EE students deal with signal and image processing algorithms through related
templates and hands-on exercises to study the effects of the algorithms on images captured by a
handset camera or downloaded from the Internet. The image processing algorithms are collected
in a template library and partitioned as 1) manipulations; 2) transformations; and 3) digital re-
touching (see Figure 5). A detailed description of this module has been reported by the authors in
Golagani, Esfahanian, Akopian, and Saygin (2012) and is reviewed here. The “manipulations”
category includes simple mathematical operations such as add/subtract two images, scale, crop,
clone, transpose, skew, and rotate an image.

The “transformations” contains algorithms that convert images in the spatial domain to the fre-
quency domain and inversely from the frequency to the spatial domain (discrete cosine transform
and fast Fourier transform). “Digital retouching” consists of a set of image evaluation operations
such as histograms, noise removal, and edge detection filters. Some sample real time images are
stored in the gallery; otherwise, the user can take pictures using the built-in camera. The images
on the handset screen are placed under different tab controllers, namely “transformed,” “origi-
nal,” and “intermediate,” to compare processed and original images.

Sample applications are “median,” “averaging/mean,” and filters. The filters are a sliding window
functions (i.e., each pixel of the image is replaced by a value), which is computed using a window
of neighborhood samples.

Sample code 2a and 2b depict operation of the median and mean filters in the window. The me-
dian filter effectively removes impulsive salt-and-pepper noises while mean filters are useful for
filtering Gaussian noises. Figure 6 illustrates denoising examples by these filters on handset
screens. By default, a 3x3 kernel is defined, which can be changed by students. In case a filter
performs a linear operation, (i.e., samples in the window multiply to kernel weights), then various
kernel selections may result in low-pass, high-pass, and edge detection filters. Examples of tem-
plate manipulations for implementing edge detection filters using the “averaging” display are
shown in Table 2. Figure 7 illustrates edge detection using the Laplace filter, and Figure 8 dem-
onstrates two-dimensional convolution in the frequency domain.

int center =4; //center index, index starts from’0’
int[] window = new int[2*center+1];
//vector to hold pixels from 3x3 neighborhood window
for(int y=1;y<=height-2;y++){
 for (int x=1 ;x<=width-2;x++){
 // fill the window with pixel values
 int k=0;
 for (int j= -1;j< =1; j++){
 for (int i= -1;i< =1; i++){
 window[k]= inputimg.getPixel(x+i , y+j);
 k++;
 }
}
 Arrays.sort(window); // sort in ranking order modi-
fiedpixels[x][y]=window[center];
 //replace pixel with median
 }
 }

Sample Code 2: (a) Median Filter Averaging (Mean) Filter, (b) Mean Filter

int kernelsize = 3 ; int total_kernelelements= 9;
int window[][] = new int[kernelsize][kernelsize];
int[][] kernel={{1,1,1},{1,1,1},{1,1,1}};
for (int y=1;y < height-2;y++) { //slide in ‘y’dimension
 for (int x=1;x < width-2;x++){ //slide in ‘x’dimension
 //get input pixel values to kernel
int r=0,g=0,b=0;
for (int i=0;i<kernelsize;i++){
 for (int j=0;j<kernelsize;j++){
//get R,G,B values from input image and add all elements
 r= (r+ kernel [i][j]*RgbVal.getR(window[i][j]));
 g= (g+ kernel [i][j]*RgbVal.getG(window[i][j]));
 b= (b+ kernel [i][j]*RgbVal.getB(window[i][j]));
 } }
// compute average
 r= r/total_kernelelements; b=b/total_kernelelements;
 g=g/total_kernelelements;
 int mean = RgbVal.toRgb((byte) r,(byte) g, (byte) b);

(a) (b)

 21

A Template-Based Short Course Concept on Android Application Development

(a)

Figure 6: (a) Original ‘Barbara’ image; (b) ‘Barbara’ image corrupted by salt & pepper noise;
(c) Corrupted “Barbara” image restored by a median filter; (d) Original ‘Lena’ image;

(e) ‘Lena’ image corrupted by Gaussian noise;
(f) Corrupted “Lena” image restored by average or mean filter

(b) (c)

(d) (e) (f)

Table 2: Code Manipulations Applied to Edge
Detection Filters

Manipulations Code

Apply Sobel1 kernel. This
makes edge detection in vertical
direction and smoothing in
horizontal direction

int[][] kernel = {{1,0,-1},{2,0,-
2},{1,0,-1}};

Apply Sobel2 kernel. This
makes edge detection in hori-
zontal direction and smoothing
in vertical direction.

int[][] kernel =
{{1,2,1},{0,0,0},{-1, -2,-1}};

Apply 3x3 first Laplace kernel. int[][] kernel = {{1,1,1},{1,-
8,1},{1, 1,1}};

Apply 3x3 second Laplace kernel int[][] kernel =

{{0,-1,0},{-1,4,-1},{0,-1,0}};

Figure 7: (a) Original image;
(b) Laplace filtered image for edge

(a) (b)

(a)

Figure 8: (a) Original two images; (b) FFT
applied; (c) convolution applied and its IFFT

(b) (c)

22

 Akopian, Melkonyan, Golgani, Yuen, & Saygin

Quiz Application
One can also develop apps that support
learning assessment. An example is imple-
mented to support student self-assessment.
Once students complete their projects with
templates, they can assess their knowledge
by launching the quiz application. This page
launches with five random questions queried
from the SQLite
(http://www.vogella.com/articles/AndroidS
QLite/article.html) database. Since Android
provides full support for the SQLite
database, the database created will be
accessible by name to any class within
the application. SQLite is readily avail-
able on every Android device. Once
SQL statements for creating and updat-
ing the database are defined, then the
database is automatically managed by
the Android platform. Each question
appears on a single page (Figure 9).
Click “next” to go to the next question.
Finally, the “submit” button appears,
which gives a pop up message showing
the score of the attempted quiz. At this
stage, the quiz application is used for
self-assessment only.

Learning Module
Assessment

A short course workshop module (Table
3) has been integrated in the wireless
communications course, which is of-
fered by the Electrical and Computer
Engineering Department at the Univer-
sity of Texas at San Antonio (UTSA)
during Spring 2012. About thirty-five
students participated in the workshop
for a total of 8 days for 1 hour 15 min-
utes per day. The effort is part of a
broader educational initiative of the In-
teractive Technology Experience Cen-
ter (iTEC) at the UTSA on implement-
ing technology enhanced learning for
undergraduates and outreach
(http://itec.utsa.edu/).

The efficiency of the template-based
learning is assessed through the follow-

Table 3: Short Course Program
Introduction to the Android Application Development

(Class duration: 1h15min)

Class 1 Introduction. History. Operation Systems (OS). Mobile
phone development market

Class 2 Integrated Development Environments (IDE). NetBeans
IDE and Eclipse IDE for Java based application develop-
ment
The students learned:
 Find and install the IDEs
 Create first project in Eclipse IDE

Class 3 Introduction to Java. Basics of Java programming lan-
guage and examples

Class 4 Android Platform. Introduction to Eclipse IDE/Android
SDK development environment and to the basics of android
application development.
The students learned:
 Find and install the Android SDK.
 Integrate Android SDK with Eclipse IDE.
 Create first android emulator.
 Create first android project.
 “Hello World!!!” - first Android application.
 Run and test the application on the emulator.

Class 5 Template-Based Applications. Learn by manipulating
templates. The students learned:
 Application 1. (‘Hello World’ application)
 Application 2 (‘OnClick Example’ application)
 Application 3 (‘Image Gallery’ application)
 Application 4 (‘Slideshow’ application)
 Application 5 (‘Simple Animation’ application)
 How manipulate application templates
 How install and test applications on handsets

Class 6 Android GUI Development. Basics of the android GUI
development. The students learned:
 The basics of Android GUI development. Integrate dif-

ferent GUI components (such as buttons and check-
boxes) to the application. (“Temperature Converter”
application was used as an example)

 Install the device drivers and connect the mobile device
to the Eclipse IDE/Android SDK

Class 7 Advanced Android Application Development. Examples
of Image processing applications: median and averaging
filters, edge detection, convolution in frequency domain.

Class 8 Project Presentation: In this class, Instructor formulated
project assignments and requirements. Directions and hints
are provided to students. The workshop was concluded with
the Question/Answer session.

Figure 9: Sample screen of Quiz in this toolkit

 23

http://www.vogella.com/articles/AndroidSQLite/article.html
http://www.vogella.com/articles/AndroidSQLite/article.html
http://itec.utsa.edu/

A Template-Based Short Course Concept on Android Application Development

ing criteria: (a) change of conventional attitudes; (b) gaining confidence; and (c) ability to suc-
cessfully complete assignments in the focus area and develop their first apps independently. The
preliminary results of this assessment were originally discussed in Golagani et al. (2012), but
more detail and discussion regarding the entire learning module are presented here.

To assess course effects on student attitudes, both pre- and post-workshop surveys are conducted.

Pre-workshop survey questions and data are presented in Table 4. Similar to other studies (Lang
et al., 2007), the responses are scaled using answer options: the scale goes from 5-excellent to 1-
poor for the first question, the scale goes from 5-high to 1-low for the second question, the scale
goes from 5-hard to 1-easy for the third question, and the scale goes from 5-yes to 1-no for the
last question.

Most of the students reported low or average programming experience with only 5% highly as-
sessing their skills (mean = 2.39). Initial perception of students on the difficulty of mobile pro-
gramming is average with mean = 2.71. Most of the students think that careers in mobile pro-
gramming are rewarding (mean = 3.9), about 60% positive.

Table 4: Students’ Pre- Workshop Feedbacks

Questions Mean SD Percentage
of 5 and 4
selections

How do you grade your programming skills? {Excellent 5 – 1 Bad} 2.39 0.9 5%

How do you grade your interest in Mobile Application Development? {High 5 – 1 Low} 4.13 1.1 83%

At this point, how do you perceive the difficulty of mobile phone programming? {Hard 5 –
1 Easy}

2.71 1.05 22%

Do you think that the mobile programming is a rewarding career but you have doubts on
possible difficulties when pursuing it? {Yes 5 – 1 No}

3.9 1.06 60%

How do you grade your interest in having more Android Application Development experi-
ence? {High 5 – 1 Low}

4.27 0.98 85%

Were homework 1 applications useful as initial learning experience? {Yes 5 – 1 No} 4.21 0.72 83%
Did homework 2 (“Temperature Convertor” Application) help to advance your Android
exposure? {Yes 5 – 1 No}

4.48 0.72 94%

Modifying known applications as in the last project (image processing) might help to over-
come programming skill limitations for beginners. {Agree 5 – 1 Don’t agree}

3.79 1.16 62%

Were Android Application Development tutorials helpful? {Yes 5 – 1 No} 4.49 0.81 92%

Were PowerPoint presentations helpful? {Yes 5 – 1 No} 4.31 0.91 89%

Table 5 shows post-workshop survey results. The majority of students, approximately 76% (Mean
= 3.93), changed their opinion on the difficulty of mobile programming and think that they can
develop Android applications if needed (69%, mean = 3.89). Ninety percent of students (mean =
4.41) understood the application development process. Eighty-two percent (mean = 4.03) would
consider the usage of mobile phones in their senior design projects. End of semester monitoring
confirmed that 12 students eventually did so. Overall, students were satisfied, as their expecta-
tions were met (87%, mean = 4.34). This demonstrates the efficiency of the approach in terms of
“change of attitudes” and “gaining confidence.”

There were three homework assignments on application development: (1) replicate the design of
a set of template applications; (2) design a “currency conversion” application using template
“temperature conversion” application; and (3) investigate the “image processing apps” toolkit and
implement filters with various kernels. All homework assignments were assessed positively by
students (83%, 94%, and 62% for assignments 1, 2, and 3, respectively), which inferred that stu-
dents had good experiences with the template-based assignments.

24

 Akopian, Melkonyan, Golgani, Yuen, & Saygin

Table 5: Students’ Post- Workshop Feedbacks

Questions Mean SD Percentage
of 5 and 4
selections

Has this workshop changed your perception on the difficulty of mobile phone programming?
{Yes 5 – 1 No}

3.93 1.31 76%

Do you think that you would be able to develop Android applications if needed? {Yes 5 – 1
No}

3.89 1.21 69%

Has this workshop clarified the phone application development and integration process?
{Yes 5 – 1 No}

4.41 0.89 90%

Might this workshop influence your opinion on a possible use of Android Application in your
senior design project? {Likely 5 – 1 Unlikely}

4.03 1.13 82%

Are your expectations from the workshop met? {Yes 5 – 1 No} 4.34 0.79 87%
How do you grade your interest in having more Android Application Development experi-
ence? {High 5 – 1 Low}

4.27 0.98 85%

Were homework 1 applications useful as initial learning experience? {Yes 5 – 1 No} 4.21 0.72 83%
Did homework 2 (“Temperature Convertor” Application) help to advance your Android
exposure? {Yes 5 – 1 No}

4.48 0.72 94%

Modifying known applications as in the last project (image processing) might help to over-
come programming skill limitations for beginners. {Agree 5 – 1 Don’t agree}

3.79 1.16 62%

Were Android Application Development tutorials helpful? {Yes 5 – 1 No} 4.49 0.81 92%

Were PowerPoint presentations helpful? {Yes 5 – 1 No} 4.31 0.91 89%

A general assessment survey is summarized in Table 6. Students found the mobile application
development workshop to be excellent (92%, mean = 4.34), interesting (95%, mean = 4.48), rela-
tively easy (67%, mean = 3.72), useful (93%, mean = 4.41), valuable (91%, mean = 4.31), moti-
vational (63%, mean = 3.34), and balanced in effort (54%, mean = 3.27). Presentations and tuto-
rials were helpful for 89% and 92 % of students, respectively. Eighty-five percent (mean = 4.27)
of students were motivated to learn more about mobile application development.

Table 6: Students’ Feedbacks about the Workshop

How do you grade Mobile Application Development workshop in general? Mean SD Percentage
of 5 and 4
selections

Excellent 5 - 1 Bad 4.34 0.92 92%

Interesting 5 - 1 Boring 4.48 0.89 95%

Easy 5 - 1 Hard 3.72 0.91 67%

Useful 5 - 1 Useless 4.41 0.85 93%

Valuable 5 - 1 Worthless 4.31 0.91 91%

Motivational 5 - 1 Dry 3.34 1.15 63%

Effortless 5 - 1 Labor-intensive 3.27 0.82 54%

Lutes (2012) reported many challenges when teaching mobile programming even for dedicated
semester-long course settings. For the short course described in this paper the students learned
essential concepts of mobile programming as evidenced by the results. Ninety-four percent of
students had grades B and higher for assignment 1. Eighty-three percent of students had grades B
and higher for designing their first independently developed “currency converter” application in
assignment 2. This addresses the third efficiency criterion “ability to develop apps independ-
ently.” Similarly, 83% of students had grades C and higher for completing the very challenging
“image processing app” homework assignment 3. All three homework grades demonstrated effi-
ciency in terms of the three criteria defined above. In other words, template-based education ap-
pears to be a very efficient learning approach for mobile application programming.

 25

A Template-Based Short Course Concept on Android Application Development

Conclusion
The paper summarized the study on effectiveness of template-based undergraduate learning for
mobile application development in electrical engineering departments, which may not provide
conventional course tracks for comprehensive learning on the subject due to curricula hours’ con-
straints. Short modules are integrated in a conventional course and basic exposure to mobile
computing was provided without specific prerequisites. Survey results demonstrate high effi-
ciency of the approach. It motivates students to elaborate similar topics further and consider Sen-
ior Design topics based on mobile apps. Moreover, templates served as hands-on exercise for stu-
dents to work on topics covered in their conventional signal and image processing courses by
capturing and manipulating images from phone cameras.

Acknowledgment
This work was partly supported by iTEC-UTSA Learning Center and NSF grants 0942852 and
0932339.

References
Al-Imamy, S., Alizadeh, J., & Nour, M. N. (2006). On the development of a programming teaching tool:

the effect of teaching by templates on the learning process. Journal of Information Technology Educa-
tion, 5, 271-283. Retrieved January 20, 2013, from http://www.jite.org/documents/Vol5/v5p271-
283Al-Imamy115.pdf

Caverly,C. D., Ward, R. A., & Cavarly, A. (2009). Techtalk: Mobile learning and access. Journal of De-
velopmental Education, 33(1), 32-39.

Geddes, S. J. (2004). Mobile learning in the 21st century: Benefits for learners. The Knowledge Tree e-
journal, Edition 6, Peer Reviewed Articles 3.

Golagani, S. C., Esfahanian, M., Akopian, D., & Saygin, C. (2012). Template-based image processing tool-
kit for Android phones. 119th ASEE Annual Conf. & Exposition, San Antonio, TX, AC2012-3546.

Hayes, P., Joyce, D., & Pathak, P. (2004). Ubiquitous learning – An application of mobile technology in
education. Cantonini & McLaughlin (Eds.), Proceedings of ED-MEDIA. Lugano, Switzerland.

Jonassen, D. H. (2006). Modeling with technology: Mindtools for conceptual change. Upper Saddle River,
NJ: Merrill Prentice Hall.

Laine, T. H., Sedano, C. A. I., Joy, M., & Sutinen, E. (2010). Critical factors for technology integration in
game-based pervasive learning spaces. IEEE Trans. on Learning Technologies, 3(4), 294-306.

Lang, D., Mengelkamp, C., Jäger, R. S., Geoffroy, D., Billaud, M., & Zimmer, T. (2007). Pedagogical
evaluation of remote laboratories in eMerge project. European Journal of Engineering Education,
32(1), 57-72.

Lutes, K. (2012). Cross-platform mobile app software development in the curriculum. Journal of Issues in
Informing Science and Information Technology (IISIT), 9, 115-124. Retrieved January 20, 2013, from
http://iisit.org/Vol9/IISITv9p115-124Lutes120.pdf

Lytras, M. D., Gasevic, D., & Ordonez De Pablos, P. (2008). Technology enhanced learning. IGI Publish-
ing.

Portio Research. (2012). The next billion: Strategies for driving growth and making profits in low ARPU
mobile markets. Retrieved January 20, 2013, from http://www.portioresearch.com/en/reports/archive

Rosberg, M. (2001). E-learning: Strategies for delivering knowledge in the digital age. McGraw-Hill.

Sakamura, K., & Koshizuka, N. (2005). Ubiquitous computing technologies for ubiquitous learning. IEEE
Int. Workshop on Wireless and Mobile Technologies in Education, pp. 11-20.

26

http://www.jite.org/documents/Vol5/v5p271-283Al-Imamy115.pdf
http://www.jite.org/documents/Vol5/v5p271-283Al-Imamy115.pdf
http://iisit.org/Vol9/IISITv9p115-124Lutes120.pdf
http://www.portioresearch.com/en/reports/archive

 Akopian, Melkonyan, Golgani, Yuen, & Saygin

Schank, P. K., Linn, M. C., & Clancy, M. J. (1993). Supporting Pascal programming with an on-line tem-
plate library and case studies. International Journal on Man-Machine Studies, 38(6), 1031-1048.

Shudong, W., & Higgins, M. (2006). Limitations of mobile phone learning. The JALT CALL Journal, 2(1),
3-14.

Tam, J. M., & Chen, K. (2006). Mobile technology as a learning object and exploration tool in an IS cur-
riculum: An innovative instruction of wireless network security. IEEE Trans. on Education, 49(2),
193-198.

Thomton, P., & Houser, C. (2004). Using mobile phones in education. 2nd IEEE International Workshop
on Wireless and Mobile Technologies in Education (WMTE’04), pp. 3-10.

Ullrich, C., Shen, R., Tong, R., & Tan, X. (2010). A mobile live video learning system for large-scale
learning – System design and evaluation. IEEE Trans. on Learning Technologies, 3(1), 6-11.

Vygotsky, L. (1978). Interaction between learning and development. In M. Gauvain & M. Cole (Eds.),
Readings on the development of children. New York: W. H. Freeman and Company.

Yuen, T., & Liu, M. (2011). A cognitive model of how interactive multimedia authoring facilitates concep-
tual understanding of object-oriented programming in novices. Journal of Interactive Learning Re-
search, 22, 329-356.

Zickuhr, K. (2012). Generations and their gadgets. Pew Research Center. Retrieved January 20, 2013,
from http://pewinternet.org/Reports/2011/Generations-and-gadgets

Biographies
Dr. David Akopian is an Associate Professor at the University of Texas at San Antonio (UTSA).

Prior to joining UTSA he was a Specialist with Nokia Corporation from
1999 to 2003. From 1993 to 1999 he was a member of teaching and re-
search staff of Tampere University of Technology, Finland, where he also
received the Ph.D. degree in electrical engineering. Dr. Akopian’s current
research interests include communication and navigation systems, and
communication technologies for education and healthcare applications.
He authored and co-authored more than 30 patents and 120 publications.
He is a Co-Chair of SPIE Multimedia on Mobile Devices conference.

Arsen Melkonyan is a PhD student at the University of Texas at San An-
tonio. He received the B.Sc. degree in Electrical Engineering from the
State Technical University of Armenia, Yerevan, Armenia, in 2003 and
M.Sc. degree in Electrical Engineering from the University of Texas at
San Antonio in 2008. His current research interests include Impact local-
ization algorithms for Structural Health monitoring, WLAN Indoor posi-
tioning algorithms, and the design aspects of remote hardware-based edu-
cational system.

 27

http://pewinternet.org/Reports/2011/Generations-and-gadgets

A Template-Based Short Course Concept on Android Application Development

28

6.

SEE.

Santosh C. Golagani is received her Master's degree from University of
Texas at San Antonio (UTSA) in computer engineering department. She
worked in HCL Technologies as a Member Technical Staff from 2009-
2010.Prior to working for HCL Technologies, she worked in Cognizant
Technologies Solutions as a Programmer Analyst from 2006-2008. She
pursued her Bachelor's degree in electronics and communication engi-
neering from Jawaharlal Nehru Technological University in 200

Dr. Timothy T. Yuen is an Assistant Professor of Instructional Technol-
ogy in the College of Education and Human Development at the Univer-
sity of Texas, San Antonio. His research examines tools that mediate con-
ceptual understanding in computer science and engineering and motivate
students to pursue careers in STEM fields. He is a member of IEEE,
ACM, AERA, and ISTE and an affiliated faculty member of the Interac-
tive Technology and Experience Center (iTEC) at UTSA.

Dr. Can Saygin is a professor of mechanical engineering and director of
the Interactive Technology Experience Center (iTEC) at the University of
Texas at San Antonio. His research interests include manufacturing sys-
tems, modeling and analysis of automated manufacturing systems, and
production planning and control. He has published over 100 peer-
reviewed journal and conference papers. He is the recipient of the College
of Engineering 2009 Excellence in Teaching Award, the President’s 2011
Distinguished Achievement Award for Teaching Excellence, and the
University of Texas System Regents’ Outstanding Teaching Award in
2012. He is a member of SME, IIE, ASME, and A

	A Template-Based Short Course Concept on Android Application Development
	David Akopian, Arsen Melkonyan, Santosh C. Golgani, Timothy T. Yuen, and Can SayginUniversity of Texas at San Antonio, San Antonio, Texas, USA
	david.akopian@utsa.edu; arsen.melkonyan@utsa.edu; bottachandana@gmail.com; timothy.yuen@utsa.edu; can.saygin@utsa.edu

	Executive Summary
	Introduction
	Philosophy of the Approach
	Development Tools
	Template Apps Used
	Learning Modules
	“Simple Animation” Application

	Image Processing Template Apps
	Quiz Application
	Learning Module Assessment
	Conclusion
	Acknowledgment
	References
	Biographies

